845 course notes part 3,

(copyright 1996 by Foy 3mith)

§13) Hem, Duality, and Representable Functors

In many aress of methematics we study objects by mearns of their
rmapping properties’, jie. by how they map into other objects, or
how other cbjects mep into thern, For exemple, we count finite sets
by mapping themn injectively intc the natural rumbers, clagsifvy
compact surfaces by mepping polvgons onto them, represent”
groups by mepping them into permutation ar matrix Broups,
classify covering spaces by mepping "lceps” inte them, study field
extensions in Eelots theorv by mapping them into themselves, and
clessify vectar bundles on & space by mapping that ipace mto a
‘Graszmeanian” In addition to Galois Eroups, the fundamentsl group
ond the singular homelagy and cohorrinjogy proups are either
subgroups, quotient groups or "subguotients” of collections of MG pt.
Thus it will be useful for us to farmilinrize ourzelves with the general
properiies of sets of meps, end with the fundamental operatich on
rmaps, composition. We will focus on R-module maps, but some of
cur results are valid for cther categories of maps. Given R rmodules
ML e swill study not oalv the module HomEiM M), but the functers
Hornp(M,-) end Hemp(-,N), and their actian on homormorphisms,
The cxampies above mevy help convince vou that of gll the functors
in the waorld, Hom iz perhaps the most impartant. [This is = good
tirne te go keck and rerceed section B43, [ 510, an categories and

functors |

Fecall thet the functgr Hemp{v, ), which we will usually write gs
Horn(lM,-), wssigns to & maodule ¥ the modale Horn(M, M), end to o
map fX—Y the map fu Hom{M,X)— Hom(M YY) which takes Etoe falp)
= feg. Thus [, rmeens “fallow by . Dually, the functor Hormn( -, M)
takes X to Hom{¥.M), eand EX— Y to F* Horn{Y, I} — Hom {4, M), where
f*(g) = gof, ie f* means "precede by £ ln general, if F iz g functor
such thet {X—Y induces F{f): F{X¥)— F(Y) ldirection preserving), we
call F "covariant”, while if £X—9 Y induces FUE: FITy—= F{X) (direction
reversing), we call F "contravariant”. Thus Hom(M.-) and "lower
SLAT s & tevariant functar, while Hom(- N and upper ster’ is
controvariant in particuler, (fegls = fyeg,, whiie (feglt = prafr,
[Confusingly, 11 tapology “hernalegy” is covariant and “cohornplogy” is
centravariant Once Hilton and Wylie quite plausibly suggested



changing Lhe latter Lterm to “contrehornology”, but as in most well
meaning ettempts to chenge tradition, thiz feiled totally. In
differential geornetry also, 1 helieve "contravarient tensors ere
actuslly covariant. 3o be vigilant as always Mayvhe we could start
a movernent ta call therms "sense Ureserving or “sense reversing |

Notmtion: The cotegory of R-medules and homomorphizms 1s
denoted by T, or Mg, the cotegory of sets and function: by A, and a
functor F frorm modules to sets, or medules to medules, may b«
denoted by FM— 3 ar FM =N,

Rermark: The functors HormniX,-) and Hotrl- ¥) rmay be considered as
module valued functors =ML or as et valued functors Tl —+ 3.

Dus] Modules and sbstrect edjoints

The functar Homni(- R} which assigns to M the "dual madule” M* =
EerniVM. R), 12 called the dunl functer. To e map TH—N it szzociates
the rnap T N*—M* “preceding by T°. There it & good reazon this
looks a 1ot like the notation used in the study of herrnitian and Inner
product spaces. Hecel] thet a complex hermitian space (M.} comes
equipped with & conjugate Jinear isornorphizrm M= N* taking w Lo

¢ wiN—= €. Preceding this map by T yields the element

<T(-),wy ML As before there s & upigue elerment THiw] of M zuch
that ¢T{U0wr = ¢, T*{w) as functions on M. Thus the previously
considered hermitisn adjoint meap T* N —M is identified with the
new composition map T* N = M? wie the [conjugate linear)
isornorphisms M2M* and NaN? coming frem the hermitian
products in M and N.

The enalogous sssertions hold in & real inner product space. In RT
where we have a distinguished besis as well as an inner product, the

abstract adjoimt T* {RT)Y = (R} of a map T:RM — R iz identified
under the usual isprmorphism {E™M)* = Hom(RRF) = kR |which iz the
carme ns the isormorprusm induced by the inner product], with the
map T* RN — R0 defined by the Wranspose of the matrix of T. In
purticular, [T*] = [Tt and [ETI* = (ST)*1 = [T*5%) < IT+I[S*} = iTIMIIS
{Matice this 1s an easy way to check that the tranzpose of s product
epuels the product of the transposes, hut in the opposite order.)




In general, withaut sny dot products, and over any ring, the functor
Hom(- R} provides an sbstract "sdjoint” of any map TM=— N of BTy
{not neeessarily free) modules, namely the adjoint is the map
T*N*—=M* where T*(f) = £+T. We cen also define the ‘orthoganal
cornplernent” of a submodule NCM, to ke the sukmeduls N+ C W+
where f is in N4 iff NCker{f). e & function fM~R is “orthogonal” to
M aff it wanishes on N, Qur earlier principle that the arthogonal
cormplement of s T-invariant subspace it T*-invariant has an analog
here too. Nemely if TM=Y, and if for some submodule NCM we
heave TINICXCY, then T*{X+) CNY*CM* In particular, for an
endomorphizm T:M—o W, if TIN)ENCM, then

T*(MLIC Nt Ch*

Remember: Whenever the vectsr spaces: under dizcussion are naot
inner product spaces, then T+, snd N+ rmust be given the abstract
meanings described here.

Duml Pese: {in finite dirmenzions)

We heve slready chserved that for every ring R, the functar
HornlR,-} is equivelent to the identity functor, in particular
Homl(R, N} = N for cuery R-module M. The situation iz guite different
for the dual funetor Hami(- R). The example Homz{(Z19)100 7 =
{0}, shows that the "dual medule” N* rmay contain very little
wmfarmation about M. 1t is most infarmative for finite free rmodyles
M = R¥ in that case we have IV = HomilM,R) = Hem{Rh Rl RN
= M, & specinl case of the isomerphizrm NomplRDX) & XN, for every
X. These isomorphisms depend on s choice of basis of M. The pRint
iz that en izornorphisrn 1M & RO iz eguivalent to a basis for M, and
thet this besis deterrmines a durl bosis for M*, which in turn
determines an iscmorphism between M* and RT Cormpasing the
two lsomerphisims of M = R = M* gives an isomorphisrm M = M4
Different bases give different isernerphisrme in general,

Let's give thess isomorphisms explicitly. Reecail that the usual

isemorphism Horn(RA,R) & RN takes f to (fley), .. flen)) = EfEEJ}EJ.
Thus 1f tvy.. ., vpr! is & basiz for M. the ssscclaled izormorphizm M* =
Horm{M,R) = M takes f to Zflvyivj. This means that fi corresponds
ko wj iff fj(vil = 1, and filwi) = D for izj. The subset |§q,. fnlCM*
defined by these properties is called the basis "dusl’ to the basis



1vwq,...wnl for M. That [£1,...Fpt 12 8 basis of T¥1* fellews frefm the fect

that the isornarphism abous M- M* takes vt fj, and {vjl is a
bazis of M. Fach of these hases i2 ueeful for expressing elernents of

-

the other speoe in terms of the other basis. le. if » iz in M, then w =
Lfjivvj. and i fizin M+ then £ = Eflvilf;
Ta see that the izsornorphism M—M* ahove depends on the cheice of

besis of W, just change the hesis by replecing v1i by wi = 2vi. Then

7 corresponds to the function {1 which nas velue 1 on vy = 2vi.
Hence wi * (172301 now correspends to (1/2}§1 which has the value
1/4 an v1. Thus vi correspunds to e different function under the

rew isormorphism.

Double duslity
Imterestingly, for any medule W there is & netural mep vl vl * %,
the "evaluaticn meap’ teking v to =y = "evaluation ot v', le. for each

v irn M. gy 15 the element of M**® = Eermili® R) that takes { in M* %o
fut in R. If M is free of finite rank, then we know M o= N* = M*E,
anmd our guestion is whether Lhe patural mep ¥ ey 18 BN
isomorphizsm. To see it 15 ingective, we must show that for vz0,

there 1s sorne f in M* such that flvlz0. We rney use 8 basis
[w1,..,vn) of IV to construct cuch an f. Mamely, v=Zajvj where
zamne aj=0, and then the function fj in the dual basiz defined above
dres the trick, since fq]'{u]' = aj. To see onLOREss, let . X* =] be any
rmap, Bnd /galn use a basis to find a v such that azey. Namely, let
{1, ..vnl be s basis for M, let {f1. ..fn} be the dual basis, and put v
= Ealfjlvy. Then for any fin MY, £ Di{w i, o nlf) = w{Lflw i) =
Eflwyhnify) = Ealifiv ) = fER(fjlvj) = By = ewlf). 1t follows that
the netural map M —M** is indeed an jsornarphism when Mz e
finite free B rmodule.

Exercise # 162} 8} Prove if N iz & “tepsipn rnodule [ e if for cvery
% m M. there is an r20in K with ru=0) and R a damsin, then N*=0.
b) Describe N* for any finitely penerated Z-rnodule M.

Exerciza « 153) [f {;.;J'}J: 1,...m 58 firite besis for & vector spece Ivi,
prove dirgctly from \he definition (of basiz) that the set Hilj=1,. . m
defined kv fj(vj'.l = 1, and E_‘,[ui}l = 0 for 1T j, 15 & bans of M*,



Exercise #164) [f X Y 2 are finite dimensicral vector zpaces, prove:
n) [f TX—=Y iz lirear, with ad jairt T*¥* —=X* then

ker{iT*) = {irmn{TH+cy",

B) if 25 is s subspace, and 24 CX*, then dirmi2l+dimiZL) = dimi¥}.

Exercise ®#163) For any finite dimensicnal vector spaces ¥,Y and
any linear meap TX—7Y, the natural iscmorphisms X=X*% and
Y=T*? identify the mep T with itz double sdjoint T** "% 7y,
[e if @wX—X** and @v:¥Y—~=Y"* are the natural "evaluation” MBps
[taking x to ey vnd v to ey), then the following cormpositions are
equel BysT = T**+@ [le the double dual functor iz equivalent to
the identity functor, on finite dimensionel vector spoces. The same
iz true for finite free R-medules]

The dual of an infinite dimensional vector zpace

The discussion shove shows thet if X is & field, ond W is & finite
dimensional k-vector spece. then the dual space N*Y = Horme(N k) is
alweyz isamorphic ta M, and any cheice of bazsiz of M determines
zuch an isornorpghisrm. 1f N iz an infinite dimenszionel vector space,
thiz t5 no longer true. Indeed suppase {v3lj=1 e is a countable
vector basis for M, Then esch elernent « of M iz uniguely expressible
as & finite linenr combinetion v = Xa v of these vj. Letting v
correspond to the sequence of coefficients in this expression gives &
snerone correspondence between the elements of N end thoze
infinite sequences !aj} of elernents of k in which mll but a finite
number of the entries aj are equal to zero. Equivelently, N s in
anc-one correspondence with the zet of all finite sequences of
elements of k, where the lest entry in a8 tegquence must he nonzsero.
In particular, if k iz 8 counteble or finite field, the set of all
seguences of length n s countable for every n, so the set of sll such
tinite sequences 15 countable, and hence M is countable On the other
hand, we clairn §* = HormiMN k) is not covntakle even if k = 2. Ta
see that, recall thet a linear map £ —k iz determined by its values
on & basiz, and that we may define 8 meap which zendz the basis
Bnywhere we please. Thus f 1z determined by the infinite sequence
of its values {f{w1), f{vel ), and that sequence can be any
sequence of elements of k, with no restriction that rmest of thermn be



=

zera. Hence W* 15 in che-che correspondence with the sat of all
infimite sequences of clements af k, which 15 8n uncountesble set eveEn
for k = Zz. [Recell the argument. i w2t — N is sny function, define
a sequence 1@j] where aj =0 if {alinlvyy = 1, and aj=l if (alj)ilv;=0.
Then the function f in N* defined by f{vj) = aj for all j, cennct ke in
the irmape of &, since for svery J, aky and f heve different velues on
vy Thus no function » Z*—MN* can be surjective, so N* is
uncountakle] In particular the metural map M- R iz not always
an isgmerphismn, even for vector spBoes.

Reynark: 1f 8 is any infipite zet and M is a vector space ower &2
with 5 &s basis, then M heas the sams cerdinality as 5, while (as
pointed out in clas: yesterday by Patricin} M* hes the sarne
caramality as 25 the set of subsets of 5, which 3t greater than the
cardinality of 3. Thus M 1= never ;sormarphic to M* nor is M even

bijectively equivalent to MY F M s infinite dimnensignal over £2.

Question: 1f I¥ iz & countably infinite dimensicnal vector space over
Iz, with bass bwidy=1, .0 then sinee M* is & £2 vector space i
must e 8 free £z-module, hence rmust neve & veclor baziz. Wheat iz
that boasis? Wate: the bosis must be uncountsble. 1f we just teke
the "dual basis” of the basis {#]] we get & countable set of functions
il such that fj{xj‘.l: 1, and fjlx}=0 when i#1, Thusz this cannct Le &

wector basis of MY

[Mate that in some serise ROWEVET, every elerment of M?* iz an
smfipate "linesr combinotion” of the functions {fj}. 1= 1f fisa
fupction with walues flxj) = aj. then in sorme sense | =

"Eizl..ee ayfi". le if x = Lhjri tiinite surn), we heve flx) = T s,
and on the other hand, if we agree that the surmn of an infinite
nurnber of zerges is =aro, then (Zg=1..00 aji_j)(ui] = aj, 50 we alio
hewve {Ejzl____m ajfjllt:-:] = (Ej=i..ee ajf__]':lizhjxﬂ = T ajhi = fixil]

[nfinite sumMi Wersus infinite products
So what went wrohg, i the imfinite case, with the argument that

wis used in the finite free rnodule caie ta show Wi* = M7 The
argument alrendy fails in the very farnilar case Homi{RD R} = R™T
Tor & free R-modulse of inifinite rank, this it not necessarily true! i.e



tf M1z an R-module which is free on a cocuntable zet 5 then M may
not be izomerphic te M* = Hom(M,R). We could say Haornd{R* R} is
not iscrmorphic to R*™, but we have to say whet we mean by the
notation R*  Jf we want R™ ta denote & free B-medule, free an a

crupntably infinite set, it turns out we rrust define R to be the set
of those sequences of clements of R in which all but a finite number
@f the elerments of esach sequence are zero. On the other hand, for
the same reaschn as for vector spaces, then Hom({R® B) turns out to
be the set of all arbitrary sequences of elernents of R, The diffearemcs
15 related to one we have alluded to before, the distinction between
infinite products and infinite sums, and thiz iz as good a time as ony
ta explain it.

The peint iz that we want & "sum” of several objects to be an object
such thet a map eut of it corresponds precisely to one mep out of
each of the individusl chjects. Dually we want a "product” of
several objects to ke an cbject such that & rmep izte it is determined
by precizely cne maep inte each of the individual shjects, Az we
know, & finite product of modules has both of these properties, but
no one object has bhoth theze properties with respect to an infinite
collection of meodules. Let's be more precise. Recall that the
cartesian produet TT4 S, of an indexed family of sete {5, }a is the
set of all funectione x A= U5, such that for each &, #{«) = %o
belonpgs to Se. The function x iz often denated by (X ), or (e, the
indexed coellection of its values. In particular, when & is the set N of
natural nurmhbers, with generic element n, the functian » iz alss
celied & “sequence’, and often denated (k) or {xn}.

Definition: Let {X,}a be an arhitrary indexed collectian of rmodules.
A {direct) product of thiz farnily iz & maodule ¥ snd a ccllection of
hamomaorphisims Ta X — He with the fotlowing property: For every
rmeodule Y, the correspondence taking a hermoarnorphism £ =+ X% to the
farmnily of compasitions {Teoft is 8 bijection between Homn(Y,X) and

the cartesian product set TTa Hom(Y, Ko )

Neotation: &4 product of the {Ha}, if one exists, is denoted variouzly

BF 1A Mo, or Mo Ha, ar THe, sto.
The unique map Y — TTXx which corresponds to the family {fx} of
miaps fo M Mo, may be dencted £ = T Y= TTHe. Thus (TTigy) =

"f-:}i{?:l}.



Terminclegy: & direct product is also called simply & "product” ar
"rategorical product”, the medules X are called “direct factors” of
T ¥ea, the maps Tp T Xe — Xp &re the "projections, and the maps
tyof = fy are the ‘component meps of the map Felfo.

Trernmrks: (a) The notation for the direct product module of a
family of modules is the sarme as the notation for the cartesian
product of these modules as sets, end there are two justifications for
this: first, the underlying sct of the direct product medule it the
cartesian proguct set (see theorern below); second, the direect product
af a Farnily of sets, defined by the ansologous mepping property, 15
exactly the cartesian product set

(B) Intuitively the factors Xg rmay ke thought of a3 submcodules of

MX,. . onto which projections T are given, and the definition above
menns (i} & map §Y— X is determined by all its compositions fg =
Toef Y — ¥e with these projections, and (i) for eny family of maps
{fee ¥ = Ku ), there is & {unigue) map f = TTi Y 2 X whose
compositions are the fo.

In the fellowing theerern, teke sproel note af the unigueness proof,
which has & characteristically "mapping thearetic” flevor.

Thearem: A direct product of sy family 1%a) of modules exists,
and is unigue up to unigue ispmerphism.

praat: As & set, let Ty ke the cartesian product of the family {¥a}
Lefine an B-meadule structure an the cartesian product (whose
elernents we recall are functions), "pointwise” Thus {xglriyead =
(%ot} and rixe! = lexect, just ns for finite products:

The properties of an R-medule are readily checked, eg. the identity
iz 0] and the inverse of {xgt is {-xal.

