Firefox about:blank

Probability Theory, Ph.D Qualifying, Spring 2024

Completely solve any five problems.

- 1. If $\{X_n\}$ are iid random variables with $P(X_1 = 0) < 1$ and $S_n = X_1 + X_2 + \cdots + X_n$, then for every c > 0, there exists an integer $n = n_c$ such that $P(|S_n| > c) > 0$.
- 2. (a) Given a random variable X with finite mean square. Let \mathcal{D} be a σ -algebra. Show that $E[X|\mathcal{D}]$ is the minimizer of $E(X-\xi)^2$ over all \mathcal{D} -measurable r.v.s ξ , i.e.,

$$E(X - E[X|\mathcal{D}])^2 \le E(X - \xi)^2$$

for all \mathcal{D} -measurable r.v.s ξ .

(b) Let (Ω, \mathcal{F}, P) denote a probability space. Suppose $f: \mathbb{R}^n \times \Omega \to \mathbb{R}$ is a bounded $\mathcal{B}(\mathbb{R}^n) \times \mathcal{C}$ measurable function and X be a n-dimensional \mathcal{D} measurable random variable. Assume \mathcal{C} and \mathcal{D} are independent. If $g(x) := Ef(x, \omega)$, then

$$g(X) = E[f(X, \omega)|\mathcal{D}], \text{ a.s.}$$

3. Show that random variables X_n , $n \geq 1$, and X satisfy $X_n \to X$ in distribution iff

$$E[F(X_n)] \to E[F(X)]$$

for every continuous distribution function F.

4. Let $\{X_n\}$ be a sequence of iid random variables with $E|X_1|=\infty$. Let $S_n=X_1+X_2+\cdots+X_n$. Show that

$$P\left(\limsup_{n} \frac{|S_n|}{n} = \infty\right) = 1.$$

- 5. Let $\{X_n\}$ be a sequence of iid random variables with $EX_1 = 0$. Prove that (a) the sequence $\{\frac{S_n}{n}\}$ is uniformly integrable; (b) $\frac{E|S_n|}{n} \to 0$.
- 6. Let $\{X_n\}$ be iid r.v.s with distribution F(x) having finite mean μ and variance $\sigma^2 > 0$. Let $S_n = X_1 + \cdots + X_n$. Show that

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \to N(0,1) \text{ in distribution as } n \to \infty.$$

Here N(0,1) is a standard normal random variable.

7. Let X_1, X_2, \ldots be a sequence of independent r.v.s with $EX_i = 0$. Let $S_n = X_1 + X_2 + \cdots + X_n$ and $\mathcal{F}_n = \sigma\{X_1, \ldots, X_n\}$. Show that $\phi(S_n)$ is an \mathcal{F}_n -submartingale for any convex ϕ provided that $E|\phi(S_n)| < \infty$ for all n.

1 of 1