## Numerical Analysis Qual Exam (Spring 2020)

All problems are 10 points each.

- 1) Let $A$ be an invertible matrix of size $n \times n$ and $\mathbf{b}$ be a vector of $n \times 1$. Define the concept of strictly diagonally dominant matrices. Define Gauss-Seidel iteration to solve $A \mathbf{x}=\mathbf{b}$. Show that if matrix $A$ is strictly diagonally dominant, then the iterative solutions $\mathbf{x}^{(m)}, m \geq 1$ obtained by using Gaussian-Seidel's method converge to the solution $\mathbf{x}$ of $A \mathbf{x}=\mathbf{b}$.
- 2) Define the condition number for an invertible matrix $A$. Show that if $\left\|A^{-1}\right\|\|A-\tilde{A}\|<1$, then the solutions to $A \mathbf{x}=\mathbf{b}$ and $\tilde{A} \hat{\mathbf{x}}=\mathbf{b}$ satisfy the following estimate

$$
\frac{\|\mathbf{x}-\hat{\mathbf{x}}\|}{\|\mathbf{x}\|} \leq \frac{\operatorname{cond}(A) \frac{\|A-\tilde{A}\|}{\|A\|}}{1-\operatorname{cond}(A) \frac{\|A-\tilde{A}\|}{\|A\|}}
$$

- 3) Consider the matrix

$$
A=\left[\begin{array}{ccc}
4 & 1 & 0 \\
1 & 0 & -1 \\
1 & 1 & -4
\end{array}\right]
$$

Use Gershgorin's circle theorem to analyze the locations of eigenvalues of $A$. Does $A$ has complex eigenvalues? If all eigenvallues are real, where do these eigenvalues locate? Please give as good estimated eigenvalues as possible.

- 4) Let $\mathbf{v}$ be a vector of size $n \times 1$. Define its Householder's matrix $H(\mathbf{v})$. Show that $H(\mathbf{v}) H(\mathbf{v})=I_{n}$, the identity matrix of size $n \times n$. Explain how to transform a vector $\mathbf{v}$ to $\alpha \mathbf{e}_{1}$ with $\alpha=-\|\mathbf{v}\|$, where $\mathbf{e}_{1}$ is the unit vector with 1 in the first component and zero in the other components.
- 5) Consider a polynomial interpolation problem: given data

$$
(0.1,0.55),(0.2,0.76),(0.4,0.92)
$$

find polynomial $P_{2}$ satisfying $P_{2}(0.1)=0.55, P_{2}(0.2)=0.76$, and $P_{3}(0.4)=$ 0.92 using both Lagrange interpolation formula and Newton interpolation formula. Also, give their remainder formulae.

- 6) Consider Bernstein polynomials $B_{i, n-i}(x)=\frac{n!}{i!(n-i)!} x^{i}(1-x)^{n-i}$. Show that for any continuous function $f \in C([0,1])$,

$$
B_{n}(f)=\sum_{i=0}^{n} f\left(\frac{i}{n}\right) B_{i, n-i}(x) \rightarrow f
$$

as $n \rightarrow \infty$.

- 7) Let $-\infty<\cdots<x_{-1}<x_{0}<x_{1}<x_{2}<\cdots<\infty$ be a given sequence. Let $B_{k, i}(x)=\left(x_{i+k}-x_{i}\right)\left[x_{i}, x_{i+1}, \cdots, x_{i+k}\right](\cdot-x)_{+}^{k}$ be the normalized B-spline of order $k$. Find the derivative formula of $B_{k, i}$.
- 8) Explain how to use SVD to solve a least squares problem: $A \mathbf{x}=\mathbf{b}$. Also, explain how to use gradient descent method to solve the least squares problem. Finally exaplain how to speed up the gradient descent computation by using Nesterov's acceleration technique.