For every p 10 A, the map tp T ¥e = Xp, teakes the funetion {xx} to
xp, its value et p. For ench B, Tp is @ hormmomerphism by definition
of the paintwise operations in HXe. For any Y MEy, and anv
point v an ¥, knowing all the cornpesitions (Tgefl{v} = flyvia, tells us
all the values of the function (f{yle). Hence the compositions bt oo f)
deterrmine f. On the other hand, given a famtly of maps B — 2ol
we can define £ Y — TT¥e es follows: for each v in Y, flyia = faiv).
Thern each cewnposition Toof equals fo. Moreover, since fiy+z] =
{Hyrale) & {Falyrell = {fely) + foladl = {falyl ¢ (o lzd} = Hi(dal +



[fizdad = £ + flg), thus fis additive. Sirmilarly, § is R-linear. hence
a homornorphism. This proves existence of the product.

As for unigueness, let ¥ be snother product, with projections

M A Ko We want to show AT Xy Following Auslander's
deitum, first we just logk for & map each way, then try 1o show the
meps are inverse isamorphisms. But & map into TTXe is determined
by & farnily of maps into the Re, precisely what the To give us! SJo,
by the raapping property of TTH«, the projections Mo determine &
unique rmap ¢X— TRy, whose cormnpositions are go = Te9 = To.
Sirnilarly, the rmeapping property of X apd the Ty determine a
unique map § T ¥x — X whose cornpositions 6re e = Tetth = T, To
chow Lnat ¢ end & are rmutually inverse isomerphisms, of course we
huuve tog check thet their compositions ere both identities. Neow the
identity map 1:X—=X has the cormpasitions 1o = My, and s the only
rmap with those compositians. Jo We must check that yrpX¥—H also
has mg = (pegplyg. Te we rmust cornpute the cernpositions

(prpla = (margepd = o, By definition of &, Tasy = 7o, eand then
by definttion of ¢, taop = wa. Thus indeed (powle = Mg = 1y, for
all «. Hence (g=g) = 1. Sirmlarly, fpedd = 1. QED

Remark: (a) The unigueness proaf clarifies the meaning af the
phrase “unique issmorphism’” in the theorerm rmore precizely, if
(K it )t and (X, {To)) ere both products af (¥} the unigue maps

ip ¥ and q;:?-:—- ¥ =uch that :Ea_ﬂp‘:rm and teed = To for all o are
rmutually inverse isgmorphisms.

(b} It is probahly more commen to dencte the projectiohs T
nssociated to the product TT¥g, by lower case 7, 1e. T 1] K =+ M,
wehich rmakes the choice of letter sasier to remember, but sometimes
it iz helpful to heve rmore variety in the chepice of letters,

Exercize #166) Define a (direct) product of s farmily [Hoel af sets by
irnitating the definition of & direct product of modules abowve, but
substituting the word “set” for “rmodule”, "function” for
“homomorphism’, and substituting "Hom 4™ (the farnily af set
functions) For "Homp™. Prove that the cartesian product set TT ¥ e
with the usual projections Te ixel  ®e is & product af the family
1Ko} and that any other product is bijectively equivalent to it.
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lext we prove the exlstencs and unigueness of sums of modules.
Definition; Let (W] ke an yndexed collection af rmodules. A {direct)
sum af this farnily is 8 module X and & eollection of

hotT Ormor Phisrms e Mo — X with the following mepping Property
Fer every module ¥ the cor respondence taking & hornomor phism

§3 =¥ to the fernily of cotnpositions [fearot 15 ® Dijection between
Hom(¥,¥) end the cartesian preduct WA Hotrd ¥, 1)

Notntion: & direct sum af the family 1Hetp, f one ex1sts, ig denoted
B AY e, Bota, 0T B K. and slso U oaKe. Moo, of 1l ¥ and the
unique MAap @ W — ¥ correspending to the family {foe} mey be
derioted f = Biy BHy— Y, OF fz Hfe U¥a—T

Terminology: A direcl surr i« alsg called & “surn’, ar "catepgorical
sum-, the modules Xo are -direct sumrnonds’ of B ¥, the maps
gp¥p— BHe are the “mnmjections’, and the cormpositions

fre = Foif e oo T azsocinted to the mep FEY, Y, are the
“rorn ponent meaps of f.

Remnarks: {a) Intuitively, the curnmands %o sre thought of as
zubrmodules af & X, (although they are really enly isormarphic to
subrmodules) and the definition above mMenns (i @ map X7 is
determined by its restrictions to all the W, and (i) those
restrictions can choseh arbitrarily on the Mo

{b) Sometimes one SEES \he terrns internal’ oT “external” direct
surne, depending oh whether the rmaps T e Ao B BTE inelusions
or enly injections, i e whether the ¥g ore actually submodules of

E ¥ or only isormer phic to submodules. From the mepping
theoretic point of wiew vhiz distinction kecomes VEFY minar: 1. We
tend on the one hand to identify two chjects if & specific

izermar phism 18 given between them, and on the cther hand even if
WCH iz 2 subrmedule we think of the inglusion as B mep from M to
M. Henee ipclusion is Just ancther map, with no more special
properties than any other irjective hormornarphism. The usefuiness
af the new pont of view 13 in unifying concepts end generalizing,
while the power of the ald is its concreteness and familiarity, hence
sornetimes making cormputations seern easier.,

Theorem: & direct sum of any family (¥ th of modules exists, nnd
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3 unigue up to unigue isocrnorphism.

proof: Consider the direct product Mxy of the modules Xg, and
then let B4 CTTXy ke the subset consisting of those functions x =
e} such that x5 =0 far all but & finite nurnber of «. This set s
clesed urnder mddition and scalar multiplication, hence farms s
subrnodule. We claim this subrnedule, tagether with the fellawing
netural injections {a y}, is & direct sumn of {¥x}. For ench g, the
mep ag X~ B Xy tekes 2 in Hp to the functien (¥} such that Xp =
2, and for % =0 for «e2p. Bince gplz) has only one non zero value, it
belongs to the submodule BX, . The pointwise definition of the R-
rmodule siructure on ITX s shows ap is 8 module map. [F fg@BEy—T
ars module mags such that the composilions fg = feg g = E0T g =
Bw. 6re equal for all «, then let {xg} be any element of @ X, and
let B.¥, .5 be Lthe indices corresponding to non zero values of {xa).
Then Ixgl = galxplrayinygds ., +ogixg), so

flia ) ={feapiluplt(foayi(ny)+  +{forgling) =

(geapdixplelgeaytxyd+ wlgoaedus) = glivg)). Thus the cornpositions
feg o determine £

Then, if we are given any collection of meps {fe M~ Y we define a
function f=BFf, B Xy =Y by setting fl{xgl) s Tfalxa). In this
mmfirute sum, all but a finite number of terms are Zzero, and we
deline this "surn” to mean the sum of the non zero terms. Then
f”ﬁrx}"‘{}?m” s ff'[?.’g;*}'a:” = Efqr_'.ri-:'q:;*'h?g.-_:' = E[fﬁtkm}‘*fg;{}?ﬁ:'] =
Tfload » Dfglved = fllng ) + Hivel). (These sums make sense
because in all ceses oniy & finite nurnber of terms are non zere)
Jimilarly, =B fx iz R-linear.

Finally, tor euch B the compasition {$fmaaﬁ}:}{g—i‘f hat at = the
value (Bfmropile) = T,z p el » fplz) = fpla). Thus for all p,

(B fmeapl=fa.

This proves existence of a sum.

The unigueness proaf is dual to that for a product. le. if

{¥, po M= X) is anather surn, the family of mens fpo Ko — ¥
determines a unique map ¢ @ Xg — X such that gogg = pa for all o,
while the family log Xy ~ BX! determines g unigque rmap

il B such that pepe=agg for sll . To shaw that e and Jog
are jdentities, it suffices to carnpute the component MEps peope
and fegpery . By definition of the g, we haue POUTha T POT s T P,
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and BoYed g = fi9pg = dg. Since gel and yeg have the zame
cemponent rmaps as the identity rmaps, they are the identity mops.

QED.

The whele paint: {a) If {Xyx} is & family of R-modules, and Y is
any R-meodule, then the meap taking f ta the family {fsox} is a
bijectinn of the sets Hom(® R, ¥) & TTHom(Xa Yl

Duslly, the map teking { to the famlily lta=fl is & kijection of the
sets HomiY. TT¥ g ) = TMHomi{Y Mol

{b} Moreover, all fouy sets of rnaps in (a) are neturelly R-maodules,
and the natural bijections ahove are R-rmodule rnaps, hence yield
module isormorphisms Homl @ K Y 2 TTHomi{X YD, and

Homi¥ TTXe) = TTHormn(Y . Xl as well as equivalence: of the
correspending funectors from TN te T

Remark: If the fernily of modules (o} = b1, L w1 finite, the
product TTeg =1, n Ax and the sum Bo=1 5 Xx are essentially the
sarne, in particular the maodules sre iscrmorphic, but we foous on
different meps. 18 meps in or maps out. Even the modules are
essentially different if the farnily is infinite. For other types of
olbjects, not modules, sums and products may differ, even for finite
fnrnilies. For example, this occurs in the category of setz. First
define a "disjaint unisn’ operation far sets. 1f A = {123} and B =
1234 5}, then to forrn the disjaint union of these two sets, it is
comman to say "paint the elements of one set blue” to distinguish
them frorm the elements of the other. Thiz can be made precise, as
follows. Choase two different sbjects =, replace the set A by the
set Axlo] = 11a{w], 2=fa), 3u{e}}, eand repluce B by Bxi{pl = {2={p],
Ixfpl, 4={pl, Sx(8)}. The lakels o,p are the two different “colors’,
distinguishing the elernents of A from those of B Just make sure,
even if the sets A, B are the zame, that the labels « p wou usze are
different. Thern the new sekts Axlx] and Bx{g] are disjoint, but
kijectively equivalent to the original sets. Then the "disjoint wnion®
AUPR = (a«{axlU(Bx{pl) of the original sets iz defined to be the union
of the new disjoint verstons of those sets. This plays the role of
surn fer the sets A B

Exercise ®167) Define a direct surn of s farnily (X} of zets by
imitating Lhe definition of 8 direct sum of meodules ahove, but
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substituting the word "set” for "module”, "function” for
"homeomeorphism”, and substituting "Hem 3" [the farnily of set
Functigrs] far "Homp". Freve that if (K] is a2 collection of pairwise
dizjeint zets, their union UXg topether with the inclusions

T M CUXg is 8 surn of the family [X«), and that any other sum s
bijestively equivaelent toit. [In general, the sum of an arbitrary
farnily of sets 15 their disjmnt union ]

Remark: The previous two exercites thow thet even for two disjoint
sets A B, the surn AUPB eand the product A»E =are different. 1In the
catepory of groups, the product of two copies of £ 1z the usval
cartesian product Zx=Z with itz pointwise structure, iscrmoerphic to
the free Abelian group Frobiw,p) on tweo generators, but the sum
ZUZ is the (non abelian} free group Frix,p) on two generators. If
G,H are any groups, it is easy to show GxH with the usual pointwise
operations is their product. Can you construct a sum of G H? More
generally, is there & sum of an arbitrary collection of graups?

Exercize # 168) If A is any zet, consider the indexed family {Rgla
where He 2 R for erch «. Prove thet @ pFe = (all functions
{vabA— R, with onlvy & finite number af rnon 2ero valuest, also
dencted @ AR iz & free R-module with beasis lex)a, where ep i3 the
functien eg A— R such that epflBd=1, but Eﬂ':f-"-} =0 fer c=p.

Remarks: (@) It follows from the previeus exercise that for any set
A there iz an B-module which is “fres onn A”, namely @ 4R, In
particular ®aZ & FrabiA), free abelian group on the set A,

{b) As n special case of the defining progerty of 2 sarm, if Mo @ 4R s
the free R-maodule on the set &, then M* = Hom{@& aR Ry =
TaHornfR R) = TTAR. In particular, (@ aR)* = TTaR.

(c) More generally, if {Xe} s any collection of modules, (X )? =
Horn B B) = MHBom(¥y R) = TT{HL*, ie the du iz t

praduct of the dunls

(d} One con show thet the rank of an arkitrary free maodule 15 well
defined. 1g for any twao setz 4B, @ pR > @R iF A=B. [of eppendix,
and the section on tensor products |

Ouestion: we krnow @ AR iz a free module, but is the preduct TTAR
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~ {@ aRY* al=o free? It isfree i R is & firld, of course, byt without
an eaplicit bezis, we need spother opproech to this question sver B

Tatural Fauwivelence of Functors
Far g geners! R module X, we know the madule of homoemorphisms

w4+ = Homl¥ R) may ke rmuch larger or much smaller than X, and in
particular ¥ is not always deterrmined by Hom(¥, R} = X* [cf. ex.
#151]. Since the rmapping theoretic point of wiew in studying A S&Ys
vhat we zhould focus on how we define maps in or aet of ¥, it is
important to chserve that nonetheless ¥ is cornpletely determined
LEy the mep: of X into everything! e given a module . the functar
HornR(#, ) does determine X, To see this, we review the concept of
fupcter, and then describe an appropriate netion of egquivalence.

Becall that a {covarinnt) functor FM— T assigns to each module
# another rnodule F{M), and ta each module mop e M—=HN, a
corresponding module map Flo ) F{MI = FIN), It is further required
that identities go to identities, F(ip) = 1F(M). and cormnpositions go to
compositions Flfeg) = Fli)oFlg). Covariant funcicrs FTi— 34 arc
defined similarly, (as well a3 contraverinnt functors).

Examples: The constructions of sumzs and products define funciors,
in the fallowing sense: if Il is 0 family of modules, the functor T
mszpns to it the product module (TR, (T TR = El) =
(T T ). Given two femilies of rmodules (Kl [t if

Yo Mo — ¥zl ts B corresponding fermily of rmaps, then the family of
cernpositians oo Te T Xa %) determines & unigue map

TT(fe o Tee ) TT M — 1T % e, between the two preducts. Thus T iz a
Functor fromm families of medules and maps (with a fined index set
A} to single medules and meaps. We usually winite simply Tix
imstend of TTifgeTa), for the map TTHe— 1 R, in spite of a slight
conflict with the previgus use af that notetion. 1Thiz is sarmetitnes
called “shuse of notetion’, end very hendy it is tao ]

Swnilarly, @ is a functer from farmilies of meodules and maps W
single rnodules and maps. le the functor @ tokes (fg Xa —+ X} to

Definition: Two lcovariant) functors F.6 are caolled “equivalent’,
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F = G, or "'natursally sgquivalent” if there exist isomorphisms

g Fl0A}— GV}, cne for each rmedule IV, such that for esch map

® W — N the induced ronops Fle i FIMY—2 FIN) snd Gle ) G{VD) — GIN) are
identified by the fsomorphisms g6 and ply. [e the following two
cornpositions are equel: (Gl jsop) = (pNeFl=]) FiM)— GIN).

Rermarks: (o) Eguivelence of funectors iz en equivalence relation.

(k) Equivelence of contravariant functers is defined anelagously.

{c) If we drop thre requirernent that the meaps gM bBe izormorphismas,
then the resuwlting famnily of i is called a "natural transformatian”
af the functars F,G.

{d}) Peter Freyd emphasized that natural trensforrmation: are an
ezsential concept, asserting that the only resson we define categaries
iz to define functors, and the only reason we define functors iz to be
able to define netural transformetions.

Example: If @M—N is an isarnorphism, then the two functors
Horm{N,-) and Hom(lV,+) are eguivalent. le. for each X, the map

E* Hom(MN,X)— Horm({M, X}, "preceding by &7, is an isomorphism, since
it hos as inverse (B4)°1 = (8-1)* Secondly, »f £ —Y is & map, then
the eszacialed rrneps Fo Horm{M, )= Homi{N,Y), and

£, Horn (M )= Hernf WL Y) are identified by @%  That iz, both
compasitions (Fes@* ) Hom (I, X)) — Hom (ML) — Hom{M, Y], and

{E*efy JEom(N X)= Hom(N, Y — Hom({M,Y), are egual. This iz true by
sssocietivity af cornpeozition, since for g N=3¥, (Fae@% Mg = folgeB) -

(fogle@ (L *=f,i(g).

Cur goal is the following converse aszertion:

Theorem: Suppoze the functors Horm(N, ) and HomilM. ) are
cguivalent, via the sormorphisms ¢} Ham(M, X} — Hom(M, X}, for all
modules ¥, Then I and M are isamarphis via & unigue map B8M—=N
such that for all X, g = B2*.

proof: How do we prove something so abstract and compliceted? As
wsual, just loak for & ratural map 8 M- M, and then try to show it
res an inverse. Now the only entirely naturally given maps are the
identities 1N N—=N, and 1. .M — M. But we have by hyppthesit an
izornorphisyn M Hom(M M= Hom (WML IN}. This mesns we can transfer
1M over to B mep 8 = gNIIMI D —TI. 3ince this is the only map
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chtmimable from the assurnptionz, this must be it! |Ancther way ta
guess the map &, 1 that if indeed p) = ©@*, then we can recover =]
ns {1} = G+{ipy) = 12 = O, In particular this shows B is
unigue.l

The inwverse map of course, shaould be lpw['ililm:l M=, To show
these are indeed inverses, we must show their cormpositions are
‘dentities, using our hypotheses. The anly hypotheses we heve are
those gusranteeing cormpatibility of g and fs. That is, for each
f¥— Y, the two cornpositions:

(fs PLp}{:I'.Hnm'[W,HII—*Hmm{M,Ki—'Hﬂm{M,‘I’L ahid
lic.p‘fnff}:H-::m[N,K}—'Hmm(N,‘:"}—rHch’.M,";’}, ore egual. Let's apply this
to the case f = n.pm‘l{lm}:N—'M- Then we have equality of the two
Com positions: {npm'llIiM}.ﬁ:pNJ:Hﬂm{NJN]—'Hum{M,N}ﬂHum{M,M},
nnd I::pMHFM_llill".-'I:';:I.HE:-m“‘-I;N}—}HGmfN,M}—* Hern(M, M), Applying
the first of these compesitions to the elernent 1M gives

(g H1pads spNILIND) = wra” ity p{ln)). Applying the second
composition glves {gng=y T 10l 1N = upmitpm"llilmﬂ = Ip). This
proves thet phi” 101 is Jeft inverse ta (pCINY). The proof it is also
right inverse is similar

To see that R{If}*(f) = pX(f) for all f in HorniM,»), consider the two
egual cormMpositlons: l[qu}e:-:ff}:HamEN,N}—}Hum(N,}{]I-*Hnm(M,}{}, arnd
(fs ﬂupN}:Hcm'[N,N}—* Hern{ M, ) = Hem (M, X)), Tracing 1N around both
ways gives first (piefa I} = gxiipef) = eH{f), snd then
(EaepriMINY = foleNUITED = fopryl 1) = ({1790 = {f). QED.

