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1 Introduction

This is a past version of my paper, a newer version of which can be found at this
link; the new version contains a more complete introduction as well as a more
careful treatment of the details of the argument. I have nevertheless included
this past version here, as it provides an alternative convergence argument to the
Spectral Decomposition Theorem.

Before discussing the specifics of past results and our new technique, we
will briefly define the Frobenius-Perron operator. If S is a function and X
is a random variable with distribution function d, then the Frobenius-Perron
operator associated to S is the operator

P : L1 → L1

such that P (d) is the distribution function for S(X ). If S is injective and
differentiable, then

P (d)(t) =
(
S−1

)′
(t) · d

(
S−1(t)

)
is the Frobenius-Perron Operator.

In their book, Lasoto and Mackey were able to show that for a function
S : [0, 1] → [0, 1] fulfilling the following properties its associated Frobenius-
Perron operator P would be asymptotically periodic. That is, for aK sufficiently
large, P knf would converge for every f in L1. Below are the conditions on S.

1. There is a collection of disjoint open intervals {Ii}ni=1 whose closures cover
[0, 1] such that for each integer 1 ≤ i ≤ n, the restriction of S to Ii is a
C2 function.

2. There exists some constant λ > 1 such that for every 1 ≤ i ≤ n and x ∈ Ii,
|S′| ≥ λ > 1.

3. There is a real constant c such that

|S′′(x)|
|S′(x)|2

≤ c < ∞ .
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Our simplest example of such an S would be S(x) = rx + b mod 1 for r > 1,
with representatives chosen in [0, 1).

2 Reduction

Let {Ii}ni=0 be a collection of disjoint bounded intervals that partition [0, 1]. Let
1 < r be a fixed real number. We let S be a function fulfilling the following
conditions.

1. S′(x) exists for every 1 ≤ i ≤ n and x ∈ Ii.

2. For each i, S′(x) is either nondecreasing on Ii or nonincreasing on Ii.

3. r ≤ |S′(x)| for all x ∈ Ii.

4. S ([0, 1]) ⊂ [0, 1]

We will fix an S that fulfills these conditions for the rest of the paper. We
will call it “nice.”

Theorem 2.1. If S fulfills the conditions above and P is the Frobenius-Perron
operator associated to S, then there exist some functions {fi}ki=0 such that
for every non-negative f ∈ L1

[0,1], there exist some non-negative real numbers

{λi}ki=0 so that

lim
n→∞

Pnf =

k∑
i=0

λifi

in the L1 sense. Further, each ∥fi∥L1 = 1.

We claim that proving the following reduction is sufficient.

Theorem 2.2. Let S fulfill the conditions above and P be the Frobenius-Perron
operator associated to S. Let ϵS be some fixed constant depending on S. Then
there exist some functions {fi}ki=0 depending on S that fulfill the following. If I
is an interval of length at most ϵS contained in some Ij, then there exist some

non-negative real numbers {λi}ki=0 so that

lim
n→∞

Pn1I =

k∑
i=0

λifi

in the L1 sense. Further, each ∥fi∥L1 = 1.

Proof that Theorem 1.2 implies Theorem 1.1. Fix an f ∈ L1
[0,1] with ∥f∥L1 = 1.

Note that we may write any step function as

m∑
i=0

αi1Ii
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where each αi ∈ R and Ii fulfills the conditions in Theorem 1.2 . Further, since
step functions approximate measurable functions, there exist some sequence of
such step functions φj that converge to f with each ∥φj∥L1 = 1. Since P is
linear, we may apply Theorem 1.2 to note that for some λi,j , we have that

lim
n→∞

Pnφj =

k∑
i=0

λi,jfi .

Since for every g ∈ L1
[0,1], ∥P

ng∥L1 ≤ ∥g∥L1 , it follows that each λi,j ≤ 1. Then
there exists some sub sequence jl so that λi,jl → λi as l goes to infinity for some
λi. Then notice that

lim sup
n→∞

∥Pn(φjl − f∥L1 ≤ ∥Pn(φjl − f∥L1 ,

which goes to 0 as l goes to infinity. The result follows.

3 Construction

Since S is nice, it follows that the restriction Si = S|Ii : Ii → S(Ii) is a bijection.
We use it to define an almost-inverse.

gi(x) =

{
(Si)

−1(x) : x ∈ Si(Ii)

0 : x ̸∈ Si(Ii)

We use our almost-inverses to define the Frobenius-Perron operator

P : L1([0, 1]) → L1([0, 1])

(P(d)) (x) =

n∑
i=0

g′i(x) · d (gi(x)) .

If X is a random variable with measurable density function d, then S(X )
has density function P(d).

Lemma 3.1. If d is in L1([0, 1]), then∫
|P(d)| ≤

∫
|d| .

Further, if d is non-negative, then∫
P(d) =

∫
d .

Additionally, we have that P can move inside of integrals according to the
following lemma.

3



Lemma 3.2. If d ∈ L1(S) is non-negative, and

d(x) =

∫
Jt(x)dt ,

for a family of functions Jt, then

P(d)(x) =

∫
P(Jt)(x)dx .

