Numerical Analysis Qualifying Exam
 Department of Mathematics, University of Georgia

August 9, 2013

Please attempt all problems. Each problem is worth 10 points.

[1] Suppose that a square matrix A is strictly diagonally dominant. Show that when applying Gaussian elimination procedure with partial pivoting to A, there is no partial pivoting needed.
[2] Let A be an $n \times n$ non-singular matrix, and consider iterative methods of the form

$$
M x^{n+1}=b+N x^{n}
$$

where $A=M-N$.
(a) Assuming M is non-singular, state a sufficient condition that ensures convergence of the iterates to the solution of $A x=b$ for any starting vector x^{0}.
(b) Describe the matrices M and N for (i) Jacobi iteration and (ii) Gauss-Seidel iteration.
[3] Let A be a real $m \times n$ matrix with singular value decomposition(SVD) $A=U \Sigma V^{T}$.
Denote the nonzero diagonal entries of Σ by $\sigma_{1}, \cdots, \sigma_{r}$. Let

$$
A^{+}=V \Sigma^{+} U^{\top}
$$

be the pseudo inverse of A, where $\Sigma^{+}=\operatorname{diag}\left(\frac{1}{\sigma_{1}}, \frac{1}{\sigma_{2}}, \cdots, \frac{1}{\sigma_{r}}, 0, \cdots, 0\right)$ of size $m \times n$. Show that

$$
A A^{+} A=A \quad \text { and } \quad\left(A^{+} A\right)^{\top}=A^{+} A .
$$

[4] Solve the following:
(a) Find and solve the normal equations used to determine the coefficients for a straight line that fits the following data in the least squares sense.

x_{i}	$f\left(x_{i}\right)$
-1	2
0	3
1	3
2	4

(b) Let A be an $m \times n$ matrix, with $m>n$, and the columns of A being linearly independent. Given the $Q R$ factorization of A, where the columns of Q are orthonormal and R is upper triangular, what equations must you solve to find the least squares solution of the over-determined system of equations $A x=b$?
[5] Use Steepest Descent Method to solve

$$
g\left(\mathbf{x}^{*}\right)=\min _{\mathbf{x} \in \mathbf{R}^{n}} g(\mathbf{x})
$$

where $g(\mathbf{x})=\frac{1}{2} \mathbf{x}^{t} A \mathbf{x}-\mathbf{x}^{t} \mathbf{b}, n=3$, and

$$
A=\left[\begin{array}{lll}
4 & 2 & 0 \\
2 & 4 & 2 \\
0 & 2 & 4
\end{array}\right] \quad \text { and } \mathbf{b}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] .
$$

Start with $\mathbf{x}^{0}=(0,0,0)^{t}$ and do three iterations.
[6] Let x and y be two vectors in \mathbf{R}^{2}. Suppose that $\|x\|_{2}=\|y\|_{2}$. Show that there exists a unitary matrix H such that $H x=y$.
[7] Let $a=x_{0}<x_{1}<\cdots<x_{n}<x_{n+1}=b$ be a partition of [$\left.a, b\right]$. For $f \in C^{1}[a, b]$, let S_{f} be the C^{1} cubic interpolatory spline of f, i.e.,

$$
S_{f}\left(x_{i}\right)=f\left(x_{i}\right), \quad S_{f}^{\prime}\left(x_{i}\right)=f^{\prime}\left(x_{i}\right), \quad i=0,1, \cdots, n+1
$$

and $\left.S_{f}(x)\right|_{\left[x_{i}, x_{i+1}\right]}$ is a cubic polynomial, $i=0, \cdots, n$. Suppose that $f \in C^{2}[a, b]$. Show that

$$
\int_{a}^{b}\left|\frac{d^{2}}{d x^{2}}\left(f(x)-S_{f}(x)\right)\right|^{2} d x \leq \int_{a}^{b}\left|\frac{d^{2}}{d x^{2}} f(x)\right|^{2} d x
$$

[8] Consider the forward and backward difference operators D^{+}and D^{-}defined by

$$
D^{+} f(x)=\frac{f(x+h)-f(x)}{h} \quad \text { and } \quad D^{-} f(x)=\frac{f(x)-f(x-h)}{h} .
$$

(a) Assuming f is smooth, derive asymptotic error expansions for each of these operators.
(b) What combination of $D^{+} f(x)$ and $D^{-} f(x)$ gives a second order accurate approximation to the derivative $f^{\prime}(x)$? Justify your answer.
[9] Consider the integration formula

$$
\int_{-1}^{1} f(x) d x \approx f\left(\alpha_{1}\right) \beta+f\left(\alpha_{2}\right) \beta .
$$

(a) Determine α_{1}, α_{2}, and β so that this formula is exact for all quadratic polynomials.
(b) What is the expected order of a composite integration method based upon the formula with coefficients derived in (a)?
[10] Consider the ordinary differential equation

$$
y^{\prime}(t)=f(t, y(t)), y\left(t_{0}\right)=y_{0} .
$$

(a) Give a derivation of a multi-step method (Adams-Bashforth) of order 2 to solve this problem.
(b) Find the leading term of the local truncation error. What is the global error of the method?