Remarks: (a) We never used o this theoretn thet the maps ¢N
wera module isorneorphisins, ie. it suffice 1o azsume they are
bijections of etz In fact, if XY are objects i any caAlEgory T, such
vhat Home(K,.) and HomG(Y, ) are ceuivalent as functars ©— .8,
then ¥ apd Y are isornarphic in & The proof is the same. [Trv it]
(W) 1f the controvariant functors Homi-. %) and Horn{-. %) are
cquivalent, by the analogous definition, thon we alsa have X = Y.
(c) These theorerns mean that s rnodule, ar en chject in Bny
categery, is unigusly characterized if we tell in 2 natural way, how
to define all rmaps either into it or aul of it, ie. an object 15
determmuned khy its "meapping properties’.

[d} The gencral principle that every naturel transfermation lpy} of
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Homn functors is induced by & muap € of the corresponding modules,
it pitern called "Yoneda's lernme”™. 1t follows from the last twaoa
zentences of the proaf of the previous theorem.

Let’s check next that the defining property of A direct sum,
emphasized i "the whole point” nbove, is an equivelence of functors.
Thecrem: For any family {Hg!, the funciors Hom( @ Ko ,-) and
TTHom{ X, ) are equivalent.

proof: [f {gdq He— @ Xyl are the cancnical injections, then for each
¥, we know the mmap g% = Tog* Homi@ X, )= TTHom{Ey Y]
taking f to {fea ) is & bijection. So we must check that if gY—2 is
any meap. then the following two compositions are egual:

D TEgarpy=TgaoeTloy*: Horml @ X, Y = MTHom (X, , Y)Y TTHom (M o, 2),
and i) @Zegs = Mam*tepgs Homi@E He, ¥l 2 Hom (@ X Z)— TTRom X, 2.
To eheck (b, if f @B Xy Y iz any elernent of the left hend module,
then the first compesition yields TTgaflfegw) = {gefeo o}, while the
second gives (TTa g *Meef) = {geforyl, the same rezult. QED,

Corollary: The previous two theoremns, allow a very short verzion of
the proaf that direct surms are unigque up to isomaorphismm.

proof: If XY are both sums of the femily (¥} there are
equivalences Hormn(M,-) 2 TTHem(Hy,-) & HomiY.-), Thus X = Y.

LED.

Rernarks: (i} The argument for the previous carsllary does not
display the isormorphism X = Y, but it would do 50 if we were more
careful in describing the equivelences of functers which induce it.
le. put ¥ into the second variable of every functor in the last line of
the proof), and trace 1% through the equivelences from left to right.
Then 1 geoes to the farnily {oxl in TTHeormi{ Xy, X}, of injections
aszociated to the surm X, Then these correspond to the unigue map
t% — X such that for each injection Er.;.;}{a_—'"f, frog = T, A5 vou
might expect, this it the sarme isornarphizm we found before when
proving any two sums of the same family are 1somerphic. That § s
an lzamarphism follows here from the fact that it iz induced hy
equivaiences of functars, with -1 obtained by putting Y in the
second variable in each functor end tracing 17 in the other

direetion, so f~1= the map gH— Y such that grady = .
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[ii) Whenever we say two mpdules are ispmorphic, we should ask
whether we can specify & particular rornorphismn. If all we know is
that they sre 1somerphic, Lhen We cen only cenclude general things
nbout them, such s if one is free then so iz the other and they
have the zame rank; also they have the same annihilator, end so on,
If we know an actual iscmarphisrn, we can do rouch more, such as
actunily replace cne of them by the other in sny sequence of maps.
We cen slso identify specific elerments of one with specific
corresponding elernents of the other. We can really equete them by
setting up e dictionery for how td replace elements of one by
clerrents of the other. Sorne of us used to tell heginning students
that "isornorphic’ objecks coeuld be considered as "the same’, but this
1t not really true. Two chjects can only Le considered as fully
intercnangeable if we are glven a specific isernorphisin, by means of
which Lhey are to be identified.

(i) 1n almost all situstions in this secticn, the warious itemorphic
cbjects are 1sormorphic by rmeons of possibly many different
izernorphistns, but generally there is one distinguished choice of
isornorphismm, ahd that i3 the ong wa almost always want to use. If
this were not true, we might get in trouble when we Cornpose
isornorphisms, since & cornpesition of arbitrary isomorphisrms would
yield an 1sornerphismm of the first nnd last chjects in the chain, and
it might differ from the jsornorphism we hed alrendy chosen for
them. Roughly, s choice of & fernily of isornorphisrms which always
campuose to give the expected result iz called & "coherent” family of
i=ornorphisms. We expect that \f wre chomse ours in the most ochvious
way, they will alweys be coherent. For insternce, in the proat of the
carcllary abhove, we knew one isornorphismn ef the two surms M=y
frorm our eslier proof, which thus induced an eguivalence of functors
Borr( ¥, -3 = Homn(Y,? On the other rand we mlsa had the chain aof
equivalences Hornd ) & TTHarrl ¥, ) = Heml(, ), whaose composition
pravided enother equivelence of those functors. Life s much
simpler because thase equivelences are the same.

Exercise w 169) Prove & simnilar theorem and corollary for
products Shew what the isornorphism s, as we did in remark £1.

Representable Functors
We krow the covariant functors HomiK,-) "commute with direct
praducts’, in the sense that Harnl® T¥e] = MTHam(X, Y, and the
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contravariant functors Hom(-, X} change surns into products, ie.
Homrdl @ Yo 0} = TTHomdY o . ¥). Since Hom functor: are 3o Impartent,
we would ike to know if they have any cther charecterstic
properties. Tdeally we would like to recognize & Horn functeor from
its properties. Thus we ask, of & functor FIM—=M, what properties
would guerantee that F is equivalent to s Hom functar?

Definition: A functor FIML— T tueh that far sgme X, either
F = Homf{X,"), or F & Homl(-X), iz called & “reprezentable” functor.

Remark: lf F is representsble, we knew the representing ohject ¥ is
unigue up to iscmorphisre.

Froperties of Hoertm Functors

Consider the covariant Horn functors Hern(X,+). The property of
cormmuting with direct products is, a2 we have stated it sekove, B
rroperty of Lheze functars acting on shfests, Dince we know maps
BTEe eVen mare important than objects, we ask what Hom(X, ) does
to products of maps. You thowed jn exercise #158) that the
isemorphisimis Hom{X, T Tg ) = TTHom(X, 7Yy ) are naturael in ¥, ie. that
the funeters Hom(-,TTT o) & TTHem{-. Y} sre eguivalent, and we
point out now thet the isemerphizms are 8lso natural in the Yo le.
Homi ¥, TT A} o), and TT aHorm{ ¥ {-}e) are equivalent functars from
farnilies {fo ¥ — Zoc} of modules and maps indexed by A, to single
modules and single maps, via the isomeorphizsms

wy Horm{= TTY o) = TMHem(X. Yo ) le given {fg Yo ~Z4}), the
isornorphisms @y and gz identify the map

THfe s NTTHern(X Yo )= TTHemn( ¥, 2 ) with the map

(T )e Hom(X TTY ) — Horm{ X, TTZ5 ). Thus TMi{fe sdeipy = prolTTia )y,
and in that sense "lower star’ cornrnutes with products (af maps).
In the case of o family {fuY —+ 24} inducing the meap Mg ¥ —= T2,
the lsomorphismn 2 Hom(H{ T2y ) & TTHom{X, 24 ) identifies the maps
"tf{x al HDm{E,‘I’}_&TfHﬂm{EEq] and (Tifq:{_]l Hﬂm{}{?]_' Hﬂmt}{JﬂEm}
Lo pzelTTigle = THiya), & similar "commutetivity” result.

Left Exactness
Let's laok further ot the kehavior cf the operation “lower star”
taking f te fs. A netural question iz whether it preserves the

standaerd properties of rmmaps. All functers preserve izomerphisms, so
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we ask what heppens to injective meps? 1 if f{— Y 1= &n
injection, what about §,7 Since these are module maps, it suffices
tg show if g = I, where g2 W then faiglz0, Ifg® 0, there it some
z such that g{z) = 0. Then (fa(gh)z) = (fog)(z} = flglzh) = T, since f iz
injective. Thus f.{gh = 0. end fs iz injective. Thus lower star does
preserve injectivity. More precisely, if £X Y s injective, then for
guery Z f, Hom(2, Xi—Hemi{Z.Y) is injective.

what about surjections? 1f EX—Y 18 surjective, is f+ alweys
surjective? le. for every choice of 2, does every maep hZ=Y have
the formm fa(giz{feg) 2= K= Y7 This is the so called "lifting proklem”,
and it does not nlweays have a solution. Far instance, if fZ—&ns
the [zur jective) cenonical projection, where n @ ? and hifn=¥n 13
the identity map, then h does not equal any cemposition
(fogl:2p— 2 = p, uince the only map g2n—+ 2 is identically =zero.
Thus for every g, falg) = fog = fol = 0 z h, {a is Not surjective
although f is, so lower ster doss not always preserve surjectivity.
The strongest possible true staternent gencralizing the injectivity -
preserving property, is called "left exactness .

Definition: A covariant banctar FM =T is "left exact” iff whenever
o A—B—Cis an exact seQuUEncE of modules, then the assaciated

sequence af modules 0 Fial— FIB]— F(C) is also exact.

Demark: This definition seys left exact functors "preserve kernels’,
in the zense that of A B iz an ernbedding of & ento the kernel of
EB—C, then Fle:Fia)=+FIB) 1z an ermnbedding of FlA) onto the kernel

of FIpIFIBY - F(C)

Theorem: For any module X, Horn( X, 15 ieft exact.
proof; [f 0+ Aa—=EB—Cas an exnct sequence of modules, we must

chowr 0~ Horni¥ A~ Hom(¥ B — Hom(X.0) 1= alsc exact. Since by the
remnrks sbove injectichs are preserved, it follows that

0~ Homi X, A)— Homi ¥, B) iz exact. Thus we only have to show
expetness &t HomiX B, We name the maps x:A— B, pB—C, o that
we have o s Hami¥, A)— Homi{X¥,B), and B. Hom(¥ . Bl— Homi{¥,C). We
rust show ker(pel = lrrfec ey Since (Beocel = (Pomla = (D) = 0, we
cee that ImlocalCkerips). Conversely, if fism wer(ps), ie if palf) =
pof = O, for sorne [X—F, then Il Ckerip) = lmix) = cx{AJCE, by
exactniess of 0= A—B—C. 3Since « 13 ,n jectlve, it gives an
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R, end every meap EM— N, we have Firf) = rF{f)FIMI= F(ND). In
particular, if rM—o M denctes multiplicetion by r, then
Firysr FIM) = F(IM), ie. Fir] s elso multipiication by r.

w173) Check that RormiX -] is a linear functor.

Representability Criteria

“wWe know Hern(X, -} is a linear, left exact functor thet commutes
with direct products. 1 clairm thiz almost cheracterizes covariant
representehle functors, and that all one needs further is the fact
Lhet they commute with "inverse limits", & generai:zation of direct
products, discuszsed later. Arnmlogously, Fi-) = Hom{- X} iz the only
linear functor F chenging sums into products, cokernels into kernels,
and such that F(R) & X in particular, the dum] functor [-)* =
Horn(: R} iz the unique linear functar F chonging sums ints products,
cokernels into kernels, end "fixing B™, ie. such that F(R) = k.

Let's indigete the preof for the dual functer:

Theorem: Azsume FIM =T is lincer, converts cokernels imta kernels,
sumes into products, and FIR) 2 R, Then F{-) 2 Homi{- R).

proof sketch: We want to find, far each module X, 8 natural
isormorphism X Xt = FE). We knew durlity iz well behaved on free
medules, s0 first we represent X as 8 quotient of & free rmodule in a
caoncnical wey: namely, there is 8 cenonical surjective map

Bl —=xX—=0 end if K = K iz its kerne]l, we can map ancsther
canonical free medule onto K, to get an exarct sequence of form
BRR—= @R XD Now epply both {-)* and F(-} to this sequence
and “sirnplify’, ta get the two sequences: 0= X" 2 TIvE S TR ard
A=+ F{H)—~TIxR—~TTKR. the pont is ta check then that the two maps
on the right ends of these sequences, the maps MXR— TR, are the
same in koth casez. Then it would follow by "unigqueness af kernels,
that there i3 8 natural isomerphism X A* = F(X)}. Thiz is wheat we
clawrned Meturality of course must be checked. QED,

Hemark: If in the previous theorem we assume F(R) = 7,
the sarme proof shows F(-) 5 Homi-, ¥},

Exercise #174): (Uniquencss of kernels, cokernels): In the
coramutative disgrarns beicw, if the rows are exact, snd the
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isommorphisn from & to =(A), 50 can deline a la{A)— A, Sinee
f(XICxlA) then g = fe~lepy ¥ — A is defined, and for a1l 2 in X,

foe o (gillz) = aclee1(f{2i)) = f{2). Thus w.lg) = f, and ker{pe)Clmle, ).
QED.

Exercize #170) Prove the converse of the previous theorem: ie n
sequence 0— A— B C is exact iff for all X, the associeted sequence
0— Rorm (¥, A~ Hom(X B = Hom (2,00 is exact. [In particular, f 1=
injective iff for all X, f. 1 is injective]

Exercize w171) (i) Prove If A2 B—C=0 is exact, then for all ¥,
0= Horr{C, ¥} — Hom(P, X1 — Harn{A,X) iz exset. |In particular, if £ is
surjective then for all X, %3¢ iz injectivel

(ii) Give an example of sn exact seguence A—B—0 such that
Ham(¥ A= Hom(X.B1—=0 ic not exact.

Exercise #1721 [f D= A— B> C—0 iz "sphit exact”, ie if the map
B-+C hat & right inverse inducing B = 4®C, then for every X, prove
the sequences 0=+ Homi{X, A)— Hom(¥,B) = Hemn{ X ,Cl— 0, and

D— Hom{A XY= Hom(E X — Ham({C,Xi— 0, are exact.

We prove the converse of part (i} the previous exercize:

Lernma: The sequence A—B—C= 0 15 exact iff for all 3,

D— Hom!(C, %) — Homi{ B, X)— Horm{ A, X) is exact. [In perticuler, fis
surjective iff for all X, F* X s injective]

preaf: [n view of Ex. 160, we prove "if", by cantiradiction. Dencte
the mops by gA— B, and fB=C.

fil If FB— is nat onko, then K C—CATrmdf) = K, iinplies h = B, but f*h
= 0, =o f* Harn{C X)—= HorndB, ¥ it not injective.

(i) If (feg) = 0, then idC—C = ¥ imyplies (g*«f*Hid) = feog 2 0, ie.
(g*eft) = 0.

(i) 1f lrnfg) C ker(f), but cquality does not hold, then letting

hB— B/ lmig) = X iraphes g*{h} = 0. Thus b 15 in ker{g*), but h does
not vanish on kerffi, so h does nat factor through © = Bfker(f}, ie h

iz not in lrmmif*). QED.

There is one other kesic property af Horm functors. "linearity”.
Definition; & covarisnt functer F M — JL s "linear” iff for every r in
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vertical mups are isomorphismes,

DA 8= C—=E8—=a =10
Lol Lo
b= XN—=¥FaZ L =¥ =k -0

prove there are unique maps « A= X, «1:41— ¥ keeping the
diggrams comrmutative, snd that &, «] are isamor phisms.

In the next result, finding X iz a little harder:

Theorem: Azzume F T =T iz linear, left exact. and cornrnutes with
iInverse limits Then for sormme ¥, F{-) = Hormi¥, ),

proof: [¢f. Charles E. Watts, Proc. of AMS, 1960, p5-8; alsa Samuel
Eilenberg, Journa! of [ndian Math Scc, 1860)] Omitted.

§14) Tensor products

When we esked whether left exactness was ercugh to insure that =
functer is & Hom functor, Ernie suggested cormpesing twoe Hom
functors to get a counterexeameple, since such & composition would
still be Jeft exact. Eg. if both F .G are left exact and f is an injection
then Gf) is an injection, so F(GI)) = (F+GI{ is alsc an injection. Let's
ook mt the result of composing twe Hom functors. If F{-) = Hormi(¥,-]
nnd G(-) = Hoern(¥..), then (F¢G)+} = Horm{X Hom(Y.")), This rnight nat
look like & Hern functer, but let's check it against the Eilenherg-
“Watts theorem sbave The cernpesition of tweo linear functors is
tinear, and since both functors comrnute with inverse lirmits so does
the cormpesition. Since we don't know exactly what that rraenns,
lev's observe that this functor cormnrmutes with direct produdcts;

e {FeG) Tl Zee) = Hom(X HamnlY T 2 3} = Horn{X. T o Horni ¥, 20 )] &
Mo Hom(¥, Hormn(¥,24)). The point is that the functor Fod does zatisfy
Lhe charecterizing properties of 3 Hormn functor so it must be cnel

Question; What is the module M (unique up to issrmarphism) such
that Hom{ X, Harm(Y,-)} = Horm(M, .37

The answer to this question will fellew from en epprepriate
reformuletion of the iterated Hom functor. What does an elermnent «
of (Fe@)(Z) = Hom(X Hom{Y,Z}) look like anvwaw? It tekes an
element x of X and rmakes it act like a linear rmap an T. Doezn't thet
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sound familier? Rememker the inner product on & real inner
product spaee M? It allows us ta look at any x in I¥] as a linear map
onm M the map “product with »" denoted <. x> M— R, Jo an inner
product en M gives a rmap M—M* = Hom(M,F). The inner proguct
has thiz preperty because it is s function af twao variables, and when
we {ix one of them, it is linear in the other, 1e. the inner product is
a "bilinear™ functicn <+, M=2M—=F. On the other hand, if o vl — h*
is eny linear map, we can define a product |- -JM=M=R by setting
[x,v] = @{x)y). This won't be symrhetric ar positive definite, but it
will be linear in sach veriable separately. In the same way if

- 12— Z is any bilinear function, then for each x in X,
xin, ¥ =7 will be linear, and 50 « glves a map from X to Horn{ Y, 2).
lLet's write down what this suggests, precisely:

Definition: If X,¥.2 are modtles and XxY is the cartesian product, a
function e ¥=¥Y—Z iz called "bilinear” itf for all X %, in X, vy, in Y,
end r in B, the fallewing relations held in 2

(1) clx+®,w) = olx,yltx(X, ),

(1) wfx,w+%) & wix, whrolx, ),

(iii) efrx, v} = rocle, v} = =i ry)

Natetion' The set of a&ll bilnear functions, or bilinear maps, from
WY =7, will be denoted Bil{X=Y,Z).