We then have Lemma 1.3, which allows us to usually reduce to working with
indicator functions of intervals.

Lemma 3.3. If I ⊂ Ii is an interval, then so is V (I). Further, if 0 < t and

Jt = {x : rP(1I)(x) > t} ,

then Jt is an interval as well.

Combining Lemmas 1.2 and 1.3, for every n ∈ N, there should be some
collection of intervals Iv indexed over v ∈ [0, 1]n so that

Pnd(x) =

∫
v∈[0,1]n

1Iv (x)dv .

To construct this more exactly, it is useful to introduce definitions that let us
work inductively on [0, 1]n more easily. We begin with a simple definition of a
k-nary tree, which we then expand to a “continuous” tree.

Definition 3.3.1. We call Tk to be the k-nary tree and define it as the collection
of all n-tuples of integers (ai)

n
i=0 that fulfill the properties below.

• a0 = 0

• 0 ≤ ai < k

It is often easiest to write an element e ∈ Tk explicitly as e = (a1, a2, ...an).
We will often denote the root element of the tree, the unique element of size 0,
as (0). We recommend thinking of a0 as representing beginning at the root of
the tree and each ai as the choice of children that leads to the current position.
Below is a figure of the first nodes in the binary tree written in our notation.

Definition 3.3.2. If e ∈ Tk, we call |e| the size of e, where if e = (ai)
n
i=0, then

|e| = n

The choice to index from 0 instead of 1 will allow us to have powers e̊ in a
natural way.

Definition 3.3.3. If e, f ∈ Tk, e = (ai)
n
i=0, and f = (bi)

m
i=0, then we say e ⊆ f

if n ≤ m and ai = bi for each 0 ≤ i ≤ n
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(0)

(0, 0) (0, 1)

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1)
...

...
...

...

Definition 3.3.4. If e ∈ Tk and |e| > 0, we define its parent e to be the unique
element so that e ⊂ e and |e|+ 1 = |e|.

Definition 3.3.5. If e, f ∈ Tk, e = (ai)
n
i=0, and f = (bi)

m
i=0 then we say that

their conjunction ef ∈ Tk is (ci)
n+m
i=0 , where if i ≤ n, ci = ai, and for i > n,

ci = bi−n. It is helpful to note that written out,

ef = (a0, a1, . . . , an, b1, . . . , bm) .

Effectively, a conjugation treats the node e as the root of the sub-tree and
then chooses f in that sub-tree. This is why we have to remove the first 0
element from f .

Definition 3.3.6. If e ∈ Tk, let D
h(e) = {f ∈ Tk : e ⊆ f, |f | = |e|+ h}

We will often write D1(e) simply as D(e) and call them the descendants of
e. Note that for all f ∈ D(e), f = e. We use similar notation for the continuous
tree over [0, 1], which we denote T[0,1], the collection of all n + 1 tuples of real
numbers (t0, t1, ..., tn) that fulfill

• t0 = 0

• 0 ≤ ti ≤ 1 for all 0 ≤ i ≤ n.

For the sake of consistency, we will denote the elements of Tk with lower-case
letters starting from e and the elements of T[0,1] with upper-case letters starting
from E.

Definition 3.3.7. Let J be a finite collection of intervals, where for each Jj
there exists some i such that Jj ⊂ Ii. We say that an interval I ̸= ∅ has a
decomposition

(Tk, T[0,1], Ie,E , ce,E,j)
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by the collection J if it fulfills the following conditions. Firstly, Ie,E are intervals
whenever |e| = |E| . Additionally, ce,E,j are non-negative real numbers.

1.

P(1Ie,E )(x) =
1

r

∫
F∈D(E)

∑
f∈D(e)

1If,F (x)dF

+
1

r

∑
j

ce,E,j · 1Jj

2. ∑
e∈Tk

1

r|e|

(∫
|E|=|e|

∥∥1Ie,E)

∥∥
L1 dE

)
< ∞

3.
I(0),(0) = I

Suppose that I has a decomposition by J . Suppose further that each Jℓ ∈ J
also has a decomposition by J ; we will call them (Tkj

, T[0,1], Jj,e,C , Cℓ,e,E,j).
Then it follows that there exists some collection of constants anℓ,e,E and αn

e,E

such that for every n ∈ Z+,

Pn (1I) =

∞∑
m=0

∑
|e|=m

∫
|E|=m

(
αn
e,E · 1Ie,E +

∑
ℓ

anℓ,e,E · 1Jℓ,e,E

)
dE .

In other words, we can reduce from working with functions to a structured
collection of real numbers; we will examine the particulars of this structure
later.

Condition 2 allows us gives us decay in |e|, so that we can focus on showing

that
∣∣αn

e,E

∣∣ and ∣∣∣anℓ,e,E∣∣∣ converge when |e| is small. From this, the convergence

of everything shall follows. Our final condition simply ensures that we are in
fact decomposing I, and not some other object.

Definition 3.3.8. Suppose that J is an interval entirely contained in some Ii.
We say that J does not split under Sn if there exist some {jm}nm=1 such that
each Sm(J) ⊂ Ijm , and thus each Sm(J) is an interval.

