1. Let $n \ge 2$ be an integer. Show that $2^{n-1} \prod_{k=1}^{n-1} \sin \frac{k\pi}{n} = n$.

[Hint: Use *n*-th roots of unity i.e., solutions of $z^n - 1 = 0$]

2. Expand $\frac{1}{1-z^2} + \frac{1}{z-3}$ in a series of the form $\sum_{-\infty}^{\infty} a_n z^n$ so it converges for (a) |z| < 1, (b) 1 < |z| < 3; and (c) |z| > 3.

3. Let $a \in \mathbb{R}$ with 0 < a < 3. Evaluate $\int_0^\infty \frac{x^{a-1}}{1+x^3} dx$.

- 4. Let $\mathbb{D} := \{z : |z| < 1\}$ denote the open unit disk. Suppose that $f(z) : \mathbb{D} \to \mathbb{D}$ is holomorphic, and that there exists $a \in \mathbb{D} \setminus \{0\}$ such that f(a) = f(-a) = 0.
 - (a) Prove that $|f(0)| \le |a|^2$.
 - (b) What can you conclude when $|f(0)| = |a|^2$?
- 5. Consider the function $f(z) = \frac{1}{2}\left(z + \frac{1}{z}\right)$ for $z \in \mathbb{C} \setminus \{0\}$. Let \mathbb{D} denote the open unit disc.
 - (a) Show that f is one-to-one on the punctured disc $\mathbb{D} \setminus \{0\}$. What is the image of the circle |z| = r under this map when 0 < r < 1?
 - (b) Show that f is one-to-one on the domain $\mathbb{C}\setminus\overline{\mathbb{D}}$. What is the image of this domain under this map?
 - (c) Show that there exists a map $g : \mathbb{C} \setminus [-1, 1] \to \mathbb{D} \setminus \{0\}$ such that $(g \circ f)(z) = z$ for all $z \in \mathbb{D} \setminus \{0\}$. Describe the map g by an explicit formula.
- 6. Suppose that U is a bounded, open and simply connected domain in \mathbb{C} and that f(z) is a complex-valued non-constant continuous function on \overline{U} whose restriction to U is holomorphic.
 - (a) Prove the maximum modulus principle by showing that if $z_0 \in U$, then

$$|f(z_0)| < \sup\{|f(z)|: z \in \partial U\}.$$

- (b) Show furthermore that if |f(z)| is constant on ∂U , then f(z) has a zero in U (i.e., there exists $z_0 \in U$ for which $f(z_0) = 0$).
- 7. Suppose that $f : \mathbb{D} \to \mathbb{D}$ is holomorphic and f(0) = 0. Let $n \ge 1$, and define the function $f_n(z)$ to be the *n*-th composition of f with itself; more precisely, let

$$f_1(z) := f(z), f_2(z) := f(f(z)),$$
in general $f_n(z) := f(f_{n-1}(z)).$

Suppose that for each $z \in \mathbb{D}$, $\lim_{n \to \infty} f_n(z)$ exists and equals to g(z). Prove that either $g(z) \equiv 0$ or g(z) = z for all $z \in D$.