Remarks: (i) The definition says that if vou fix the velue of one
variable, the resulting function is linear in the other, ie. 8 function
of two verinbles is kilinesr iff it is inear in each variable separately.
{ii} It follows from (i) that the sum of two hilinear functions i3
bilinear, and a scalar multiple of & kilinear function is bilinear.
Hence the negative of & bilinear function is bilinear and the zero
funcrion is bilinear. Sinece addition of meodule-valued functions 15
associntive and cornmutative, Bil{¥=Y,2) forms an R- module.

{iii) It mlso follows From (i) that if o XxY—2 s bilinear, and fZ2—%W
is linear. then the composition (fead X xY =% is bilinear. le. af fis
lLinear. and « is hilincar, then f«{w) is bilinear. Alsa fa i& linear, ie.
Fulec+B) = Eolecs p) = foee + fop = Fyloe) + fa(p), and falra) = rfsfo).
Hence Bilf s, ) defines & functer =T, teking £ ta Bil{M=Y, 2}, and
taking FZ— %W to f. BU{Xx T E  Bil{¥= Y, W), (We olready know lower

star preserves compontions snd identities)
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The next cheervation is the main point for us;

Lemma: For eny rnodules X, Y. Z, the assipgnment taking « te the
map ¥ alx,«), is an isomorphism @2 BiliX =Y, Z1— Hom{ X Hom{Y Z)).
Mareaver, the isormorphisms ¢ 2 defire en eguivalence of functors
p Bil{X=Y -} & Hormn(X HomiY -1,

Exercise #175): Prove the previous lernma.

Mow we have rocduced our preoblern of representing the functor
Hom{X Hom{Y, -}, to ane of represanting the functor Bill¥x<".-).
Question: 1s there & medule M such thet for ell modules Z, there
are compatible 1semorphisme: ez Bili XY, 2= Homi(M, 27

Te atteck this, as alweays, we start simply by trying to find an M
such that there exists a natural mep ¢ BillXxT Z)—= Han(M.Z). To
make things casier on ourselves, let's forget that the maps o in Bil
are bilinear, and just aszk for & medule M sueh thet any function

a X ¥ =2 induces a linear map g{x)M—- 2 We know from the
theary of free modules thet for any st 3, there 12 & module with
this property with respect to functions ocut of 5, narnely the free
moduie on the set 3. So let’s hegin by taking vl = Bx.y K, the fres
rmadule with besis XxY. The map ¢ teking a hilinear function

e Xx¥—Z to the induced homomorphism gle) 8.y R— 2, yields

i Bill¥xY 2Y= Hormn(,7) This iz 8 start. “We knew howewver that
although ¢ 15 injective, it connot be surjective, sinee every function
out of K=Y, not just bilinear cnes, correspond to homomerphizsms on
it which homeornorphisens in Ham{lv 23 correspond ta hilinear
functions on X= Y7 If they are the ones that venish on some
subrnedule K of i, we could med out b that submedule and get &
quotient module whose linear maps will correspond one-cocne with
bilinear meaps! Fortunaetely, that is just what happens.

Recalling that the "characteristic function” ¥ 9 of & et 5 iz the
function which equels one on & and iz zero elsewhere, for each
vlement (%) of MxY let us denote by #(x,y) the function XxY—+R
which equals cne at (x,y) and is zero elsewhere, Thus Wix,v) is the
basis elerment of BX<x7 R corresponding to the element (x,v) of Xx¥.
[In the pest we also denoted this by e(x )] Now we can answer the
question just posed:
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Definition: Let KC M be the submaodule genereted by the funections
[ (e o) - XDoyd Ry Ryt y) m R0y %,y _

W lrx, vl R ACRE Wi ryl TF EASTRLY }, for all x,% In ¥, ally,vinY,
alt rin R.

Consider the quotient module M = /K, and the netural map
0¥ T =W, compased of the injection of ¥xY anto the basis of v,
follawed by the canonical projectlon f1— . We claim the linear
maps out of M, 1e. the linear maps out of T thet vanish on K, are
precizely those induced from bibinear functions on XK=

Lepnrne: with the definitions above of K. W, and 7 X=¥ M, for
every Z, the map m* Homi v, Z) — Bill X =Y, 2) sending FM— 2 ta
(foar ) ¥Mx¥ — Z, is an isornorphism.

proof: First note that since mix,y) = wix.y), the dehnition of the
generators of K exactly mekes m & hilnear map Hence following o
by & linear map Eives a bilinear map, sa #¥ iz well defined. Since
wtief+be) = laftbglem = alfort e hbigem) = alp*il+thin gl w* is inear.
On the other hand, if & X=Y 22 is hilinear, and npmj-ﬁfz—-z is the
induced linewr maop, then for cach basis elernent W{x,y). we have
Gled(¥in i) = =ix.y). Since o i3 bilinear, wlnr .yl = a&ix, yitalxyl,
so plecd{ o (x+2,w))= plaHw(x, vl * wplee WK,y ie. ple) maps the
first generatar of K above to zero in 2.

Mareower, «irx y) = reix,yl, 5o wlee W wirx, vy} 7 repfoud (% (), and
vhus pie) sends the third generator of K mboue ta zero as well
Similarky, pis) sends svery generators of ¥ to zera in Z, hence maps
the subrmodule K to zers in 2 Thus fer every khilinear map

o Mu Y — £, Lp{m].ﬁ’i—*z induces a unigque lInear mMep foo M —Z, such
that ¢« = feem. Thus the correspondences From * (), and wr—+fo, are
rrutually inverse isomerphisms betwesn Horm( M, Z) and Bil{Xx=Y ,2Z).

QED.

Notation: The moduls M constructed abave, had nothing to do with
7 wnd has the property given in the previcus lernrmna for all Z, hence
we denote it M = X@RY, or simply WY, if the ring R s known. The

cings in A®BY of the hasis elerment Wix vl of IV, iz denoted x&

Terminclegy: The R-rmodule R@RY = XK@Y, is called the "tensor
product” of the R-rrnodules X and T.
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Important Remarks: (i) The notation X®Y unfortunately supgests
that ¢very elerment hes the forrm %@y, As we zee from the
definition nowever, the elements x8 vy cnly correspend to the beasis
elerments of ﬁ“I and X@&Y iz a guotient cof vi. Hence the elements
x2y are cnly a genersting set of X8 Y, and the general ¢lement has
form Laj {xjeyjl. Try nat ta forget this; doing so i the basic
rnistoke 1n the subjest.

{ii} The steternent of the previeus lemma is the whele paint to
rermmernber when dealing with linear maps out of the tenzor product
K@Y e they are equivelent to Bilinear maps cut of XxY. Indeed
thit is essentinlly the enly way we have to define maps on X8Y.
Since the element: x@ v of X@ 7T are not independent, but only
gERErstors, it ir not zo straightforward to define s linear map on
ABY by telling wheat the map 15 supposed to do to those generators.
WwWe alsp have to check that pur proposed mep kills all the bilinesr
‘relations” of form (xr#ley - xsy-Hey, ey Fl-xov-xe ¥, (reley-
rixeyl, and xelryl-rixey), used in defining the subrmodule K which
was modded out” above to form XBY = M/KR. The way to do this is
elwewvs to define first s function on XxY, e =¥ 2 Z then check « is
Elinear, and finelly deduce that & induces a unigue linear map

@ ¥@Y—2Z such that Zlxev) = «lx,yv), for every (x,v) in X=7,

Corollary: The module KEY represents the equivalent functeors
Homi(X Horm(Y,-)) & BillX«Y,-). le the universal bilinear function
mRxT 2 HEY induces competible isormarphizms for all Z,

m* Hom(ZEB Y. 2] = Bil{Xx¥Y.2).

preef: Suppose g Z=% is a linear meap, We must show the
izamorphising 7% Hom (K@ 7Y 21— Bil{XxY,Z) ond

7* HornlH @Y, Wi— Bl XY, W), are compatible with the meps

g+ Hornd XM@Y Z) s Hom{X @Y, W), and go Bil{HxY,Z) = Bil{X}= Y, W),
But if X8Y 22, thiz says only that (geen*Jif} = gy (fonm) = gofen =
mrigelh = w¥(gs{fl} = (n =g )f), ie. as usual this is merely the
assacietivity of cormposition. QED.

Exercise #176) (i) Prove, for x.¥, in X, v.¥ in ¥, and r in R, that
(w+3¥]ey = xey+ Xey, xal{y+T] = xey + x2 ¥, and rixey) = {rxlay ¢
w&(ry) i XORY.

(i) f M — T is linear, and ¥ any elerment of ¥, prave the map
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Mo N&Y where fm) = f{rm)ey, is linear.

Properties of the Tenser Product Functor

The main problem facing us with the tensor product is computing it
Ie even after studving the definition, most pecple will have noe clue
what the module X@RY iz, although they mey think they know

gquite well what ¥ and ¥ are. For :nstence, what 1s RB 707 or even
Zn®722rn7 This is to be expected since X@7 iz a quatient of a

gigantic free module by a large submedule ef very complicated
definitions. 1t is not even cbvitus when x& vy 15 zero for given
elerments x,y7 of ¥ and Y, much less when Lixje v 0. In sarme sense
thiz snystery never cntirely goes away, but wenderful strides ean be
rriade in caleulating with tensor products by establishing & few
sirnple properties. The situation is & litt]e like that presented by the
derivative in beginning calculus: the definition iz e bit cumbersome
but a few rules meake computation of concrete examples very
practical |Maybe an analegy with cornputing entiderivatives is
more accurate] So we begin by asking how tensor products act an
the fundemental canstructicons for forming modules, such as direct
sums, submodules, and guetient meodules. 1t turns out tensor
product: commute with direct surns, and with fForming cokernels,
bt not whith forming kernels. Thus in some sense they preserve
quctient abjects but not subkobjects, and even the "preservation of
guatient objects’ must be understood property. Moreaver R@R{) is
equivalent ta the identity funetor, zo combining this with the direct
sum property, cne can ot least calculete the result of tensoring with
direct surnsz af eyelic meodules, such ss free modules.

We usually fix one varisble in the tensor product to get a functor in
the other variskle. Eg. for each rmodule ¥, the functor (-}@Y M — T,
tekes ¥ to K@Y, and tekes FH— F{ to (Fel1)X@ = i@ Y, fct. Ex. 164
below). wWe want to derive sarmne of its kasic properties: eg. right
exactness and comrnutativity with direct surns. Along the way we
will prove ather fondernental resultz, inclading "cormnmutetivity” and
"mssociativity , and derive consequences such s the commuteativity
of tensor products with homomearphisrnz of free modules.

One can else cannider @ as a functor of two variables.
Exercize #177) If M — ¥ and gN—7 ore linear maps, prove there
is & unigue linear rnup fepMEBEN—+X@Y such that (feglmen) =
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fimdegin), far oil m in M, nin M. [In particular, this holds if g =17)]

Tensor product commutes with direct sums of medules
Lemnmma: For every madule ¥, the furcter F{+) = (@Y comrnutes
with direct surns. In particular, (B} Y 2 8(Hg®@Y) for any
farnily (Xt

proof: We give a fancy proof of this, why not? If {Hg) is & family of
modules and 7 a module, we heve described equivalences of functors
Hom{{8 X 1@ Y, ) & Homi® ¥ Homi Y -0 2 MHom(K o Homi(Y.-)) @
MHorm{ X ® Y. ) =2 Hom(E{Xa ®Y), ). Since (BEa)@Y and (X8 Y)
represent equivalent functors, they are isornarphie! QED.

Femark: Chesing through the equivelences above shows the
iscrmorphism to be the map teking {xxl@y to {xx 8 yl, as expected.

Exercize ®#178) Give the ususl proof of the previous levnma; 1e.
show the function 8 (@ X )= — B(Hy@Y) taking Uxel,v] to (Ko vl
it bilinear, and induces an isomorphism 8 (BXRgl@ Y+ B{XL @)

&z usual, it is even more important to know how tenser products

oot on rmaps.
Tensor product comrnutes with direct sums of maps.

Lemntia: Let {fo Mo — Wi, and g¥— 2, be module meps sand

B i g R @Y+ Bl &7} the somorphism in Ex. 165, Then

G (B, Sg)) = (Bl 1@g.

pracf: The map (Big)@ (@ o Ma )@Y+ WRZ, takes {xxlay to
(Efaixec )@ gly), whilt the map @*(8{f,@g)) takes {xgtey 1o

Bifo Bgl@{ng ov)) = Blig@gllixgevl) Diiu(xaxleglyl Since in
WET, (Lfnlxalaply) = T{fyxa)@glyl), we 588 aur bwo maps agree
on the usual generators of (X )®Y, hence agree everywhere.
QED.

Tensoring with R is equivelent to the identity functor
Lermnma: For any R-rnadule M, RS RN = IV

praaf: The eguivalences Harn(R® M, -} = Ham(R Hom(l,-)} &
Horm(M, -1, vield an isormorphizrm R@M 3 M. GED,

Remearks: (i) Chasing the equivelences shows the isomorphism is
the map taking rem ta rm. The usual proof is to shaw the function
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GxWl— M , deflined by (r.mp—rrm , iz bilinear hence mmduces e lincer
mep @ R@M— M, with inwverse the map M—REM, m—1em.

(ii} The isomorphism & js natural in M. ie. given fM— N, the maps
(Bipge({1ef)) and (feCBpt) are egqual from FEM—M, since
(Ene{lefl)irerm) = rflmnl = f{irm) = fi@pire )} = (FeBpalire ml.
Hence RE&{+), ke HamiE, ). 1= eguivalent to the identity functor,

Gorellary; Tensoring with the free knodule @ AR iz eguivelent to the
direct surn functor B4 ie. the noturel rmap B PRI P X,
vaking {radex to lrgaxi 15 B0 isormorphistn, and given XY, the
map (lefl (BRI K@ L RI@Y corresponds to (e fl B = BY,

under the womarphisms 8% and By ie. (Evylaliaf} = (Dxi*{exf)

Exemples, Q&gzZI™M = QI Cc@pRM = LI

Application to invarisnce of the rank of fres modules
Tenser products now render “mechanical’ an argument we have

usecd before:
Corollary: The renk of o free maodule is well defined over any ring,

even when the rank is infinite.

proof: We reduce to the case of & vectar space, (for which see
appendin). Let fii= BaREpR=Y be an Li-izornorphism, and Jet ICH
be a maximal ideal. Then f induces en F-izomorphism

(fel) ®E{R/)I—Y®(RA), hence @ a(RAI = BA{RBR/ =

(B aRI@RA) = R@D{RA) = YRR 2 @ R{RAA). Then, since B oa RS
= @dR(R/]) iz en R-isemorphism of madules whosze annihilators
contain 1, it is also an RSl vector space isomorphism. Thus A = B by
invariance of dimension of vector spaces. QED.

Y

"GCormnmmutetivity” of tensar products:

Lemma: For all X, ¥ we have ¥E@Y = YEX

proof: The follawing functors are equivalent: Hom(H@ Y,) =
BillX=¥, ) = Bil{¥=X,) = Horm!( ¥ ® ¥,-). QED.

Lemarks: (i) The equivalence Bil{x vy = Bil(YxH,-) induced by
nterchenging vaneakles induces the map XY= ¥Y&2X, which thus

takes x®y to y@x, as expected.
(ii} For maps X Z, g¥—'W, ([ £}, H@Y—Z@W corresponds ta

(gofl- Y@HI—WaZ under theee sornorphisms.
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Corecllary: Tensor preoduct cormmmutes with direct sums in both
varisbles, ie (B AH)D(EBEYp) & FABR(Ha®Yp) 5§ B AxBKaxYpl

Remark: For meps, given {fo Ko~ Wl and {gaTp—Zpl,
By plfe @gpl correspends to (B o fo )@ (B pep) under the
lsgrnarphisms 1n the corcllary.

Application: Computation of tensor products of free modules.
Corollary: [f X = @ AR, and ¥ = B R are free module: on the sets
AR then (AR {BRR] 2 H AR R is free on the et AxB. In
particular, the rank of X87Y iz the preduct of the ranks of X and Y.

Remarks: (i) The mapz (B 4RI (BpRI- B ARG R 2@ AL BRER)
teke irgl®{rpl—{rg e{rpiiv {rg @ rpl; hence the isormorphism
(PARIB(ERR)—+ B A.BR tekes {rglelrplirgrpl. Le {raleirpl goes
to {r{a p)t where ria p) = rerp. In particuler if eq, ep are standard
Easiz elements of (P aR) end ($pR), then under the isoemorphizm
ebove the standard basis elernent eg p of B AxBR correspends te
ex®ep in [(BaARIS(EBR).

(i) In perticular, if 5 = {x;} is & basiy of the free module X, and T =
{FJ] is a baosis af the free rmodule 7, then the set © = {Hiﬂ"!;_j, for »j in
2. vjin Tt is & basis of the free module X@7Y.

(iii) Given rmaps fe R—M taking 1—xy, and gpR—7Y taking 1= va,
we get maps @fe B R— DM taling teking eg ™ »e.8nd egp P pk—Y
taking ep— yp. Applying @ {efylelepgpl{® sRI@{BRRI-MEY
takes Bq Gep— He @ yWp, and in the other order e{(fasgpl® 4 .p(RER)
= Pa-pBlRI=MEY alsc taker e p+ g ®yp. Thus (digle{sgpl
corresponds Lo El{!‘.;,;@gg,:l‘ ms clmirmed above.

Mext, cne rmare desirable property for a "product” to have.
Associntivity of tensor products

Lemma: Far all X.7. 2, we have X@([(Y@Z) = (XB2Y)B®Z.
proof; These functors are equivalent: Horn{A G (Y &£y, <) =
Homi{ X . HomiY 82, -)) 2 Hom!lX Hom(Y Hem(2,-)) =
Horrf{¥®&Y Homi{Z,-1) =2 Hom{(X&YH&Z ). CGED.