Definition 3.3.9. We say that ϵ0 > 0 is (i,N) admissible if neither (ai, ai+ϵ)
nor (bi − ϵ, bi) splits under SN .

Lemma 3.4. For every i and N , an (i,N) admissible ϵi exists.

Proof. Note that [ai, ai + ϵ] is an interval entirely contained within Ii. Then
S([ai, ai + ϵ]) ⊂ [0, 1] is an interval. Then we can choose ϵ small enough that
(ai, ai + ϵ) ⊂ Ij1 for some j1. As usual, we ignore what occurs at endpoints.
Repeating this process N times, choosing ϵ smaller at each step, we arrive at
some ϵ that suffices. Repeating this for [bi − ϵ, bi], we conclude that an ϵi
exists.
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Lemma 3.5. If 0 < ϵ0 is (i,N) admissible, and 0 < ϵ < ϵ0, then ϵ is (i,N)
admissible as well.

If r > 2n, then splitting is unimportant, as we will get geometric decay that
handles Condition 2 of being a decomposition. If r < 2n, we need to ensure that
splitting does not occur frequently. From here on we fix N to be large enough
that rN > 2n + 1, and now define the collection for our decompositions. Note
that n > 1 necessarily, and so rN > 5. We also let l = inf {bi − ai}.

It will be helpful to ensure that intervals remain small under repeated iter-
ations of S. To this end, we define the growth function.

G : [0, 1] → [0, 1]

G(x) = sup {m(S(I)) : I ⊂ [0, 1] an interval}

Above m represents the Lebesgue measure. We can note that since S is bounded
and both piecewise monotonic and continuous, it follows that

lim
x→0

G(x) = 0 .

We will use Gn(x) to denote the n’th composition of G with itself, applied to x.

Definition 3.5.1. We say that a collection of numbers {ϵi}n−1
i=0 and intervals{

{Ji,j}(bi−ai)/ϵi
j=1

}n−1

i=0

give a basis of decomposition if they fulfill the following conditions.

1. For each i, G2N (2ϵi) is (j,N) admissible for all j.

2. For each i, 0 < G2N (2ϵi) < l.

3. For each i and j, it holds that Ji,j = [ai + (j − 1)ϵi, ai + jϵ].

4. For each i, bi−ai

ϵi
∈ N.

It is clear fom the preceding lemmas that a basis of composition must exist.

Proposition 3.6. Let {ϵi} and {Ji,j} give a basis of decomposition. Choose
some I to be an interval of length at most ϵi entirely contained in an Ii. Then
I has a decomposition (T2n, T[0,1], Ie,E , ce,E,i,j).

Note that since (i, j) forms a finite set, we may index over (i, j) instead of a
single index as in Definition 2.3.7 for the sake of simplicity.

Proof. Let I(0),(0) = I. If Ie,E is defined, and |E| = |e| ̸≡ −1 mod N , we define

Ie(0,i),E(0,t) =
{
x : x ∈ Ii, r · P(1Ie,E )(x) ≥ t

}
,

Ie(0,n+i),E(0,t) = ∅ ,
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and
ce,E,i,j = 0 .

Note that if Ie,E is an interval entirely contained in some Ii, then so is each
Ie(0,i),E(0,t) by Lemma 1.3. Further⋃

i

Ie(0,i),E(0,t)

form the level set Jt of λ · P (1e,E).
If Ie,E is defined and |E| = |e| ≡ −1 mod N , we define

Je(0,i),E(0,t) =
{
x : x ∈ Ii, r · P(1Ie,E )(x) ≥ t

}
.

Note that if Ie,E is an interval entirely contained in some Ij , then Je(0,i),E(0,t) =
[ai,t, bi,t] is an interval entirely contained within Ii. Then there exist some ni,t

minimal and mi,t maximal so that

ai ≤ ai,t ≤ ai + ni,t · ϵi ≤ ai +mi,t · ϵi ≤ bi,t ≤ bi .

Recall that Ii = [ai, bi]. We now define Ci,j,t = 1 if ni,t < j ≤ mi,t, and Ci,j,t =
0 otherwise. Finally, we can define our terms for the decomposition as

ce,E,i,j =

∫ 1

0

Ci,j,tdt

Ie(0,i),E(0,t) = [ai,t, ai + ni,t · ϵi]

and
Ie(0,i+n),E(0,t) = [ai +mi,t · ϵi, bi,t] .

Note that if Ie,E is an interval entirely contained in some Ij , then both of
our above intervals are well defined and contained in Ii. Further note that
ce,E,i,j ≤ 1.

Then as so defined, notice that all of our intervals of form Ie(0,i),E(0,t) or
Ie(0,i+n),E(0,t) are entirely contained in Ii. Further, if |e| ≡ 0 mod N , then
the length of Ie,E is at most 2ϵi for Ie,E ⊂ Ii. Thus, for general e and E, if
|e| = |E| ≡ n mod N , with 0 ≤ n ≤ N , then it follows that Ie,E has length at
most Gn(ϵ), where ϵ = sup {ϵi}.

