Algebra Qualifying Exam Questions

- (1) Suppose that $F \subset E$ are fields such that E/F is Galois, and |Gal(E/F)| = 14.
 - (a) Show there exists a unique intermediate field $F \subset K \subset E$, with [K : F] = 2.
 - (b) Assume that there are at least two distinct intermediate subfields $F \subset L_i \subset E$, for $i \in \{1, 2\}$, with $[L_i : F] = 7$. Prove that G is not Abelian.
- (2) Let G be a finite group, and p a prime number such that there is a normal subgroup $H \subset G$, with $|H| = p^i > 1$.
 - (a) Show that H is a subgroup of any p-Sylow subgroup of G.
 - (b) Show that G contains a non-identity Abelian normal subgroup of order divisible by p.
- (3) Let G be a group of order 70.
 - (a) Show that G is not simple.
 - (b) Exhibit 3 non-isomorphic groups of order 70. Prove they are not isomorphic.
- (4) Consider the polynomial $f(x) = x^7 3 \in \mathbb{Q}[x]$. Let E/\mathbb{Q} be a splitting field of f(x), and let $\alpha \in E$ be a root of f(x).
 - (a) Show that E contains a primitive 7th root of unity.
 - (b) Show that $E \neq \mathbb{Q}(\alpha)$.
- (5) Let M be a finitely generated module over a principal ideal domain R.
 - (a) Let M_t be the set of torsion elements of M. Show that M_t is a submodule of M.
 - (b) Show that M/M_t is torsion free.
 - (c) Prove that $M \cong M_t \oplus F$ where F is a free module.
- (6) Let k be a field and let the group $G = \operatorname{GL}_m(k) \times \operatorname{GL}_n(k)$ act on the set of $m \times n$ matrices, $\operatorname{M}_{m,n}(k)$ as follows:

$$(A,B) \cdot X = AXB^{-1},$$

where $(A, B) \in G$ and $X \in M_{m,n}(k)$.

- (a) State what it means for a group to act on a set. Prove that the action above is indeed a group action.
- (b) Exhibit with justification a subset S of $M_{m,n}(k)$ which contains precisely one and only one element of each orbit under this action.

(7) Consider the following matrix

$$A = \begin{pmatrix} -1 & 1 & 0 & 0 & 0 \\ -4 & 3 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$

as a linear transformation from $V := \mathbb{C}^5$ to \mathbb{C}^5 .

- (a) Find the invariant factors of A.
- (b) Express V in terms of a direct sum of indecomposable $\mathbb{C}[x]$ -modules.
- (c) Find the Jordan Canonical Form for A.
- (8) Let V be a finite dimensional vector space over a field k and $T: V \to V$ be a linear transformation.
 - (a) Provide a definition for the minimal polynomial in k[x] for T.
 - (b) Define the characteristic polynomial for T.
 - (c) Prove that the linear transformation T satisfies its characteristic polynomial (i.e., the Cayley-Hamilton Theorem)