Remarks: (i) Tracing the equivalences shows ze(yezl— (e viea
(i} For rmaps {X—M, ¢ ¥ =N, hZ2—P, the induced maps
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fa[g@-h}'?{@{‘f@ﬁ—‘lﬁ@[ﬁ@m and ifegleh{x@ V@2~ (MENIEP
slso correspond vie the associabivity izornorphismes asbove.

(3ii) By (i) the isormorphizms in the lemme are natural in X, ¥, 2, but
the seme is true of sorme cther rmore eccentric isomerphisims, such
as the meps YRITETI - (X@YIOT toking xe{yeza) to -(xe yigz. The
problern with this latter chaice of neturel’ iornorphisms iz that if
we compose themn in the follewing sequence: (REYIREZ&W) &
(XBYIADBW = (XBIYEZNEW = X{(TRZ)BW) = ¥R @28 W
= (%@ YI@(ZEBW), the composite (KB V] @(Z3 W)z (MBS YIR{Z&W) s
riot the identity, but —id. This is an example of a family of

iscrnor phisms which are not "coherent”, even though they are
vmatural”. Of course snly a very BCCENEFIC pErsch would choese the
isernorphisrms this way, but sometimes it might not be so abvious
which izomer phisms will turn out to be "coherent’ |Dave Penson
kindly pointed out this interesting subtlety. We might perhaps
defime a family of meps ernong & farmily cbjects to be coherent iff
there iz orie map given for cach ordered pair of objects, the map of
each chject to itzelf is the identity, and the farmily of meps is closed

under cormposition ]

Modules of n-multilinear Meps

Another epproach to essociativity is to notice that both X@{(V&7)
and M@ TIRZ reprezent the functor Hom! ¥ Horm(Y Horn(Z +}) =
(trilinear maps on X=¥=2Z). Hence the maps {x,v.zi+xe{yez) end
{x,y,z}r—r{nay}&z rriust induce netural isornerphisms between thern.
It iz useful to have the concept of higher rnuttilinear meps available,
sinee some Very impertant examples of them exist, such a3 the
triple product v{wxu) from vector calculus, the deterrninent, and
the curveture tenszor in differential geometry. Because the
copstructions mnirror those for bilinear maps, wWe enly zketch them.

Definition: (i) Given meodules #1,...¥n, T, & funchtian fq=. x¥n—Y
ie - multilinear, or simply n-linear, iff it gs linear in each variable
separately. For imstance, f{nr,.... W) is linear in the first veriable, iff
for =]l choices of w2, ., wn. the function W{— R defined by

v ez, | V), 13 linear

{ii} WOTE: This does NOT say thet f{v,uz,....,Unzlﬂf;;,vg,_.. up) =
H(u,vz,.-_,unlﬂfG,uz,....,vn:‘}!! Rmther it irnplies that
ffu,vz,....,un}l+f{x":,vg,....*unll = flwruv. vz, vnt. Simdarly it does oot
say thet rofv,vz, ., vnl = flr-{w we...., vl rather it implies that
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reflu vy, . vwpt = firv vz, L vnl e the additicn and multiplication
which aceur 1n the "source’, are not those in the Cartesian produst,
but rather the operations 1n 1.

fiil) We dencte the set of n-linear maps X1=.cXn— 7Y by
I =¥ Y) by ZREGYY H ell =X, and by LK) if alsa Y=E.
In every case, LTWH1x »Xnp Y] is an R-module, with operations
taken pointwise in .

{iv) If ¥ — 2 is linear, and gX1=. . 2¥n—Y iz n-linear, the
cornposition fe(g)Ni{»..»Xn— 2 is n-linear, and the resulting map
fo., LIUE = =X YT =LIP(H .. =X 2} is linear. Since as usual, (f<h),
= fyoha, andids = id, IN{Xy1x. =¥y ) iz & functor =11

Exermnple: Under the izameorphism Matp({R) = Rx xRN given by
ccnsidering s matrix as the sequeénce of 1Ls rows, the determinant

function det Matp{R)— R, corresponds to an elerment of LN(RM).

Theorem: The functor TRX )~ xXp+) iz representeble.

praocf: We irmitate the construction of the tenzar product of two
modules. le. begin with the free module F on the set Xix  xXn,
Then defin® tne subrmeodule KCF generated by the multilinear
relations and set 1@ ... By = F/K. Thu: X{@ _EXn 13 the R-
rmodule generated by the symbols x]j@. @xp, for all cheices of »j in
¥, and zatisfying the relations (x146 _&lxj+%jle . exn) =
(x1% .. &xi® . ¢xn) + (k1. . &Xje.,. @xn), and rix|@ &xj&. __&xn) =
(%1€ ..¢r%,®...8xn). Then we proceed a:z hefore:

(i) The function B:Xix  xMpn—2XN1@ @ Hp, defined by

fxq,. . Xxmixy1 ... exn), iz n-linear.

{ii) For every linear function fX1® . @& Xn— Y, the compesition
{(feB )} M1 wHn—Y, iz n-linear.

{ili) Every n-linear function X{=...»Xp— 7T mduces a linear function
F—=Y which vanishes on KCF, hence inducez a linear function
i@, @xn—Y.

{iv) Consequently, for every ¥ the n-linear function

iy e. wEp)— M 13 . B Xn, induces an isomorphizm

B* Hom{¥1@  @Xn. Y= LNXEi=. x¥%n 7)., which 15 natural in 7,

QED.
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Exercige #179) In the previous thecrern, i F ois the free module on
the set = xXn, write down the gerneretors for the submodule KCF

of "mmultilinesr reletions” such that X1@ .8 Xp = F/K, and prove
that the function BX1x. xXp—=¥X1® . @¥n, defined by
{21, .. xg)=ix1& @xgl, 1z n-linear.

Corollary: Every way of ssscciating the product A1@ .. &@Hn, such
as ¥1®1{Xz @ .. ®¥n), is cancnicelly isernorphic ta K18 . @ Xn.

proof: They sll represent the same functor L1« _ _=Xn:-1, QED.

Corallary: Every way of perrmuting the factors Xy Xg(i vields an
isomorphism X18® .®Xnp = Xeo{1)® B Xain)

prock: The functers EN(X = _xXp;-) and I 1ys  x¥gin)-) are
eguivalent. QED.

Corollary: The tensor product X1@ 8 Xn commutes with direct

suIms in each variakle seperately.

Right Exectness of Tenzor Preducts
The other fundarmental characteristic of the tensor product, after

cerarnutativity with direct surns, is right exectness. Since tensor
products are defined a3 objects reprasenting cornposed Hom funetors,
it should not be too surprising that we intend to preove right
exactness of tensor products by expleiting the left exactness af Hom.
"We will need to be tlear about what happens to meaps when we
replace & tensor preduct by = repeated Hom functor, In particular
we must verify that the eguivelence Homd{X®&ADM) =
Hom({ ¥ Harn( A M), which we know s natural in the veriable M, is
netural also in the variable 4. This is quite believable, but we prave
it a5 an Mustration of heaw to trece natural eguivalences. The proof
of the next lemrna it & bit tedious, just writing down same entirely
predictable maps, camposing them carefully two ways, and
comparing the results. At lesst 1t is part of the general theory of
tensor products and not specific only to the fallcwing thearern.

I+

Lemma; Composing the isornorphisrmne Hom(X@ A M) = BillK- A1)

Horn{ ¥ Horm{ A M)} described ehove, vields o ratural equivalence of

contreveriant functors Hom(X® {0, My 2 Hom(¥ Homi- M)

proof: For sach A, g 4 Hom(HK & A M) = Hom{X Homia, M)} takes the
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rmap » topain) = X, where Z{z)(e) = alxen) ‘We know jfrom ex, 163
and the defining preperty of tensor product], that g o is an
isormorohism. Let’s recell the meaning af naturality n A

On the one hend, piven A= B, the functer X®(-] yvieids a unigue
map (1eflXB A X@B such thet (1ef)(xea) = xef{a). The functor
Hern(- M) cpplied to (19} then induces the unique map

{(tefl* Homf{Z @B M= Hom (¥ & A M), zuch that (1o (x) = »e{lef),

On the other hand, Hornl IV} applied Lo f vields the rmap
i* Hom(B M)— Horm( A, 1), where §%(e) 2 a¢f. Then appiving
Horm(X,-) vo {* vields (f*), Hom (X HormiB, M)} — Horad X Haornd A, M),

where (f4), (i) = (frap)in] = £ (pixd) = Liwisf.

The goal is Lo show ga Homi B A M) = Hom(X Hom{A. M), and
whBHom(X & B M) =+ Hom(X Hom(B M]), as givenn nhove, are
compatible with the maps (1&f)* end (f*),;. [ we claim the

dingram below commutes:

(1®f)

Hom{ X=8,M)— y Hom{ X B A M)
1 g, Lo,
g f a
o X, Hom( B, M) > Hom( X, Hom{A,M))

To this end let A XBE—M, and consider |({pa-(1a0*3ph(x}(e) =
Mpadueliefld=zlla) = plxeffa)). In the other direction, we have

[({f* Yy eqppilphiGibe) = leplpilaleflia) = @R{pixlii(a)) = uixeHall
Since the results are the same, we are done, QED,

Now we get right exactness af X&) easily.

Theorem: !If A=B—=C—0 iz nn exeact sequence, and X any meodule,
then the sequence XEA-KAPB2HBC -0 i exact alsa,

proof: By the converse of Ex 160, proved shove, it suffices to show
for all mnodules M, thet the =equence
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D—‘Hﬂm{}i'ﬁﬂ,M}'—'HﬂmH{@ B W) -+ Hernl A8 A MY 15 exact. BY the
previous Kmme and the next exercise, this last sequence is edact iff
the following sequence 18 exact

i — Homn! ¥, Horm(C M — Hnm{}‘:,l'!c-m[E-,M})—'Hﬂrnf.}{,ﬁomf.ﬁ,ﬁﬂ}.

Since Homls,M) changes right eiect sequences intn left exact anes,
and Hem(¥, -} preserves left exgctness, this last sequenss is exact.

Exercise #1801 1f, in the fallowing cornmmutative diegram, the
ertical maps |re 158G OT PSS and the top row iz exact, then the
haltom row is also eWact:
DA E-C
Lo L
= X—2¥F—sL
QED.

Cargllary: Far any ¥ the functer w@i-] 15 right exact.

Ore mare Teiult 13 Very Lseeful for computations.

Corollary: For all B-rmeodules M, and ell 1deals w CR, there iz an
isornorphisrn M=M= M@ plRic], taking %] = x&fl].

proof: Capsider the gxact sequencs - x+R=*R/ix—0, and tensor it
with M, getting the sxact cequence MEa— W R ME{R )0,
Thus M@ (R/ax) & (MARTmiMB ] Fince M@ k=M by the map
teking Lmer)— T, thit irnplies M@ R = MAmiMex— My =
M/, The isornor phism /el — M (R a) thus is induced by the
rnap M—TMa8R— MERFe taking x to xe[1]. QED.

Exercise ®#181) Give an elementary direct proof of the prewvicus
corgllary as follows. Define the linear rnap i -MBR 2w by flxd =
x@[1], end prove there ¢ @ unigue induced map fPlf M= VB RS o
I the other direction, defins an sppropriate {obwious) kilinear
function MR/« =M/ oM, which induces s linear map

g.MERIa—'Ma"uM, which is inverse to f
Corallary: i d = gedin,m) then Zo®2Zm = &4
Examples: IlzﬁEIIEIEE{D}: {133112‘1&(13::23}3 26123 (21203,

Dernark: ln particular if non are relatively prirme, and M is any
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atelian group, then the cnly hbilinear function §ZasxZm— ¥ iz 20

Corollary: Crie can explicitly campute the tensor product, over Z, of
any two direct sums of cyelic Z-medules, hence in principle of any
twa finitely generated akelian groups

Exercise # 182} Prove the results in the previous two corellaries.

Queztian: Do tke results af the provicus tweo corollnries generalize to
ather rings?

Rernarks: (i) Exercize 169 shows the computetional results in the
previous three corgllaries could have been preved earlier, in
particular before right exactness, which would have rmade thermn
seern tnere clementary. I chose instead to empheasize the
fundamental importence far tensor products of right exsctness and
commutativity with direct sums, by showing haow the other
properties flow rmturslly frorm those bwao,

{ii) In fact if F(-) iz any right exaet, linesr functor, thet comrmutes
with direct sums, then F{:) = F(R)®(\) |Eilenberg-Watts, 1960]. To
=ketch how the argument goes, let M be any rmodule and represent
i ez a cokernel of 8 map of free modules as before:

PR EMR-M=0 Apply first F(.), then FIR)@(.), to pet sequences
egquivalent 1o the fellowing cnes: BRFIR) 2 @ pFIR) = F(M)— 0, and
EYFR) = @ FR) 2 FIRIBM—0. Then show the two rmaps &t the left
ends of these sequences are the sames, and epply uniqueness of
cokernels ta get F(M) = F{(RI® M. Finally check naturslity in M.

Tensor Products of Homoroerphisms

The netural map which tensors two linear meps together toa get one
linear map on the tensdr product of the domains, is an isornorphism
when all modules invelved are finite and free, and it vields several
standard isomnorphisms that occur freguently in the literature. Tawa
of the most common special cases (actually equivalent) are the
isomorphisras M* @I 2 Horn(MN), and MP@N* = (MBNI* . walid in
particular for finite dirnensional vector spaces M,N. Sthce the
rmodule of homormnarphisms of two finite free rmedules iz also free,
this distussion is & $pecial ceze of the fect that the tensor product of
two free modules is free From thet point of wew the followring
lerttumea is & carpllary of results already proved, but 1t scoms
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necessary for ciarity to spell cut agmin the explicit maps: which
ncour in the present situation.

In general, let 4,B,CD he meodules, lat f ke in Hom{AB) and g in
Horn!C, D). Consider the function AxC— B@®D which tekes (a,c) Lo
f(a}egle). This is immediately seen to he bilinear, hence induces a
linear map T{fgla®C— BAD, such thet Tifgliaech = fla)ewplc). Text
consider the functian T:HDmE&,B}ﬁHnmiEJD’JMHnm{ﬁBC,BEDL which
tmkes (f.g) to the map Tif,g). Then T 15 ilimesr asz well, hence
induces the linear map T:Hﬂm{ﬁ.E?@HGm(C,D:""Hﬂm(ﬂ@‘:,ﬂ'@'ﬂ] such
that Tiigg) = Tif,g) [Mote the possibility of canfusion in neotation,
since it is pisusible to denote T(f.g) aizo by fBg, S We did in Ex 164
O course since feg and Tif,g) correspond under a netural mep, it
rray seem less important Lo dizlinguish thern, at leazt in the casze
where the rmodules are finite end free]

Lemmae: The mep T Hormn(A BJ@ Horm!C, D~ Horn(A®C B&D) zuch
that Tifegl = T{fg), is an isomarphism, when & B.CD are all finite
rank free moedules.

proef: It is simple ta check thet a basis goes Lo & hesiz as follows: let
lee gt ip;t. {¥t}. (Bs) be beses of 4 BCD regpectively, and define g i}
in Hom(a, B), {est) in Hom(C,D), by setting wijloj) = Bi, Pstlfe)=5s,
end (jjl= kh=D= etfyy) if kzj, uzt Then {epiji. {Lst} are hases of
sornlh B and Hom{C,D) respectively. (One way to see this ie to use
the heses of & B, say, to construct an ispmor phism between
Hornlé BY snd metrices of en appropriate zize. Then the lingar map
1) has the metrix with (i) entry 1, and s]l others D, hence iypij)
inrin m bmsiz of all matrices,) We know too trom pur discussion of
tensar products of free modules that {e j@ Y], and (8y%8g) are bases
of ASC and BAD respectively. Consequently a basis of
HornlA®CEB®D) is gven by {nisjt} where nisjtlejein = Bjess, and
figjt vanishes on cvery other bozis elernent. Similarly, {npi_j@tpsﬂ 18
hasis of Hom{ABI2HomiC, Oy, Naw T(f.pijﬂq.-sﬂ{mk@'ﬂu} =

pijleck )@ Letl¥u) = 0 unless k = j, u =t when it egquels pigbs, Since
T takes the basis {exjﬂ-h't’a to the basis {T']ngt], it iz an izormorphizm.

QED.

b1

Rermnarks: (i} This result gives a tensor product operation on
mutrices. Eg if the free moduies ABCD have ranks m, n, P, 9,



respectively, then f in HomlA B, g in Hern(C,I) mey be considered
rnetrices of dirmensicns nxm, gp respectively, and Tieg) an ng=mp
matrix  The rows of | T(feg!] are indexed by the pairs {i,s) and the
colurmnns by the pairs (§,t), which must e ordered in some way to
vield & matrix, but however that is chosan, if the () entry of f is
%1y and the (st} entry of g is yst, then the ({i,2),(j,t)) entry of
[T¢fe2gl] is the preduct xjjyst Fer example, if we use the
lexiccgraphical ordering on pairs, then we hawe

ax gy bk by

A '@[x }I] o |0 o , l'where, in the notation of the
i} ler oy ey Ay

ez ew dz e
theorerm, the right side would be denoted as T of the left side}.
For example, the third row on the right is, in the lexicographical
ordering, the (Z,1) raw. Hence the entries rl] corne fram the Z2nd
row of the first factor matrix and the 1st row of the second fector
matrix. The third entry in the third rew, dx, i3 in the (2,1} column,
hence itz factors cormnme from colurmns: 2 and 1, respectively, of the
factor matrices on the left side of the equetion.
(ii) The cormnplexity of this sort of calculation may be responsible for
the fesrsome reputation which "tensor analysis” once enjoved. In
ancient times, books on the topic were filled with lengthy formulas
laden with indices. Learning the subkject meant meamorizing ruies
for meanipulating those :ndices. Nowadeavys, confranted with the
staterment that such end such guantity is "a tensor”, | hope we will

understond this to mean sirmply the quantity hes certain linearity
properties with respect to cach of its cormponents. OF course skill in

their use will still reguire an akility to celculate. In this regerd,
rnate that we aere usually shie to recover explicit calculations from

our asbstract epproach, provided we alwavse know exactly what the
maps are that yield cur isamorphizrmz. When we know the meps, &
chaoice of bazes gives us s calculation. Thus we must resist the
tendency to remnember only that certosin meodules are isomorphic,
without knowing what the isomerphisms aere. Fortunately the meps
are virtually slways the simplest cnes we can think af.