Since |S′
i(x)| > r, it follows that by our definitions so far,

r · P(1Ie,E ) =

∫ 1

0

2n−1∑
i=0

1Ie(0,i),E(0,t)
+
∑
j

Ci,j,t1Ji,j

 dt .

Reordering and dividing both sides by r, we have that

P(1Ie,E ) =
1

r

(∫ 2n−1∑
i=0

1Ie(0,i),E(0,t)
(x)dt

)
+

1

r

∑
i,j

∫
Ci,j,t · 1Ji,jdt .
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It follows then that this construction fulfills Condition 1 of Definition 2.2.2. It
clearly fulfills Condition 3.

In order to prove Condition 2, we proceed to show that few Ie,E have non-
zero measure. Notice that all of the Ie,E that we have constructed are contained
within some Ij and have length at most ϵiR

N ; further, S(Ie,E) intersects at most
two distinct Ij . We define the splitting function

s(E) =
∑
e∈Tk

1Ie,E ̸=∅ .

Since G2N (2ϵi) is (j,N) admissible, each Ie,E splits at most once under N
applications of U . We then forcibly split them an additional time at the step
where |e| ≡ −1 mod N , and so it follows that if F ⊂ E with |F | = |E| − N ,
and |E| ≡ 0 mod N , then

s(E) ≤ 4s(F ) .

Then we may bound the quantity in Condition 2 of Definition 1.2.2 as follows.
First note that we may rephrase it as

∑
e∈Tk

1

r|e|

(∫
[0,1]|e|

∥∥1Ie,E∥∥L1 dE

)
=

∞∑
n=0

1

rn

∫
|E|=n

∑
|e|=n

∥∥1Ie,E∥∥L1 dE .

Since
∥∥1Ie,E∥∥L1 ≤ GN (2ϵ) ≤ l for all e and E,

∞∑
n=0

1

rn

∫
|E|=n

∑
|e|=n

∥∥1Ie,E∥∥L1 dE ≤
∞∑

n=0

1

rn

∫
|E|=n

s(E) · l · dE .

Using our work above,

∞∑
n=0

l

rn

∫
|E|=n

s(E)dE ≤
∞∑

n=0

1

rn

∫
|E|=n

4
n
N +1dE = 4

∞∑
n=0

4
n
N

rn
.

Recalling that rN > 5, it is clear that

4
n
N

rn
< 1 ,

and so it follows that

∑
e∈Tk

1

r|e|

(∫
[0,1]|e|

∥∥1Ie,E∥∥L1 dE

)
< ∞

Thus all three conditions hold, and so we have constructed a decomposition.
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4 Simplifying

We begin the section by introducing another notion of a decomposition.

Definition 4.0.1. We say that a collection of non-negative functions {dn} in
L1([0, 1]) and non-negative numbers {cn,j} in R a simple decomposition of
an interval I by a finite collection of intervals J if it fulfills the following three
conditions.

1.

P(dn) =
1

r

dn+1 +
∑
j

cn,j · 1Jj


2.

∞∑
n=0

∥dn∥L1

r|e|
< ∞

3. d0 = 1I

This allows us to work only on a countable collection of distribution func-
tions, rather than our previous uncountable collection of intervals. The three
conditions above are directly parallel to those in Definition 2.3.7, resulting in
the following Lemma.

Lemma 4.1. If I has a decomposition by J , then it also has a simple decom-
position by J .

Proof. Let (Tk, T[0,1], Ie,E , ce,E,j) be a decomposition of I. Note that I(0),(0) = I.
Then we define

dn(x) =
∑
|e|=n

∫
|E|=n

1Ie,E (x)dE

and

cn,j =
∑
|e|=n

∫
|E|=n

ce,E,jdE .

Then notice that by Definition 2.3.7,

Pdn(x) =
∑
|e|=n

∫
|E|=n

1

r

∫
F∈D(E)

∑
f∈D(e)

1If,F (x)dF

+
1

r

∑
j

ce,E,j · 1Jj

 .

It is clear that the last terms, once separated, represent the cn,j . We can also
note that summing over |e| = n and then over f ∈ D(e) is equivalent to summing
over |f | = n + 1 directly. Similarly we reduce the integrals to an integral over
|F | = n+ 1 and conclude that we do indeed have that

Pdn =
1

r

dn+1 +
∑
j

cn,j · 1Jj

 .
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This shows that condition 1 is fulfilled. Condition 2 is immediate from the
second condition of Definition 2.3.7, as in Condition 3.

Lemma 4.2. If I has a simple decomposition by J , {dn} and {cn,j}, then

∑
j

∥∥1Jj

∥∥
L1

∞∑
n=0

cn,j
rn+1

= ∥1I∥L1 .

Proof. By Condition 2 of Definition 3.0.1,

lim
n→∞

∥dn∥L1

rn
= 0 .

Then by the linearity of the L1 norm for non-negative functions and that P
preserves the L1 norm of non-negative functions, notice that

∥1I∥L1 = ∥Pnd0∥L1 =
∑
j

∥∥1Jj

∥∥
L1

n−1∑
m=0

cm,j

rn+1
+

∥dn∥L1

rn
.

