Algebra Qualifying Exam Questions

(1) Suppose that $F \subset E$ are fields such that E / F is Galois, and $|\operatorname{Gal}(E / F)|=14$.
(a) Show there exists a unique intermediate field $F \subset K \subset E$, with $[K: F]=2$.
(b) Assume that there are at least two distinct intermediate subfields $F \subset L_{i} \subset E$, for $i \in\{1,2\}$, with $\left[L_{i}: F\right]=7$. Prove that G is not Abelian.
(2) Let G be a finite group, and p a prime number such that there is a normal subgroup $H \subset G$, with $|H|=p^{i}>1$.
(a) Show that H is a subgroup of any p-Sylow subgroup of G.
(b) Show that G contains a non-identity Abelian normal subgroup of order divisible by p.
(3) Let G be a group of order 70 .
(a) Show that G is not simple.
(b) Exhibit 3 non-isomorphic groups of order 70. Prove they are not isomorphic.
(4) Consider the polynomial $f(x)=x^{7}-3 \in \mathbb{Q}[x]$. Let E / \mathbb{Q} be a splitting field of $f(x)$, and let $\alpha \in E$ be a root of $f(x)$.
(a) Show that E contains a primitive 7 th root of unity.
(b) Show that $E \neq \mathbb{Q}(\alpha)$.
(5) Let M be a finitely generated module over a principal ideal domain R.
(a) Let M_{t} be the set of torsion elements of M. Show that M_{t} is a submodule of M.
(b) Show that M / M_{t} is torsion free.
(c) Prove that $M \cong M_{t} \oplus F$ where F is a free module.
(6) Let k be a field and let the group $G=\mathrm{GL}_{m}(k) \times \mathrm{GL}_{n}(k)$ act on the set of $m \times n$ matrices, $\mathrm{M}_{m, n}(k)$ as follows:

$$
(A, B) \cdot X=A X B^{-1}
$$

where $(A, B) \in G$ and $X \in \mathrm{M}_{m, n}(k)$.
(a) State what it means for a group to act on a set. Prove that the action above is indeed a group action.
(b) Exhibit with justification a subset S of $\mathrm{M}_{m, n}(k)$ which contains precisely one and only one element of each orbit under this action.
(7) Consider the following matrix

$$
A=\left(\begin{array}{ccccc}
-1 & 1 & 0 & 0 & 0 \\
-4 & 3 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 2
\end{array}\right)
$$

as a linear transformation from $V:=\mathbb{C}^{5}$ to \mathbb{C}^{5}.
(a) Find the invariant factors of A.
(b) Express V in terms of a direct sum of indecomposable $\mathbb{C}[x]$ modules.
(c) Find the Jordan Canonical Form for A.
(8) Let V be a finite dimensional vector space over a field k and $T: V \rightarrow V$ be a linear transformation.
(a) Provide a definition for the minimal polynomial in $k[x]$ for T.
(b) Define the characteristic polynomial for T.
(c) Prove that the linear transformation T satisfies its characteristic polynomial (i.e., the Cayley-Hamilton Theorem)