Carcllary: If MW are finite free modules, then M*@N = Hern({M N},
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proof: M* = Hermn(R), and N = Hoern(R, M) sa the lernma gives
* &N = Horrd M RIS Hern(RLM) 2 Hom(MSRBREN) 5 Ham(M, W)
Tracing the izomerphizm shows that the mep M* BN HMem{v N
tekes aon to the map sending m o a{min. OED,

Corollary: If M,IN are finite free modules, thep M*@N* & (MAN)T.
proof: Using the lernma, M* @MY = HomiM,R)®Hom(N,R) =
Herm{WVI® N RER) & Horm(MAN RY = (ME&N)* Tracing the
isornorphisms shews that xep in M*@N* goes to the map toking
{men) to Mmiuin) QED.

Exercise # 183) Aszsume M N are finite free modules.

(i) Verify directly that the rmeap M* @I — Hom(M N} taking a&n Lo
the homomoerphism sending m to a{mJn is well defined and an
isornerphizm,

(i3} Do the zarmne for the mep M*@N* — (MESM* tsking xen to the
functione] whose value on {men) 15 a{mipind.

A Word Akout "Flatness’
It s very useful to know when a module VM has the property that

PAB(-) 15 left exact az well as ripght exact

Definition: An R-rmodule M iz catled "Flat” {ar RE-flat), iff the functer
WEE-Y is exact; ik iff whenever 02 A—=B—=C—0 iz exact, then the
induced sequence Do MO A—-MEB-MSC—0 1z also exact.

Remark: {i} It suffices for flatness of M, to check thet whenever
O— & —B is gexact, then D~ MG A-DESE 1= alzo exact.

(ii} In mlgebraic geometry, maps correspanding to flet slgebras have
the property that sll the fikers have the same algebraic invariants,
zame dimension, stc.. FPerhaps the term "fint" iz a reference ta the
nppearance of such & map, viewed as a fibering of the source space
aver the target space, since the fiker dimension never jumps up’ at

special points.

Lemma: Every free module 1z flat.

Proof: wWe may assume M = @ AR, since an isomorphizsm M = @ aR
induces an equivalence of functors M&{-) 2 (B ARIS{-). But we
already know that (B aR)@(.) iz eguivalent to the direct sum
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functor, and a direct sum of injections 1z injective | e Assume
fX— 7 it injective; then (12fl{@ L RIGX =B RIVY is injective iff
(@B X~ (B oY) is injective. But for the latter map,

(@ E0 e d) = {Flxpelt = §0g ), iFf gl =0 for all o, 1ff ke =0, all &,
since f iz injective. Thus {# o f) and hence {19f), are injective QED.

I fact @ 1= a fat Z-module, but we prove only a partial resait
Lernma: [F R = Z, B is a finitely generated -module, and 0= A—D
iz exact, then Do DRA-DQEE 15 also exact,

proof: Let f:A— B ke injective, and consider (1) 0@ A-DBOBE. We
must show if (1&f)(Z; (xi/vii®aj) = 0, then (I {xi/vy)eea) =0, First
choote & cornimon dencrminator v for the fractions x,/ vy so that we
may assurne all v = . Then we have (Z] (x/vilen)) = (Eilxi/wiomi)
= (L, (1/y)exiai) = (1/v)e(Z] &) Thus (LT (xyfyi)eai) =
':lﬂf:”:{l.-'r?:'@':E], ;13.1'” = ':'l.l"'}-".lﬂl{EL ;Lf{&[” = 1

Claira: 1t B iz & finitely generated Z-module, and if (1/y)2b = 0in
OQ®PB, then b iz & tarsion element of B

Azsurming the claim, we conclude that X} wif(mi) = fIE] xiai is =
tareion element of B, whence E; ximy iz torsion in &. But if r{Z; xiail
=0 for rz0, then 0 = (1/ry)er(E, Ria)) = (r/ryle(E] xa) =
{1/yiaill, xiaj) = (Zi (xi/vil®ai), proving the lemma.

To prove the claim, we know B = IN@T where T is torsion, 3o bn B
hes forrn (x,v) for x in Z1, v in T. Then since 1¢b in Q@0
corresponds to (1ex,1ey) in (Q8FN) & (QAT), 1eb = U iff both 16x
arnd 1@wv = 0. But zince Z™ s fla, ZN2ZJIN =3 2N 15 injective, 5o
1o is zero in U@ F0 iFF x i3 2erein £ Hence from 16k = 0, for kb =

(x,v) in ZWPET, we conclude k=0, hence b 15 torsien, proving the
claim and the lemma. QED.

Even this partial result has useful consequences.

Lemma: For a fin gen Z-module M = Z0& T, where T is torsion,
@M = O iz a O-vector space of dimension = ranki V)

proof: Since lém = (rfrlem = (1/r)@rm = 0, if rm1 = 0, we know
tensoring with 8 kills torsion, so Q®R{ZN@T) = Q@I = 0N QED.

“We obtain now an easy proaf of an earlier exercise
Corollary: If B iz a fin. gen. I-meodule, and ACB a submodule, then
rankiB/a) = rank(B)-rank{A}.
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proof: Fram the sxectness of 0— A B=A/BE—0 we get the exact
sequence —O3 A—OBBE—Q®{A/BI— 0, which by the lernma, gives
the exact sogUEnCE .|:|._,Qrk{ﬁ}...-.Qrk{E}.-.q;.rH&fB}_.gl Since this
sequence of vector spaces splits, rkiB) = rkia) + rk{a/B). QED.

Fxercise # 184) 1f G— A—~B—C—0 1z "split exect’” then for every X,
prove the sequence 0+ K@ 4+ X @B HECT—0 1t exact,

Remarks: (i} If R is a dornein, with guotient field k, then k is
alwawvs a flat R-module.

(i) 1f R iz anv ring, an R-module X iz flat iff for every idenl <R,
the map «® X=X, such that a@x—ax, is injective, ie iff tensoring
the sequence 0=« = R with X, leaves it exmet.

{iii) For o nice elcrnentary treatment of flatness, ser Leng's Alpebrs.

Exercise #185) (i) Assumning the previous remark (i), prove that if
F G are free R-maodules, R & domain, and FCG then rk{F} ¢ rk(aE.

(ii) Assuming the previous rernark (i), prove that if R is a pid.,
then ¥ is flat/R iff ¥ is torsion-free,

Change of Rings ("Base Change’)

We kpow thet if R, & are rings, M is an 3-module, and R—+3 is ring
raep, then M it an R-medule by compesing R— S— Endz (M),
Equivalently, to multiply elements of M by an elermnent r of R, just
map r into 3 then multiply. Tensar preducts nllow us te go in the
ather direction, end chenge R rmodules also into B modules as followrs:
1§ v] iz an R-module, consider the R-rmodule M®RS3, which makes
senzc becouse § is an R-module vie the ring mep R— 3. Then MAard
is naturally alzo an 3 meodule where we rnultiply on the right by 5.
le {or each element @ of 3, we define the function MeS= MBS
where (m,s]— m&so. Ths is bilincar, hence defines a linear map

G MBRS—MERS. The map 3 End(M@R3) sending o o o, takes
andition te addition, multiplicetion to compositicn, snd 1 to 1d, hence
defines m ring map, and even an R-slgebra map, hence gives an 3-
module structure on M@RS compatible with the E-rnodule
structure. What do we know about thiz S-rnodule?  As we have
emphasized many tirmes, the most mportant thing to know is hew
to rmap it 1nto other S-rnodules, so we prove:

Lermrna: Siven & ring map E—+5, an m-module M, end an 3-madule
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M, the map Hormp{(MN) = Ferma(Ma g0 taking f to f where

firne s)=sflrm), is an iscrmorphisrm {(of S-medules).

proaf. The inverse mep tekes g to § where glm) = glme1), Note
both modules of hemomerphisms are 3-rnodules where we multiply
by elements of 8 in the target rmodule. QED.

Exarmnple: if M = R, both modules v the lermnme are 1zomorphic to N,
ie. N = Hornp(R,N} = HomglR@RIN) = Hems(S M) & N

Exempie: The most important specin] case may be where M iz g
free R-rmodule, so we rernark then M®RS iz also a free S rmadyle.
le if M = & AR, then MR = BARORS) = &8 [n particular, if
{#ila iz an R-basis of M. then {xjellp is an S-haziz aof MERE ln
particular the isomerphisrm Q®2ZM = O is one of O-vector spaces
as well a7 Z-rnedules. Similarly CERRM = £ i3 an isomorphizm of

L-wvector spaces.

Remark: Change of rings is “transitive”, je. if R—=S— & are ring
maps, and M iz an R-~module, then M@g8 = (M@ r¥E o

Terminology: Since the ring acting on & madule is also known 8s
the "base ring", the process described in this section is sometimes

called "base chanpge”.

Categorical Sums of Commutative Rings and Algebras

fs an extenszion of the ideas of the section above on base change,
consider what happens if both modules in & tersor product are rings,
hence R-algebras, rather than just R-medules. Lat 2, Thke R-
nlgebras, ie. let ring maps y R=5, ¢ E— T be given, and form the R-
medule S®RT  This is bath an S-module and & T-madule, but we
claim it is also e ring, and an R-algebra. The multiplication is the
obvious one, ie (set)(Fa () = zfge ¥

Clairn: This gives an associative, distributive operation, with identity
i# 1, First we check it gives s well defined R-kilinear opEration:

The function (S=T)= (SxT)—S@T, taking {{st) (£ 1)) sFat¥ gives, far
each fixed wvalue of (51}, & bilinear mep on 5+ 7T, hence induces &
linear map (S@T«{{5,8 =S8 T. The induced peiring

(3@ T« (ExTi— 3D T is nlse hilinear in the second variable for each
fixed element of 8@ T, hence induces a rmap (P@TI={3@T)—S®T,
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which iz linear in each variable. Eence sur prepsed multiphicetion is
well defined and K-bilinear.

Since f1e1)sgt) - st the clerment 1@t acts &5 an jdentity on a set
of generators, hence also everywhere. Simularly, (spetQlisiszetit2)
= fgsqs2@tptitz) = (sgsjetoriiiszetz), =0 the product is associative
er generator:s Since these expressions gre linear in each quantity
gi@ 1, mssociativity holds for all elements.

Since the R-module structures on 5,7 are by means of the maps

gy R—=3, and ' R-+T, the fcllowing elernents of S&@T = SERT are
equal: rixeyl £ (rrey) = (plrixisy - 2e(pirly) = (xory) Thus
there is 8 unigue R-algebra structure on S@T defined by the rmap
R— 38T, teking r to rllel) = 1rel = tpl[r:lﬁ-i = lﬁ-qJ{I’:' = 1&rl. Since
rri1el) = pirled(r) = (pirle1)1ey(Fl)) = (r{lelNif{le il), and
(r+7H1e1) = rilel) + filel), and 1—~{1a1l), this iz indeed & ring
map.

Remark: wWith the understanding given above of the notetion, we
mey write simply rel far rilel} = piriel = ledlr)

This siraple eonstruction vields a nice cenclusion:
Theorem: Anv twa R-algebras R—= 3, R—=T, have a direct sum I in

the category of R-algebras. In fact, T 2 S@RT.

Remuark: The thearern savs thet in the colegory of R-algebras, T
represents the functor Homp(S,-)=Homg(T,-)8r - MR, froem R-
a.pebras to B-modules Je if F=S@RT, there are R-algebra meps

g 5= 1T—=1, such that Jor every R-algebrs M, the carrespondence
vaking I — A to the pair (o*f.v*f), 15 2 bijection

Homp(l A= Homp(8,AYxHompR([(T,A) from R-elgebra meps out of T
to peirs of R-algebra meps out of 2 and T,

proaf of thecrem: Let T' = S@RT. The R-nlgebra maps S—5@T,
T—= 58T aere the obvious ones, s—s& 1, and t—+ 14t Jince the class of
R-algebra rmeps is ¢losed under compositlon, any rmap FE®&T =5
vields by compeosition meps S— A, T2 A, snd since F@T is generated
by elernents of form =81, these compositions deterrnine f
Conversely, given two maps g3—A, hT— A, their product gives a
Litinear function SxT— A, hence a8 unique R-module map geh:
S@T— A taking set—glsih(t). Since this map takes {(set){zet) =
(siettirglssthitt) = gledh(tiglsih(t), it is & ring map. Since it takes
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risetl=rset to girslhis} = rglsdhis), and g,h are R-algebra maps, goh
iz an H-elgebre mep ton. Finelly, restricting géh to elements of
forrm s& ] or 18t gives the criginal maps g.h. Thus the
correspondence iz indeed s hijection. QED.

Example:1f 3T are cornrmutative rings, the tenser product S©¥T, is
B direct surn in the categery of commutative rings.

The theorem lets us ealoulate a particularly useful exarnple of a
tenser product af K alpebras.

Exemple: If 5 = R[X1, . ¥al and T = RIY1,. .Yl are polynormial
algebras, then R[X1, Hnl®pRIY:. Yl 2 RIH1, .. ¥%aY1,..Yml To
zee this we will check that they represent equivalent functors. For
brevity, denote the set of all 1) simply by ¥ and the set of the 1Y 5
simply by Y. Since R-algebra meps out of a2 polynomial ring are
equivalent ta set functions out of the set of variables, we havs
equivalences: HomR(RIX.TI.-) = Horm 30{%,¥},-) =

Horm 3(x,)»Hom (Y,-}) & Hompg(REX],-)«Hormg(R[Y] -} =

Hormp(RIX]IB RIY), ). Simce RIX,Y) end RIXIGrR[Y] represent
egquivalent functors, they are isormorphic. QED.

Exmmple: In algehraic geornetry, the structure of an affine algpebraic
scherne is contained in its structure ring, and for the standard
coordinate scheme €0 that ring is ©[X4.. . ¥n] Since the functar
taking an affine scheme to itz structure ring is & contravarient
equlvalernce, hence changes products intc sums, the previous
exarnple implies the product of L7 and €M exists a5 affine
=cheme/C, and iz jsomorphic to TT*M, The theorern jtself implies
that every pair X, Y of affine R-schermnes, with structure rings T'{X),
I'(Y), has a direct product with structure ring T{I@RI(Y).

Tenzor Products of Vector Spaces

The mpst imporiant special case of tensor products ore those of
fintte dimensicnai vector spaces. We want to focus on thet case
now, Everything un this section iz vaelid far finite free rmodules over
n {cernmutative) ring, Since tensor products are a tool for discussng
rnultilinear megs, we begin sgain with that concept. Throughout
Lhis section the base field is fixed, and denoted by k,
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Recall; For s finite dirnensnienal vector space M over a field k, tet
ILsivIRY = L35(1) = lzet of s-rnultilinesr maps M= _#DM - MF=2k],
where M= =W = M3 denotes the :—fold Cartesian product of IV with

itself 1f M iz ancther finite dirnensioneal k-vector space, L3 M) is
the set of t-linear maps {Mx,  xDM—N.

Remarks (1) Both set: TEM), LM are neturelly k-vector
spaces with the usual pointwize operations on functicns,

(ii} As in the previous sections, there are natursl isomorphisms
IS % (M@ @MI* = (MES)* where (V& OM) = M?E iz the o-
fold tensor product of M, and ZSM;M) & Homn(M® 3Ny = {M¥S)* QN
= IS(IMI@M For exernple, if f iz in Z25%M) and n iz in W, then fen in
LEHMI@ M corresponds to the element of LS MW:M} teking m =

{im1i. ..ms) Lo firm)-n. [Write down the cther maps as exercize] Eg.
far £ = 1, LHM) = M*=z the "dusl space” of M, and ZI(MN) =
Hom{M N), exhibiting again the iscrmerphisrn Mi* @ N 2 HomiM,NJ,
(i) If 0= X—Y=Z2=0 is an exact sequence of vector spaces, for any
vectar space M, the sequernce 0+ ME XM@Y 2 MBZ—D iz also
exact, (since every meodule IV iz free hence slso Hat over the field k).
{iv) 11 & sense, tensor products are superfluous in the category of
finite dirmernsionnl vector spaces; ie, the izarnorphisrnz A@Y &
Hom(X* 7)) define an eguivalence X®(:) = Homix*,-] revealing the
tcnsar product in thiz cese as eguivalent to a coveriant Hom
functor. This is not as surprising if we recall that the Eilenberg-
Watts theorem savs every ripht exect Jinear functor F that
carmrnutes with direct surns ts equivelent ta Flkj&(-). In the
category of finite dimensicnal veckor spaces, Harml(x? -} is right exact
Bz well a2 left exect, and camroutes with finite directy sums since
those coincide with finite divect products. Thus Hom(X* -} may be
expecled to be equivaient ta Homi{X* k1@() = K=+ @) = X&{)

Exercize #1867 If F is any linear functor theaet commutes with
finite direct sums on the category of finite dirmensional vector spaces
cuer k, prove F{+) = F{R)@k(-] nre equivelent functars. [Hint {if
desired): If x is an elernent af X, denote by axk— ¥ the unigque meap
taking r—rx. Then F gives & map Flax) FIkK} 2 F(X], and we can
define the map B F{kI® X~ F{¥) teking «ex ta Fixylla), once we
note the expression FOhxMe) 15 bilinear in (e %), To see € is an
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1sormorphism {and that it is linear) show @ is the composition af the
isomorphisms F{ki® N2 Flki® kD — [F(kK)N— F{kN} = F(X), induced by
the coordinate isomoerphisrn o — k7 associated to any choice of basis
of X 1t rmay help to note that the map xag k= k3, teking r—ra =
(rai,..ren), equels Dajr; where gk = kP is the injection onto the ith
coordinete, je where gi(r) ¢ re;i; that the isomorphizsm
(Flk—F{kD) js LiFla;), and that ¢ leEajoi = ay, if (81,...8p0) = plx)
1z the cocrdinate vector of x in kB In perticular, if F(X) =

Homi(M,X), then F(k) = M* and the map M* &K - Hormi{M, X)) is the
usual isornarphizsim teking «@x to the meap o -x:M— ¥ whose value gn

m is «{rmb-x]

Mext we liphten up on the abstraction end look sgein st the very
cenerete "tensor spaces” L¥ and their relations with one ancther.
Theorem: For each s, t, there is & well defined multiplicatian

@: L LU )= D5 M), whese image generetes L5 HM). In faet,
if {#i} is & besis for Z%(M), and {gj} iz a basis for LYM), then the
products [fiegj) are & besis for L3'HM), end this multiplication
induces en 1ormoerphism I5MI@ DWW — L3 M)

proof If fisin L3(M), end g is in UMD, let (feglvi, ,vswi, ... wil =
flarg, ,wgtglwi, ,wi). We alresdy know, frem the zection on tensar
produrcts of harmomaorphizms shove, that this is multilinear and
induces the natural isermarphisms ZHMI@ LMz (MEs)s@(vet)s
= (WES@MEL)r = (M@s*t)r = T=*H{Ny QED.