Taking n to infinity concludes the proof.

Currently in order to show convergence we would have to work across |J |
sequences simultaneously. What follows in this section will reduce us to being
able to independently work on each sequence, only combining them in the final
steps. To do this, we introduce the following definitions.

Definition 4.2.1. We call a finite collection of intervals J a general basis
of decomposition for ϵ if ϵ > 0 and every interval of length at most ϵ has a
simple decomposition by J . We further require that each Jj ∈ J has a simple
decomposition by J .

Definition 4.2.2. We call a collection of intervals J a diagonal basis of
decomposition if it is a general basis of decomposition and for each Jj ∈ J
there exists a simple decomposition of Jj by J , {dn} and {cn,i} such that cn,i > 0
only if i = j.

It could be difficult to completely disentangle a general basis of decompo-
sition. Instead we knit any “entangled” sequences into the other sequences;
this leaves us with one less interval in J . Eventually we will either have only
a single sequence remaining, or the sequences would form a diagonal basis of
decomposition.

Proposition 4.3 (Decomposition Knitting Proposition). Let J be a general
basis of decomposition for ϵ > 0. If J is not a diagonal basis of decomposition,
then there exists a J ′ ⊂ J that is also a general basis of decomposition for ϵ.

Proof. By hypothesis there is some ȷ so that the simple decomposition of Jȷ ∈ J
by J is (Dn, Cn,j) with some some j ̸= ȷ and n ∈ Z≥0 such that Cn,j > 0. We
will aim to show that J \ {Jȷ} is a general decomposition.
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Let I either be an interval of length at most ϵ or an element of J such that
I ̸= Jȷ. Then I has a simple decomposition by J , {dn} and {cn,j}. We will
now inductively define a sequence of simple decompositions of I, beginning with
d0n = dn and c0n,j = cn,j . If d

m
n and cmn,j are already defined, then we let

dm+1
n = dmn +

n−1∑
k=0

cmk,ȷ ·Dn−1−k

and

cm+1
n,j = 1j ̸=ȷ · cmn,j +

n−1∑
k=0

cmk,ȷ · Cn−1−k,j .

This may be an initially intimidating condition. The idea is that whenever
cmn,ȷ > 0 we attach an entire copy of Dn there. This allows us to take cm+1

n,ȷ = 0.
Because these attachments are displaced, summing across all of the attached
sequences gives the second term in the definition of dm+1

n ; we recommend that
the reader convince themselves of this fact before proceeding, as it is at the
heart of this proof. What follows are largely formalisms to ensure that our
construction does indeed behave well.

We will now show that dm+1
n and cm+1

n,j form a simple decomposition of I if
dmn and cmn,j did. For the first condition, note that

P (dm+1
n ) =

1

r

dmn+1 +
∑
j

cmn,j1Jj +

n−1∑
k=0

cmk,ȷ ·

Dn−k +
∑
j

Cn−1−k,j1Jj

 .

Noticing that cmn,ȷ1Jȷ = c(n+1)−1,ȷ · D0 and that n − k = (n + 1) − 1 − k, it is
clear that reordering terms does indeed give us

P (dm+1
n ) =

1

r

dm+1
n+1 +

∑
j

cmn,j1Jj

 .

Next, we aim to bound
∞∑

n=0

1

rn+1
· cmn,ȷ

in m. Notice that

∞∑
n=0

1

rn+1
· cm+1

n,ȷ =

∞∑
n=0

1

rn+1

(
1ȷ̸=ȷ · cmn,ȷ +

n−1∑
k=0

cmk,ȷ · Cn−1−k,ȷ

)
.

Since here, j = ȷ, we may drop the leading terms. We then exchange the order
of summation to get

∞∑
k=0

cmk,ȷ

∞∑
n=k+1

1

rn+1
· Cn−1−k,ȷ =

∞∑
k=0

1

rk+1
· cmk,ȷ

∞∑
n=0

1

rn+1
· Cn,ȷ .

12



By hypothesis and Lemma 3.2, we may define

0 < δ =

∞∑
n=0

1

rn+1
· Cn,ȷ < 1

and so,
∞∑

n=0

1

rn+1
· cm+1

n,ȷ = δ
∑
n

1

rn+1
cmn,ȷ

Next, we consider that

∞∑
n=0

∥∥dm+1
n

∥∥
L1

rn
=

∞∑
n=0

1

rn

(
∥dmn ∥L1 +

n−1∑
k=0

cmk,ȷ · ∥Dn−1−k∥L1

)
.

We may reorder the sums, so that we instead examine the quantity( ∞∑
n=0

∥dmn ∥L1

rn

)
+

∞∑
k=0

cmk,ȷ
∑

n≥k+1

1

rn
Dn−1−k .

If we let

L =

∞∑
n=0

∥Dn∥L1

rn
< ∞

then we may rewrite the sum once more as∑
n

∥dmn ∥L1

rn
+ L

∞∑
k=0

cmk,ȷ
rk+1

=
∑
n

∥dmn ∥L1

rn
+ Lδm

∞∑
k=0

c0k,ȷ
rk+1

.

