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All problems are of equal weight. Please arrange your solutions in numerical order even if
you do not solve them in that order. Show work and carefully justify/prove your assertions.

1. (a) Prove that if |w1| = c|w2| where c > 0, then |w1 − c2w2| = c|w1 − w2|.

(b) Prove that if c > 0, c 6= 1 and z1 6= z2, then

∣∣∣∣z − z1z − z2

∣∣∣∣ = c represents a circle. Find

its center and radius.

2. Compute the following integral carefully justifying each step:∫ ∞

0

log x

1 + x3
.

3. (a) Assume f(z) =
∞∑
n=0

cnz
n converges in |z| < R. Show that for r < R,

1

2π

∫ 2π

0

|f(reiθ)|2 dθ =
∞∑
n=0

|cn|2r2n.

(b) Deduce Liouville’s theorem from (a).

4. Suppose that f is holomorphic in an open set containing the closed unit disc, except

for a simple pole at z = 1. Let f(z) =
∞∑
n=1

cnz
n denote the power series in the open

unit disc. Show that lim
n→∞

cn = − lim
z→1

(z − 1)f(z).

5. Find a conformal map that maps the region {z | Re(z) > 0, |z − 1/2| > 1/2} to the
upper half plane.

6. Prove the open mapping theorem for holomorphic functions : If f is a non-constant
holomorphic function on an open set U in C, then f(U) is also an open set.

7. Let f be analytic on a bounded domain D, and assume also that f that is continuous
and nowhere zero on the closure D. Show that if |f(z)| =M (a constant) for z on the
boundary of D, then f(z) = eiθM for z in D, where θ is a real constant.