Corollary: The dirnension of L% M) as & vector space iz (dim{M))E,
proof: Induction on s; ¢f drn LMD 2 dimn{M*) = dimmtM) = n, then
dim{L2) = dim(Z1® L1 = nd | dim(I*1) = dim(Z @ L1) = nen
n5*1. [Of courze we atso know this from the iscrmorphisrm DSV
(M &£+ | QED,

o

FRemark: {i) In particular, if M has dirnension o, and if {1, . fn) iz &
haziz of M*, then the set of n¥ functions {fi{1)e .2 fi[(z)) where i
ranges aver all functions from the set {1,...5) te the set {1, n}.
forrns e bosis for LMD, Consegquently it iz perfectly correct in this
setting to think of an element of L5 a: & linear combination of
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expressiens of form f1e . ¢fs, where the f| are linear fupctions on W,
{ii} The natural "eveluation” poiring (M®5)* « (ME5)— R taking (f,m)
ta flm), induees a similar dual peiring L3MIS{(MF3)—2 R, and shows
we can think of the elerments F18 . &fg of I3[V} as acting on
elernents of form mi1e . eme of MES (More genersally, en element

Tf1e .%f: of LMD, mcts on an element Lm1@  @ng of Mes)

Corollary: The thearern sbave shows there is a netural (non
commutativel algebra structure on the Onfinite dimensional) direct
sumn vector spece @ern L3IM). Here IU{M) = R. This algekra is
isomerphic to the chvious slgebra structure on the direct sum
Be:piM* 15 induced by the bilinear maps

(M*18 @0 * B S (M I®S*E Laking (f18 efsle(fle.efy) to

(fle. ef-sfle of), where (MAye0 - @ (el - M,

Kemnrks: (i} The direct sum vector spece @53 p{M?35) also has the
shvious (non cormmutetive) slgebra structure, induced by the
bilinear rap: (M2 @M (M#L) taking

(e emgalfnie. smeltol(mie_ smsemye. @iyl Thisis the
“largest possible” R-mlpebrae gemerated by 1M, in the sense that o 3 s
any R-algehra equipped with an R-module map o M— 3 whose
ymege peneratas 5 as an R-algebra, then o extends uniguely to s
sur jective F-algebra map @5, 0(ME5—5.

(ii) LK(IVM) is sometimes called the zpace of 'k-tensars’ on M. For

historica)] reasons, end somewhat unfortunstely from our point of
wiew. differential geormeters call seetions of the bundle of these

spoces covariant tensors, elthough LF iz & contravariant funetor of
M. (Thcoy are apparently referring to the woy the local coordinates
of sections of these bundles transform under coordinate change))

Contraction and Trace

The isomorphistn M* @M = Homi(M, M) offers o new interpretation of
a forniliar invariant of en endormarphism. e there is an sbvious
linear rmap defined on the the okject an the left, namely the map
M*EM—k induced by the evalusation pairing W*xIM—k teking

{(f ) Km). The induced meap M* @M— k teking f& m+e fim), is often
crlied "contraction”. That meens there 15 some corresponding
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natural linear meap Hom(MLM)— k. What iz it? Let's cornpute in
coordinates with respect to some besis of M, say (ki) This gives the
cerresponding dua! bazis {EJ} of #*, and the basiz {f_jﬁ:xi} of Ivl* & I,
=0 that 8 typical element af M* &0 has form E&ij fjexi. Recall the
isormorphism with Hom(IV[,M) takes Eajj fi@ex to the map T sending
m to T{m} = EjJ' ai ] fJ{m}xi. The meatrix [T] of this clement has by
definition entry (s.t) = the sth coordinete of T{xt). Since T(xg) =

EiJ' B j fljl:}tt,}:lii = Yi ait filxtl®; = £i & i, the sth coordinete of this
vectar [with respect to the basis {®{}) is age. le the matrin |T] =
[2ij]. Mow consider centraction of the elemnent Lejj Fj@x], which
wieldz Xif mjj fjlxi) = Ij mjj. Thus the compasition

Hom (W M) 5 M* @M=k takes T to 2 aj; = "trace” [T]. Thus we gat
arather proof that the trace of the matriz representing an
endarmicrphizm iz ap invariant of the endormarphizm itzelf,
independent af the cheice of basizs and the asspoiated rmatrix.
Equivalent]y, simtlar matrices & ~ E—'ihB‘ have the same trace.

Exercigse #187) Let », v be elements af (k11)*, and kI respectively,
with a a row vector {1»n matrix), and v a celurmn vectar (nx1
metrix). Show that the matrix produet 5-v iz the contraction of the

elernent aov of (kRM)*@ kN, while the matrix product v-u iz the
metrix of the hormmornorphism correspanding to 2o v in Homi(kD kI
re. Wk is the "tonsor product” of the matrices & v as defined above,
[n particular, trecela-w] = tracefv-n).

Exarnples: We have encountered zame impartant examples of
tenzors, ie. of multilinear meps, in our caleulus and linear elgebra
courzes we have abhserved that the inner product <-,-> of o
vectors in RE is a bilinesr function, hence an element of LZ{RN);
and the "triple product” taking a triple of vectars {u,v,w} in R to
the sealar ulvxw), where v derotes the “vestar cross prnduct”,
belonps ta I3R3}) Anather mportant tensor, of “mixed type”, 13 the
‘curvature” tensor R for a surface mn space. lf Tp denotes the
tengent space to the zurface at p, R 1z 8 section of the "bundle” of
spaces Tp' @ Tp* @Tp* @ T, hence 1= called a tensor of type (3,10
This iz treeted in differentinl geometry beoks, [eg. Comprehensive
Introduction to Differential geometry, vol 2, by MMichael Spivak].
In In(kER) there is the determinent, a function of n variables, for
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‘metance &5 o function of the rows of an nen matrix, and which iz
imear in each row scparetely. The determinant has sancther
property not shared by most other tensors, Lthat of being alternating.
We want next to study tensors with this property more closely.

Alternating tensors
Definition: An s-linear function f in IS(M} ar L M) is celled
“alternating iff Hx1,..,%z) # D whenever xj = ¥ for sorne ixj.

Fxercise #188) (i) Prove that if { 15 alternating, then
interchanging any two veriables changes the sign of f For example
if 2 = 2, end { is alternating. then fla.wd = - flyx).

{ii} Prove ccnversely that if f chenges sign whenever two variebles
are interchanged, then f s alternating, unless charac{k) = 2.

{iil) Whet ebout statement (i) in characteristic 27

Hotation: The subspaces of elternating s-linear functions are
denoted [1HM) ¢ LM and (I5(DMN]) C (M N

Remark: The determinant i1z an clernent of Trnfkn)

Exercize #18%9): (i} Prove that a finite produst of linear maps
followed by an alternating multilinear meap iz alternating and
rultilinear, ie if Tg Ve Wag are hnesr for all =, then

(aa T Tor )l TTW e = TT W o — 2 18 alternating rmultilinear, provided

A W — 2 is 50,

(i) Fromm part (i), if Te kP —k s prajection on the wth factar, end
for 1: a1y ¢ @(2) ¢ ¢ o2} i, 0f &= (eell), ec(2),. . (s} and

Tee = Mi=1.5 Wee {1y ROk 15 the projection

T (Y. ..Xn) —{eel1), ... Hexlz)), then the carmposition fg =
gEtome 15 {kME 2 {k5F =K, 13 an s—mmultilinear map fe (kP)— k, where
the patation #% meens My=1_ s 7. Show the set of functinms {fol, for
all possible values of & are independent, by letting fo act on ep =
(epfl]. ..ep(s)), where 1¢ pl1) ¢ pf2) <.« B(3) £ n, and observe theat

faelep) = O unless (i) = (Y far elli = 1, .5

Wea compute next "all” alternating tensors, and see in particutar that
the determinsnt is Lhe only cizential one, underlving all athers.
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Theorem: (i) 1f 5 > n, then Q5kM) = 0.
(it IF s ¢ m then dirm §3%(kN) = |f:\i (binamial coefficient).

ey
(iii) In particular dim QA(kNY = 1, and the determinent function is
a basis of 2R{kD)
proof: (1} If f Is any s-multilinear function on ki, and we expand
each vector ¥jin kM using the standerd basis {g;}, we can write
fixi,...xs) = Hlmiej, Zbiej,. Tereg) = Leibj..ctflej e, el as a linear
cornbination of terms, such that each term hes & factar of
Hej,ej,...eul, ie, of f acting on a sequence of s hasis vectors. When
$? n, at least one kasis vector rg must be repented, hence
fleiej, .et) = 0, and thus f{x1,..%x35) = 0 for every s-tuple of vectors

|:.:|-|: 1,....,!{3] mn ':kn}s.
(ii) Since the functions fg = dete(mg )54kNIS—k in the previous

: : H _
cxerclze are independent, and there are [ J pessikble values for o, we
5

\
get dirn §1%{k) [r: |. To tee the opposite inequaelity, consider the

F)

rr'\h

linear map @05(k0} 2k [5J f . flep)...), defined by evalusting
at all the various s-tuples ep = (ep(1),...p(2)). for all ordsr
preseruving injectiams g1, st —= {1, . nil. It fallows frem the
ergument in (i} that f is completely determined if we know the
umlues f{ei,ej,...,eﬂ af f on every sequence of distinet standerd basis
vectars. On the ather hand every zuch sequence (e ej,. . et is a
rearrangement of s sequence {ep(1),...cal{=}) in whicrh the indices are
inereasing, 1 ¢ pl1) < p{2) << pls) = n. Since f iz alternating,
knawing flep(1),....ep(s)} also deterrmines f on any reamrrangement of

the basis vectors (ep{1),...ep(s)}. Thus B{f) determines sll values of ¢

r'
and B is injective. Hence dum 225(k7) ¢ E"J' and thus equality holds,
i, §

(iii) This follows Fram (ii). QFED.

Jummary: To canstruct a basis elernent of %k, where s ¢ n,
Just choese cne of the s«s subdeterminants of the nxs metrix

forrmed by s ordered wvectors of kT,
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Example: Suppose f{k3)€—k is an slernent of 22(x3). Then for x =
a1e1+azei+ates, and v = hiej+hrez+bied, we have fix,y) =

Zj,j aikjfleieid = iz ailfe) el = Tigj {aik,fleiej) + ajbif(ej.eill =
Zicj fmibjflejejl - a bfleiedl = iy leby - ajbirflej.e ) =

lmib2 - azbilf{e1,e2) » la1hs -~ asbilflet ,e3) + [azb3 - a3balf(ez, e3).
Thus if the coefficient vectors of ® and v are arranged as the column
vectars of & 3=2 matrix, there are three obvicus alterneting
funclions, the three 222 subdeterrninants {aihg - azbyl,

faqb3 - szhyl), and lezbi - a3ghzl, Any elternating { is & linenr
combination of those, with coefficients fleq,ez), fle1,e3) ond ez, e3).

Rernearks: Just as the space of s-roultitinear functians L3V} is dual
tg the space M2S the subspoce S25{(M) € L) af alternating -
lnear functions is dual ta a guotient space ASM) of M#®2 Formally,
the elements of AS(M) are inear comkbinetions of the syrnbals
X1 ~KZ~u%. ~xg for all x1,%2,%x3, %z in I, subject to the s-linear
alternating “relations’. In perticular, in A5, w1 AN, ~NF . ~xg = O,
K] %P~ XB.. ANg T - H2ZAK]~AxF . AaXg elo.
Eg [fs= 2. M= k3, x = aje{+*ngez+ated, and ¥ = biei+bzez+bies,
then x~y = (ajej+eper+niei)~(biei+hiez+b3eX)
(a1e1daibzez) + (e1ei)albies) + (azezialbiel)

+ (6387~ lh3e3) *+ (a%e’i~(bie1} *« ledez)~{bzez)
{ajel)~b2e2) + (a1eq)~(b3e3) - {(biel)~(azel)

+{areai~lhies) - (bre1)~lmjes) - (bze2l~laiesd)
(s1bzie1~e2) + (a1b3{e1~e3) - (blapHelaez)

+ {asbrierae3) - (hiasile; ~e3) - (bzaddlez ~e3)
{a1k2 - bia2)el~ez) + (a1b3- blazlie; ~ed) +{az2b3 -bzuzl{ez~e3).
{Wote that the coefficient functions occurring here are the standard
bazis clerments of 22(k3). This reflects an isomerphizm 23] =
(A2 in which the standeard basis of 2(M) is viewed as duai to
the basis {e]~ez, e] ~e3, e2~e3} af ME(kIY)
By such computations ohe can show thatif el epn it 6 basis for Iv,

ot

in

I

then the | 1; elernents [eqf1)~ . .rewis) 12 wll) ¢ ald) ¢« als5) ¢ nl
LAy
span AYNM). Since dita AMM) = dim. Q5(M) = {ﬂ, these elements
L

are alsa mdependent.
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Cur lest remark 2 that for each 5, there iz 8 fundermental
isormnorphism @i+ j=g (AR ALY & AS(H®Y) which can be seen by
writing down bases for the two spaces. In particulsr let &1,..8n,
F1,...%m be 8 basis for K@Y, where g1, en is 3 basis for X@{0} = X,
aad £1,...8m 15 a besis for {0}BY = ¥, Then s basis for ASIX®Y) is
given by all elements of form fg{l)~..~egiij~fz{l)~ .~f(j) where
i+ = 5, (i, 20} 7 ranges cver all strictly increasing functions

i, it—{1,..n}, and t renges cver all strictly incressing functions
701, . gt—={1,. ..m]. On the cther hand, the elerments of form

a1}~ regli}elfe(l)n . ~fr(j) where egnin i+j = s, (i.j 20), and o
end T are as before, give a basis of @4+ )=z (AINI®AIY)). Hence the
unique linear map @i+ = (AR AIY)) = AS(XE Y) taking
eali)ereg(®fe{l)r afo(j) to Ea{t)m mmg(iiafg{i)a .~ Fr{j) iz an
1sornot phism.

Exercise w190} (i) Compute the constant & such that
(ee1+bez+cedia(de)fez+geiiatheyjertkes) = Ele1~e3.e3), in

A3 ET) by expending the ieft hand side according to the ruley for
menipulating "wedge products” x~yagz,

(I} 7F e Q2(RI)— (A 263N iz the izomorphismm teking the ordered
basis {{a1b2 - b1az), (a1b3- bi1as), (a2b3 ~kb2a3)} to the basis dusl to
le1~e2, el ~e3, ez, e3), show for every fn $22{k3) nnd x, v oin k=,
that af{fiix~yi = flx, v

Cilf) Let {%1, a3, 23] be the basis of (k+3* dunl tg le1, ez, e3l, and
PALIRI ) = 02(kT) the isomerphism teaking the ordered besis
(x1~2%2, 81~23, 22~23) to the ordercd hesis ila1bz - bia2), (agk3-
bia3l, {azhs ~b2a3)l. Show for any clements f, g af {k3)* and x, v
of k7, that (8(f~g)l{x,y) = fladglwy-flylglx).

Givd T ¥:A 3T+ 3= 03k 3) s the isomorphism taking A1 ~az2~Aa% to
the 3x3 determinant function, f, g h are elements of (k31* and X, 0,
z are elerments of k3, what s (A{f~ g B} Ay 27

Exemnple: A srnooth “one form” on B2 is a smooth, ie. infinitely
differentiakle, map w:RFE2— ALREIY - (R2)+ Ley dx, dy denote the
‘constant” ane forms, where dxi{p) = a1, dwip) = 22, far all B, With
{21, 22] the basis af (RZ1* dus] ta {e1, ez} Then every smooth one
form can be written as w = fdx + gdy, where f.g. Bre smooth (renl
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valued) functions on B2 Fer each srnooth functinn ¢ on RZ, define
"groadig)’ = dy = (2p/dx) dx + (/Iy} dy, a smooth ane form. Faor

each smoecth cne form w = fdx + gdy, define "curl w” = dw = df~dx
+ dg~dy, 8 smooth twao forem. IF gde) = (xin], with), 0t 1, s =

perametrized arc in R<, define the integral of w over ¥ to ke

[@ = [ priemiderdn + g rd) dr.

Exercize #1191} (i} Prove for every smooth function @, that

quﬂ = p(I- @YD)
() If ® = arctan(y/x), compute 88, and curl{d8).
(1id) TF ¥(t) = (cos(2wt), sinf2we)), 0 ¢ £ ¢ i, cornpute LH'EI . Does this

contradict part ()7 Why ar why noet?
{iv) FPrave for every smooth functicn ¢, that curligrad{yp]) = O,

Exercise #192) (i) A lineer map TM— I of vector spaces induces a
linear rmeap THMPT— N with TRk, xn) = (Tx1,...T#xm). Define the

rrap SeH{ TICISING — Q25(M) by setting S15(THL) = (TRIMC(E) = T Shew

that thizs mekes 0% a contravarient functer of vector speces,

(ii) If ¥ 15 & one dimensional k vector space, show the map

k— Homp{V. ¥V} taking & to a-( ) = "multiplicatian by 4", 12 an

isornorphism.
(ii1) I dernild) = n, and TM— 0 iz linear, it fellows fram parks (i)

and (i} that the rnap S0(T) carresponds to an element of k under
the isomarphisrn k— Hom{ QD) QP e the map HTHTY iz
simply multipiication ky & scaler. ldentify this scaelar.

Thiz ends our discussion of tenscr products specifically of vector
spaces  we will give o self contained discussion af AS(M] for general
rmedules VM in the next section.