Since this has an exponential decay δ for the amount added, it follows that these
sums may be bounded above by a fixed constant C independent of m.

What we have shown then is that we can create a sequence of decomposition
whose reliance on Jȷ tends to zero. We now define the limiting decomposition
and show that it has the appropriate properties.

We conclude the proof by firstly noting that for a fixed m, if n is the infimal
number such that cmn,ȷ > 0, then it follows from our definitions that for all p ≤ n,
cm+1
p,ȷ = 0. From this it is clear that if m > n, then cmn,ȷ = 0, and thus that
dmn = dm+1

n . We define
d∞n = dn+2

n

c∞n,j = cn+2
n,j .

We claim that this forms a decomposition of I. By our note above,

Pd∞n =
1

r

dn+2
n+1 +

∑
j

cn+2
n,j 1Jj

 =
1

r

dn+3
n+1 +

∑
j

c∞n,j1Jj

 ,

which is equal to what we need for Condition 1 to hold. Condition 2 holds
since dmn monotonically increase, but their sum, normalized by 1

rn , is uniformly

13



bounded above by C. Finally, Condition 3 holds immediately. Then we notice
that c∞n,ȷ = 0 for all n, and thus I was decomposed by J \ {Jȷ}.

Corollary 4.3.1. If J is a general basis of decomposition, then there exists
some K ⊂ J that is a diagonal basis of decomposition.

5 Convergence

Let I be a fixed element of a diagonal basis of decomposition J . Then we fix its
decomposition dn and cn,j ; note that we may reduce cn,j to a single sequence
cn, as J is diagonal. We then define the invariant distribution

d = α

∞∑
n=0

1

rn
dn ,

where α > 0 is a constant chosen so that ∥d∥L1 = ∥1I∥L1 . By Lemma 3.2, it
is immediate that Pd = d. From here we have a natural definition for what we
will call the general representation of Pm(1I − d).

Definition 5.0.1. For a fixed I an element of a diagonal basis of decomposition,
we define its general representation {amn } of Pm(1I − d) inductively as

a00 = 1− α

a0n =
−α

rn
for n > 0

am+1
0 =

1

r

∞∑
n=0

cn · amn

am+1
n =

amn
r

for n > 0 .

Lemma 5.1. The following equality holds for all m.

Pm(1I − d) =

∞∑
n=0

amn · dn

Proof. This is clearly true for m = 0. But by the linearity of P and that dn and
cn form a simple decomposition, it must hold for all m.

This tells us that the amn are indeed representing Pm(1I − d), so we would
like to show that they have useful properties. Firstly we can show that they
decay exponentially in n.

Lemma 5.2. For all n and m, the following inequality holds.

amn ≤ 2

rn

14



Proof. Since ∥Pf∥L1 ≤ ∥f∥L1 for all f ∈ L1([0, 1]), it follows that∑
n

|amn | ∥dn∥L1 ≤ 2 ∥d0∥L1 ,

and so necessarily |am0 | ≤ 2. Notice that

|amn | =
∣∣∣∣ 1rm a0n−m

∣∣∣∣ = ∣∣∣∣ 1rm · −α

rn−m

∣∣∣∣ ≤ 2

rn
if n > m and

|amn | =
∣∣∣∣ 1rn am−n

0

∣∣∣∣ ≤ 2

rn
otherwise.

We would like a reasonable way to measure the size of the amn in m. To do
so, we define the weight function, which is a tailored analogue of ℓ1.

Definition 5.2.1. The weight at step m, W (m) is defined as

W (m) =

∞∑
n=0

|amn | · ∥dn∥L1 .

It is an important remark that

W (m) ≥ ∥Pm(1I − d)∥L1 ,

and so it suffices to show that W (m) goes to 0. Since ∥Pm(1I − d)∥L1 is mono-
tonic decreasing in m, we can show the following analogue for W .

Lemma 5.3. W (m) decreases monotonically in m.

Proof. Notice that

W (m+ 1) =

∞∑
n=0

∣∣am+1
n

∣∣ · ∥dn∥L1

Applying our definitions for am0 and amn for n > 0 separately, we can rephrase
the above as

∥d0∥L1

r

∣∣∣∣∣
∞∑

n=0

cn · amn

∣∣∣∣∣+ 1

r

∞∑
n=0

amn−1 ∥dn+1∥L1

and so by the triangle inequality,

W (m+ 1) ≤
∥d0∥L1

r

∞∑
n=0

cn · |amn |+ 1

r

∞∑
n=0

amn ∥dn+1∥L1 .

Because dn and cn form a simple representation, it follows that

1

r
(∥dn+1∥L1 + cn ∥d0∥L1) = ∥dn∥L1 ,

and so combining these terms we arrive at our result.
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The monotonicity of the weight means that we need only show that we
can obtain a weight decrement. We begin by showing in Lemma 4.6 that if
the weight stays above some value ϵ, then am0 has obtains “large” positive and
negative values. Lemma 4.7 says that high oscillation in am0 at certain times
means that a weight decrement will occurr. Lemma 4.8 combines the two to
show that a weight decrement can always be obtained.

Lemma 5.4. For all ϵ > 0 there exist a δ > 0 and a number m such that for
all m ∈ Z≥0 one of the following holds.

1. There exist some 0 ≤ m1,m2 ≤ m such that δ < am+m1
n and −δ > am+m2

n .

2. W (m+m) ≤ ϵ.

Proof. Recall that
∫
f =

∫
Pf . Then it follows that

0 = Pm

∫
(1I − d) =

∫ ( ∞∑
n=0

amn dn

)
and so

∞∑
n=0

|amn |+ ∥dn∥L1 =

∞∑
n=0

|amn |− ∥dn∥L1 .

Above we use |·|+ and |·|− to denote the positive and negative parts of the
sequences respectively.

Now fix an ϵ > 0 and choose an m sufficiently large that

∞∑
n=m

2

rn
<

ϵ

4
.

Choose δ > 0 sufficiently small that mδ < ϵ
4 . Notice that if for each 0 ≤ m1 ≤ m

we have that am+m1
n ≤ δ, then for each n ≤ m,

am+m
n =

am+m−n
0

rn
≤ δ .

It follows then that

∞∑
n=0

∣∣am+m
n

∣∣+ ∥dn∥L1 ≤ δm+

∞∑
n=m

2

rn
<

ϵ

2
.

Thus W (m+m) ≤ ϵ. The argument follows almost identically for m2.

Lemma 5.5. Suppose that there exist some p, q ∈ Z≥0 such that ap0 > 0 and
cq > 0. If

ap+q+1
0 <

cqa
p
0

2rq+1

then

W (p+ q + 1) ≤ W (p)−
cqa

p
0 ∥d0∥L1

2rq+1

16



Proof. Notice that

W (p+ q + 1) +
1

r

∞∑
n=0

cn
∣∣ap+q

n

∣∣ ∥d0∥L1 −
∣∣∣ap+q+1

0

∣∣∣ ∥d0∥L1

is equal to

1

r

∞∑
n=0

cn
∣∣ap+q

n

∣∣ ∥d0∥L1 +
1

r

∞∑
n=0

∣∣ap+q
n

∣∣ ∥dn+1∥L1 =

∞∑
n=0

∣∣ap+q
n

∣∣ ∥dn∥L1 = W (p) .

Then it follows that

W (p+ q + 1)−W (p) =
∣∣∣ap+q+1

0

∣∣∣ ∥d0∥L1 −
1

r

∞∑
n=0

∣∣ap+q
n

∣∣ ∥d0∥L1 .

Notice that we must have that

ap+q
q =

ap0
rq

and that
cqa

p
0

2rq+1
> a0 =

1

r

∞∑
n=0

cna
p+q
n .

Then the proof reduces, up to reordering so that x0 = cqa
p+q
q , to showing that

for a sequence of real numbers xn with 0 < x0,

∞∑
n=0

xn <
x0

2
=⇒

∣∣∣∣∣
∞∑

n=0

xn

∣∣∣∣∣−
∞∑

n=0

|xn| ≤ −
∣∣∣x0

2

∣∣∣ .
We denote S+ =

∑∞
n=0 |xn|+ and S− =

∑∞
n=0 |xn|− to be the positive and

negative parts of the sum respectively. Since S+ ≥ x0 it follows that S
− ≥ x0/2.

Notice that∣∣∣∣∣
∞∑

n=0

xn

∣∣∣∣∣−
∞∑

n=0

|xn| ≤ −
∣∣∣x0

2

∣∣∣ = −2 inf (S+, S−) ≤ −|x0|
2

.

Proposition 5.6. If gcd {n+ 1 : cn > 0} = 1, then for every L > 0 there exist
some α > 0 and n ∈ N such that for every p with W (p) > L, W (p + n) ≤
W (p)− α.

Proof. Fix L > 0 and p such that W (p) > L. Choose m as in Lemma 4.6 and
ϵ = L/2. Notice then that by Lemma 4.6, eitherW (p+m) < L/2 < W (p)−L/2,
or Condition 1 of Lemma 4.6 holds. Let α < L/2 and assume that Condition 1
holds, as if not we are done.

We claim that there exist some Q ∈ N, M ∈ N and 1 ≥ λ > 0 so that for
every m1 and m2 there exist two sequences {Aj}hj=1 and {Bj}ℓj=1 such that the
following hold.
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1. h, ℓ ≤ Q

2. For all i ≤ h and j ≤ ℓ, we have that Ai and Bj are at most M .

3. For all i ≤ h and j ≤ ℓ, each cAi
and cBj

are at least λ.

4.

m1 +

h∑
i=1

(Ai + 1) = m2 +

ℓ∑
i=1

(Bi + 1) .

This follows from gcd {i+ 1 : ci > 0} = 1 and that there are finitely many com-
binations 0 ≤ m1,m2 ≤ m.

We have the hypothesis that ap+m1

0 > δ. We now consider ap+m1+A1+1
0 . By

Lemma 4.7, either

ap+m1+A1+1
0 ≥ cA1

ap+m1

0

2rA1+1
≥ λδ

2rM+1

or

W (p+m1+A1+1) ≤ W (p+m1)−
cA1a

p+m1

0 ∥d0∥L1

2rA1+1
≤ W (p+m1)−

λδ ∥d0∥L1

2rM+1
.