§15) Exterior Products of modules

The abstract sppresch to determinants is to consider the functor of
alterneting multilinear functicns, and then represent that functer,
analogous to the wey we introduced the lensor product ta represent
the functer of all multilinesr functions. Thus given an R-module X,

we want to construct mp “exteriar product” W = Ha A¥ = AR{K] &
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module such theat linear meps out of M are the sarne as n-linear
alternating maps out of XN (The dizcussion here will be independent
af the orief introductary sketch piven abeve af ATX) in the case of
a finite dirmensional vecter spece X. The previous section may be
uvseful as an introduction to the idess which receive m more abzstract
treatment here)

Mare precisely, given a moduie ¥, if I%{¥;Y¥) denotes n-linear
alternating meaps XM=Y 1we seek & module M such thet the
functors, {iN(X;-) and HamiM,-) are cquivelent. To de this we tan
take adventage of the prior construction of the tensor product. le,
every n-linear meap sut of X induces & unique linear map F out of
A .@X = BRX), and an n-linear map LXM = Y is alternating if end
enly if the induced map FH®@ ... @X—Y vanishes an those vlementary
LENsors ¥1@®. @xp in which et least two of the xi are equal. Hence

uch meaps correspond to linear rnaps out of the quatient
{(X® @X)/J where J iz the subrncdute of (X® . &X) generated by
the set of elementary tensors having at lcast two egqual entries. This

guotient iz our V.

Definition: if M iz an R-rrnodule, and J is the R-zubmodule of

(X@ .. @K) defined ahove, let (X@ . @ X)) = ANM) = X ¥ the
nth exterior product, or "wedge product”, of X, with its natural R-

rmodule structure. We note that AX) = ¥ (since £11 = Hom), and
we agree that ANX) = R,

Exercise #193) (i) 1f we denote by %1~ ...aXy, the egquivalence
clazs of x1@ .. @xp in ANK), then the canonical rmeap B X0— AR{X)
taking (x1,. . .u4p) to K1~ ..~xn is n-linear and alternating.

i) If T:ATHI—=Y is a lineer map, the composition @*(T) =
(Te@)H~ADK) Y is n-linear and salternating.

(iii} For a given X, the rmaps ©@* define an egquivnlence of covariant

functors Horn{AD(K} -3 = 10,
{iv) If X is & finitely generated R-module with fewer than n

generators, prove AT(NI = 0. [Hint show QX Y¥)=0 for all T ]

Exercize #1924} Far each n, prove that Xw— AT(Y) defines & functor
from R-rnedules to R-rmadules. e if TX—Y is linear, prove there is
&8 unigue well defined linear map AN(TEA BRI = ATY) such that
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ATUTH R A adpd = Tl .~ Top, and that this rmakes AD into &
functer. |To begin, show the submedule J of (X® . ®X) in the
definttion af AR, is in the kernel of the compositian

BRXI—= @] ANY) taking k1@ _2xp o T~ _~Tupnl

The primary computaticnal result ebout exterior products iz the

fallawing.
Thecrem: Far every s 2 U, and all B-rmoduies X and Y, there 15 an

isomorphism S+ =5 (AHXI@AJY)) = AS(X®Y) induced by natural
linear rmaps (AUMI@ANY = AFIXNSY) which take
X1, ~X[@Y1s LAY o X~ ..~ XisWla A

To (Nustrate hpw pl::-‘-.a.':rfu] the thecremn is, before prowving it we swill
deduce from it the existence and unigueness of determinants, a
farmule for them, their multiplicativity property, a computation of
the exterior preducts of all finite free modules snd conseguently alsc
of the spaces of n-linear alternating maps on finite fres modules.
First we cleim that AQD(RD) & B. This is true when n = 1. and then
bv induction eng part {iv) of Ex_ #1181, AR{RR) = ANREHRD1Y) =
AllRI@Aan-l{RR-1} = RER = R This gives uriqueness of the
determineant, since ATRTY) = R impligs that A[RT,R) &
Hom{ATRET) R) 8 HomiR,R) = R, 20 the rmmodule of n-linear
nlternating mep: Matpi(R] = (RN R is free of rank one. Thus
there is at most one such rmap with 1 given veolue on the identity
matrix. Mow we can also define the determinant of a map 1n
Homi{¥ . X} where X & RD, witheout choasirg 8 basis, as the
cornposition AT HomleA, Hi=Hoam(AN(K) ANX)) 2 R; ie since X 2
BN implies AN(X) = R, there 1z s canonfcel isomeorphism
Hom{A DX AT = R Jince AN 1 a functor {by the previous
crercize), the identity endemorphism of X goes to the identity map
of AT, which ecarrezponds to 1 in B, Thus there 15 & unigque n-linear
alternating map Matp(R] = (RPN =R with value 1 on the identity,
naimsly the determinant [ We alse get muitiplicativity of the
determinent frorm this, since the functor A™ tnkes compositions 1n
Homi ¥, X} to composttions in Homd{ANRK), ANX)), and the
isamorphism Hernd AKX AT 2 R takes composition in

Horm{ A0, ARH)) to multiplication in R.
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Ta use this definition to corapute a fermule for the determinant is
eazy ms well. [n terms of the standerd basis 1, .en for RO,
if T = {&;j), then AT{Tilej~. ~en) = Tel~..~Ten =
lajie1+. . *apient~..~{a{nel*  *annen’ =
Lglagiiiiea(i) ~lagi{nintai{n) [summed over all perrmutations o
af {1,..mH = Laleg{1)l.. solninMea{1in. .~eqinl) =
Losign{oilagi1)l. Bafninkel ~..~an). In particular this
computation shows that e ~ ., ~en generates ATHRY). Hence DIT) =
Yo sipnlodeagsi1i1. asinin). 8 standard formule for the determinant
{zee the sppendix].

N

The thecrem implies further that #f n @ 5, then ASRM) & R[ . where

et . . :
' is the htnomial coefficient " cheose 57, To prove this by

[
\5)
tnduction on 0, we may aszueme n » £ Then ASRN) & ASREBRD1)
= IAUNRI@ASRA-L)] & |[ALRI®AS HRA 1) =
Asr-hy @ [ALRI@AT IRN-1)} = AsRA-1Y & As~lRDR-1) =

[a=1" n=p in
B R{"" = F.I“’] by the well known recursive farrnula for
binornial coefficients. )t follows then too thet QSRR =

C

Hoerm(ASRR R = Fl”. More generally, for all ¥, QIRD:T) >

Hom{ASERN), Y)Y = 'r'l”. If we look at the map defining the
izomorphism AR L@IANRI®AS HRD- 1) 2 ASIRPY, we can
specify & basiz of AHR™). If = = 0, AY(M) = R and 1 iz & basis, s
azsume s ¢ 1. M el, . .en s the usunl kasiz of RN, then we clairn the
set {egfih~ onegfe) 1 o1} ¢ w(2) ¢ x{s) + n) iz a basiz of AS{RT).
Thiz ix true for 1 % 1, 30 if we assurme 1t for n~1, then
{Emcjya....s;ﬂ“{gj, 1z eefd) ¢« wi{2) <. ¢ wisg) ¢ n-1}, and

leg (1)}~ . mnemis-1), 1¢ ={1) ¢ @f{2) <. ¢« x{=-1) ¢ n-1) are baszes af
AEN-1) gnd AST1ANT1Y recpectively Then the set

{ea{1)~ . ~Exfs-i)@en, 14 «l{l) ¢ wlZ) ¢ .« wlz~1) ¢ n-1} is & basis of
AFHRA L@ ALR), und therefore the sscrnorphism

AR @A HRA-D@AlIR)) = AS(RN) described above takes the
nasis (eaxi1)~ atafe), I eil) ¢ @l(2) ¢ eis) ¢ p=1}, u
lee(1)~ . rexis-11%en, 10 (i) ¢ @l2) <. ¢ «f2-1) ¢ n-~1} of the lefc
hond zide, to the set {eqaf1)n L neafe), 1t of1) ¢ w{2) ¢« wls) ¢ 0}
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which is thus e hesis of ASRD) as cirimed.

procf of theorern: As usual, we simgply write down the most
natural mops we can think of in both directions, and check they sre
wmutually mverse. The enly difficulty, due to the complexity of the
modules involved, is ta verify the meapz are well defined,

To define s map B+ j=s (A AKT - AMXEY) means of courss to
define maps (AXI@ANYII 2 APIX®Y) for each ij. We may
dentify ¥ and ¥ with the subrnodules X&{0) and {0}1DT of XY,
The only natural map seems to be to send an elernent such as
Hlm . AXiBYIA.AY] L0 AL~ ~NjaYLa o~y bul We rmust check that
there is & well defined homeornorphism that dees this.

Lerruma: For each i,j there is 8 natural linear meap
(AWKIG AT = A IXEY) sending X1 4. ~AXi@¥i~..a¥] LO

By~ oaXiayls AW

proof: First we consider the function Wi Y 1= A KDY sending

fx 1____,7{1;};1,..,5?‘]_]' 10O N e nxiaYle sy Hwe fix y1,.,v;, the
restricted map (k1. %= {x1_ . ~%Xjis¥i~. ~¥jlis i-linear and
alternating, hence induces & linear meap AU = AT ETY) sending
H1m K] Lo HiA AN~ Yia.ay). Thiz defines a function
AR YI— AT XS Y) which it linear in the first variable. If in this
function we f:x the first variable egqual ta 58V W = LhaXa, 1™ . ~Kali
im AHX) the resulting function Y= AICKEY) taking {FL...,yﬂ to
woaWla. AV] T LhgMer, oA X AP s Y, iz j-linear nnd
alternating, hence induces a linear map ATYI= AV HEP Y which
takes yla . AavVjiowayla ~¥ Thus we have a well delined meap

A= AJIYD = AN IH ST taking {w v) ta wav, where if w =
TheMeg, 1. n¥ey i, BN ¥ = EupYpia o~ ¥Vp.j, then wayp =
Too,p D Hp Ko lmooaXo,icVEla o~ VR, Firally, thiz map i
bilinear, hence induces a linear map (AHXI@ANY S AFPHXSY) such
that w&v meps ta wa v, ["Naturelity” is left to the reader]

COED lemrna.

The lermmea pives us 8 linear map g8 i+j=5 EALRISAIY = ASMS Y
To define en inverse map  ASKEB V)= @05 (AIEANYN, we lack
for & function (XE@YIE 8. -5 (AWM AIYI which is s-linear and



o9

alterneting. This 15 a little less chvious, so we consider zorpe small
values of 5, for guidance.

ifz=1, we have ALUXEY) - ¥®Y, and zeek & map
XE Y- ALCDeAN Y@ AR XI@ALLY)) =
(XGRIBIRET) 2 ¥X8Y. Hence the chvious choice is
() xal « lay = (x v

If 3 = 2, we must define & map

ALKETI AN S A LS ALYNE{(AS(YY). In arder to invert the
previous map, the elernent (x1+v1)l~A{xz+v3)

= (M1 Ak2IH(x] Ap2itiy] axzi+(y] Aaya)

= my An2 (R av2) -2 aw ity Avz) must go ta
(xg~xzlr{nievei-ixzoayiie(y] avz) Does this rnake senze? Ie,
suppose we define (K& YIEH(AZXNBAIOSALYDH(AZ(Y)) by
sending Uxa+tvi1)ixzrvzlingaxzitinteyri-(xzevi+t{yr vzl This
iz well defined, since the element {{x1+v1),{x2+vz]) determines the
cornpenents x1,v1,%2,v2. Moreover this map is bilmear, and if
x1=x7 and v1=¥2, the irnage itz zerc. Hence there iz a linear map
ALRBTIH ALRIBIA TS ALY DB AZIYD takme
(x1+w1la(x2+wz) to (k) ~x2is(n1ey2)-(22ewvi)+iv] ~v2), as desired.

It s = 3, (x1+y1)~{x2rv2)ains+y3)

= (2 m®2eax3) + (H1AA2Av3) + (K1 v2 3] ¢ (Hpay2-~y3)+
(y1nx2ax3) + (P1~%2~¥73) * {y1Ay2axT) + (¥1ay2~vy3), and if we
eroup by the number of x's and v's tn each terrn,

= {x1xzAx3)}

(XA uZAaYE] ¢ I y2~X3) + (V1 RZ2au3)

* 1 ayzowE) 4 y]ax2ay3] 2 (Y1AyZaxT)

+ (W1 ~wZayd), now if we rmove all ¥vs to the right af all x's,
(X1 AaX2ax3)

+ {1 aXZAV3E) - X1axF3ay2) + (KZAxTAavi)

CERLAVZAYE) - Ixzay]~awE] Y (XEay1ayz)

s V1A yZ2ay3)

This elerment then should be mapped to the elernent

(Mg ~®2AnT}

t (M]anz2@evi) - (K1axZey2) + (XZAaxTevyi)

* (X1 VEavE) - (XZ8Y1nyA) + (K38 V1AY2)
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+(ytayzayal,
in ASCO@AZRIAALYNS(AII@AZIYIE AS(Y), Wote that this
is well defined since the last expression is elternating: eg. it vanishes

if sy %1 = x2 and y1 = ¥2.

Now define a function (KBTI @je =g (AR E MY generslizing

this one as follows Censider (x1+¥1....xe*vs) in (XBY)® and map it
to the element Eo t{xg (1Y~ o~ Xx(j)® ?ﬂ{l)h..--ﬁ?ﬂ{jj}. I this sum
the sequence « of indices 1ee({l)e | caliles, ranges over all 2% subsets
of the =et {1, .8}, and for each subzet «, bepilic <p{jles is the
complermnentary suhset. The sign of each term iz the sigh of the
permutaticn needed to transform the segquence {12, ..5) inta

feef1), .. oclid,pl1), . 8(j0). This is & wel]l defined function on {(MEY)E
which is cusily seen tp be s-linear. Mote for example, the image
elerment is n surn of terms in each of which elther x1 or ¥] ococurs,
but not both. Hence every term is linear in (x1+v1)}

To see why cur functien iz alternating, assume Xn = Xm ard vy =
Vin, where m = n+}. Then all terms in the sum

Tectinait)m . .r X1 ®VR{1}~ ..o ¥al )} vanish in which both n,rmn
accur arncng the «'s, or in which heth oceur among the p's. So
condsder s terrn in which n is one of the o'z and m is ene of the p's.
There is & dua] term having the same o's and p's, excepting only
that n and m are interchanged, i.e. now n is ere of the p'z and m
one af the «'s Mow in the zequence (={1].. n, (i) plt), Lm0, to

exchonge n for m requires an odd perrmutetion. Moreowver since m =
r+1, thiz inlerchenge leswves both subsets ztill ordered. Thus the two
dual terms n the surn et (xaii)in on X (DS VA(11~ A Va(j)) oseur
with opposile signs, snd cancel. Jince pur function vanishes when
two adjncent entries ere egqual, by an argurment in the eppendix it
vanishes when any two entries are equel, hence it alternating and
induces s hinear map A XBEYI— Ei+j:3 EANXYD AJEYY).

To see that ¢ and ¢ ere inverses is fairly ersy. (We check it only on
generatars) In one direction, $leix 14 mRi@ VL~ ¥jl) =
di{ngoomkinylanyjl = (e axjeyl- ~.3jl. In the ather,
@ldfix1+y1dn alxgtys))) = @lEgt(xaid)nnxadd@ypl1)~ A YR
= E,.—_.-_E'[K.;.-_'l:l}n....AHml:i:IA?B{l}h....ﬂyﬂ{j}} = (%1 )a . nlxstysl).

QED theorem.
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Remark: The lernma given in the proof the previcus thesrem
definez a “graded” algebra structure on the direct sum @ ASM).
If we dentote this algebra by A (M), the izomorphisrm in the theorerm
car abbreviated as A{EEY) = AIAG AY), The algebra A(MV) is
universal in the sense that if 3 i3 any P-algebra admitting an R-
rodule map ¢ M= 3 such that {@(2))2 = 0 far all 2z in M, then there
1% & unigue R-slgebra map AMI— 5 which extends ¢

Exercise #193) Assume T:V—W iz a hnear map of finite
dirmensionel vector spaces over a field. By rank(T) we mean the
dimension of the image space T{V)CW. FProve the following:

(i) if s » rank({T) then AS(T) = 0.

Ciid 1f [T] is the rmatrix of T for the bazes (&5} of ¥V and {fj} of W, then
for the associeted bases of ASY) and ASW), the entries of the
matrin of [AFT)] are the sx3 subdeterminants of [T],

(iii) Rank{T? = r if end only if for 33 r &8ll 55 subdeterminants of [Ti
egual 0, but some rer subdeterminant is non zero.

R R R R R R R E L R TR A PR
Things ta do:

Insert after the section on spectral theosrems:

1) exarmples of classical linear groups, simplicity (snd order) of
FSLz(F), or F3Ln(F) in particular existence of & simple group of
order 168, = P3Lz{Z7) =2 FEL3(Z7). Note GLA>2SLno{+I) iz & normal
tower where GLn/5Lln = F* is ahelian and {#]} = ¥3. Hence one
natural place to losk for a new simple group is SLa 21

Add the following at the apd:

z) Projectives lmotivate definition via need to charecterize
modules for which Hom is exact], including relattan ta tocally free
ones Ewarmples of the tangent vector fields ta the sphere being
projective, {topologically) locally free irmplies projective, projective
imglies flat. Give Lefschetzy' proof that every continueus vector
field on the zphere has & zerp, snd deduce that V¥, the module of
tangent vector fields to &, iz not = to ExT.
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3} Generalize concept of "locally free”. wie localization of rings,
modules. Frove exectness of localizetion functor, Prove locally {ree
jirpiies projective in shstract algehraic sense. Show lacealization iIs
equivalent Lo LENSOMING with the localized ring, and hence that Rg is
always R-flat. Check that the nilpatents in & ring are the
srtersection of the prime ideals by pulling back a maxirnal idenl
from the ring Rf locelized at a non nilpetent f, ta give & prime not
contmining f. Deseribe Dedekind dorrains &s noetherian domains
which are locally pid's, hence they give another generalization of
pid's.

4) Injectives, existence of plenty of them, with sketch of Watts
proof characteriZing covariant Hem funciers [this motivetes
definition of injectives, ie need for something dual te free modules
in sense of homology (actually dusl to prejectivest,

5} Inverse linits and CRT for not nec. rel prime factors, ie. find
the nctual irnege of Lhe notural mep RAT I~ TR (fx), toa
product af guotlients by neon relatively prime factars fo, BS &N
nuerse hmit instead of B ful) product of the factors;

6) lnductive limits end example of power series.
wWrite the appendix on
7) invarience of dimension of vecter spaces vie Schroeder

Pernstein.

B) Make an index.