If the second case holds, then for α chosen sufficiently small (as δ, λ, r, and M
are all independent of L) our result holds. Then assuming that case 1 holds, we
may repeat the argument so that either

ap+m1+A1+1+A2+1
0 ≥ cA1cA2a

p+m1

0

22 · r(A1+1+A2+1)
≥ λ2δ

22 · r2M+2

or

W (p+m1 +A1 + 1 +A2 + 1) ≤ W (p+m1)−
λ2δ ∥d0∥L1

22 · r2M+2
.

We repeat this argument h times so that in the end we conclude that either

a
(p+m1+

∑h
i=1(Ai+1))

0 ≥ λhδ

2hrhM+h
≥ λQδ

2QrQ(M+1)

or

W

(
p+m1 +

h∑
i=1

(Ai + 1)

)
≤ W (p+m1)−

λQδ ∥d0∥L1

2QrM(Q+1)
.

Repeating a similar argument on the Bi we may also conclude that either

a
(p+m1+

∑h
i=1(Bi+1))

0 ≤ −λhδ

2hrhM+h
≤ −λQδ

2QrQ(M+1)

or

W

(
p+m2 +

h∑
i=1

(Bi + 1)

)
≤ W (p+m1)−

λQδ ∥d0∥L1

2QrQ(M+1)
.
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Recalling that

p+m1 +

h∑
i=1

(Ai + 1) = p+m2 +

h∑
i=1

(Bi + 1)

it is impossible that

a
(p+m1+

∑h
i=1(Bi+1))

0 < 0 < a
(p+m1+

∑h
i=1(Ai+1))

0 .

Thus we must have a weight decrement of size

α <
λQδ ∥d0∥L1

2QrQ(M+1)
.

Applying the monotonicity of W (m) from Lemma 4.5 we conclude the proof.

This is very nearly what we need. However, it has the problematic condition
that gcd {n+ 1 : cn > 0} = 1. We now present an easy lemma that can take a
higher gcd sequence and turn it into a sequence with gcd equal to 1. We first
note that if S fulfills the conditions listed in section 1, then so to does Sk for
|S′| ≥ rK > 1, and all of our results apply to P k as well.

Lemma 5.7. Suppose that an interval J has a simple decomposition with re-
spect to itself, that is, {J}. We denote this decomposition dn and cn. If
K = gcd {n+ 1 : cn > 0} = 1 then dKn and cK(n+1)−1 form a simple decompo-
sition of J with respect to {J} for the operator PK .

Proof. Notice that

PK(dKn) =
1

rK

(
dKn+K +

K−1∑
m=0

cKn+mdK−m−1

)
.

By hypothesis, each cKn+m = 0 except for cKn+K−1, and so

PK(dKn) =
1

rk
(dKn+K + cKn+K−1d0) .

From this it is clear that dKn and cK(n+1)−1 fulfill Condition 1 of Definition
3.0.1. Condition 2 follows by the dominated series test and Condition 3 is
trivial.

Corollary 5.7.1. Suppose that an interval J has a simple decomposition with
respect to itself, {J}. We denote this decomposition dn and cn. If K =
gcd {i+ 1 : ci > 0} = 1 then PK(1J) converges to some f in the L1 sense.

We at last prove Theorem 1.2.

Proof of Theorem 1.2.
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By Proposition 2.6 a general basis of decomposition J exists. By Corollary
3.3.1 there is some diagonal basis of decomposition for ϵ > 0 K ⊂ J . Fix an
interval I of length at most ϵ.

Then let dn and cn,k be the general decomposition of I by K such that

P (dn) =
1

r

(
dn +

∑
k

cn,k1Jk

)

where each Jk ∈ K.
By Corollary 4.9.1, for each Jk ∈ K there exists some integer Kk such that

PKk1Jk
converges to some fk in the L1 sense. Let K be the least common

multiple of the Kk. Then notice that

PnK(d0) =
1

rnK
dnK +

∑
k

nK−1∑
m=0

cm,k

rm+1
· PnK−m−11Jk

.

Since 1
rnK dnK goes to 0 in n, and∥∥∥∥∥∑

k

nK−1∑
m=0

cm,k

rm+1
· PnK−m−11Jk

∥∥∥∥∥
L1

≤
∥∥PnK(d0)

∥∥
L1 = ϵ

it suffices to show by the Dominated Convergence Test that each

cm,k

rm+1
· PnK−m−11Jk

converges in L1. Let m′ ≡ −m− 1 mod K. Then it follows by Corollary 4.9.1
that

lim
n→∞

cm,k

rm+1
· PnK−m−11Jk

=
cm,k

rm+1
Pm′

(
lim

n→∞
PnK1Jk

)
=

cm,k

rm+1
Pm′

(fk) .

Thus, PnK(1I) converges in L1 to a linear combination of the set

{{Pmfk}k}
K
m=1

,

which concludes our proof.
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