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B44 course notes part 2

(copyright 1996 by Roy Smith)

§10) Polynomials aver € with solvakie group are solvakle
by radicals

Last fall we proved that solvability of the Galols group is necessarcy
for a polynomial over € to be solvable by radicals; now we prove
this conditicn is elso sufficient The proof works for any fizld of
characteristic zero,

Theorem (Galois): 1f f i1 R[X] iz & polynomial with solvahle Galois
group, then f is o solvable polynomial. Ie. if all the simple
canstituents of Goif) are cvelic of prirme order, then the splitting
field of f lies in a radical extension of Q.

Procf: Frorm the FTGT, we know that to every composition saries for
the Galois group: Golf)=Hp>H1>Hz> ...2Hp - le). thera corresponds a
sequence of fields intermediate between € and the splitting field L of
f: Q=LpcLliC. . CLn=L, where L = the fixed field of Hj. [Wete that
becauze smaller subgroups correspond to bigger subfields, the indices
go down for the graups while they go up for the fields] Then Hj is
the Galois graup of the extension LjCL, and Hij+1CHj is the norrral
subgroup of k-automorphisms of L which restrict to the identity on
Li+1. Thus Hy/Hj+1 is the Galsis group of the extension LicLj+1.
Since by hypothesiz Gg(L) = G iz solvahle, each quotient group
Hi/Hj+1 has prime order pj

We want to add in pj-t.h roots of unity for all j, so choose N:'ITpJ'
rnd adjoin to Lo & prientive Hth root of unity §. Then consider the
sequence of field extensions: Q(E)=LoleiCL1{z)< .. Clpfei=Liel

Sinee LoLiz), and €{¢) 15 a radical extension of @, 1t will suffice to
show that each extension LJ'(E:'CLJ'+1{§:' arize: by adjoining a single
pj th roat g where (Bj)Pj = «jizin Ljic). First however we must
check that by adjoining 7, we have not changed too greatly the
degree af the extension.

Claim: The extension LJ{;]C Lj+1(;]l nas degree either pj or 1.

procf of claim: By assumption, LjTLy+1 wes Galois of prirne degree
pj= psay, so that Lje1 = Lylx), . «p) where {= L,ept 18 the full
zet of roots of sarme wwyeducible polynornial f af degree p, with
coeefficients m Ly Thus LitglcLj+10g) 15 still & Halois extensan ZITtCe

Lj+1isd=Ljls,xy,. ,apl is the sphtting field of the sarne poiyvnomial f,



with coefficients in LJCLJ(;}. Zince the Galois group is & functer for
inelusions of normal extensions, the twe inclusions LjCL jloiand
Lj+1<Lj+ 1{r], induce a restriction homarmarphistn of Galpis groups
pELi+163)/L505) = G(Lj+1/Lj}. We claim the restriction
homormeorphism ¢ 1t ingective. To szee this, recall that inn generat, it F
is the sphitung field of & polynomial f over E, then restriction is an
injective homemorphism frorn G(F/E) te Biji{e b, where o jl is the
set of roots of £, 1n our case, both Lj+105) and Lj+1 are splitting
fields of the sarne polynornial £ with roots {1, . .«pl. Thus we have
a cornpositlon of restrictions

GiLj+1izd/Ljled) — &L+ 1/L33—=Bijlley, . .xpl), where both
G(Lj+1(3)/Ljlc)] = Buyltet, . ,xp)) and GLy+1/Lj) = Bijllecy, . .ceph) are
injective. Conseguently, G(Ly+104)/Ljiel) — G(Ly+1/L5) is mlso
injective. Jince G(Lj+1/L )& Ty, 1t follows that G(LJ+1(§}.-’LJ(E}I]I 1%
isornorphic to either Zg or to {0}, and hence the Galois extension
LylelCLj+1(5) has degree either p = pj, or 1. QED Clairmn,

Mow, since Q=Lo<lgl{e) =0z} iz the splitting field of ¥N-1 hence s
radical Galois extension, it suffices to prove the following:

Proposition: 1f an extension kCL it Galois of prime degree p, where
OCkCLCC, and k contains all pth roots of unity, then L= kip) where

pF it an element of k

All the proofs | have sean af this use the following:

Lamma: Given OCkcle @, where kCL iz Galois of prime degree p,
and k contains &l pth roots of 1, then for any & z1d n GgiL) =dp,
there is gn o in L such that ole) = te = «, for some ¢ in k.

Proof of the propesition {Assurmning the lernma): Since [Lk] = p, is
arume, all we have to do iz find an element « of L, such that « 1s
not in k but =P 1z 1n k. [Then ki{a) will be a subfiald of L larger than
k. henee [(kfa)k] = p, 590 k{x) = L]

Remernber that an element of L lies in k iff it 1s fixed by G = Gril)
Since @ & Zp, if o#id is any non trivial elerment of G, then o
generates G, hence an element p of L helongs to k iff a{p) = B. Thus
we just rneed to find « in L such that o{x)# o, but g(«P) = «P. If «
is chiozen a3 in the lemme above, then we have gl&) = fo =o, In



particular «z0. To =ee that glaF) = «P, note first that oP = 1d since
G22p, hence & = Pl = #Px, where xz(, 3o tF = 1. Then aiaP) o=
(glax)IP = {2 )P = rPaP = &P QED {module proving the lermma).

we will give three proofs of the lemma

1st proof of lamraa: If you knew some linear algebra, the lemma
asserts the swistence of sorme “eigenvectors’ for o. To prave they
exist, we appeal to a fact about linear transformetions, whese proof
will be presented later.

Fact: [f k it & field of cheracteristic zers, containing all pth roots of
unity, and o % id iz a linear transformabtion of & finite dirmensionsl
k-vector space ¥V such that gP = id, then there iz e prirmitive pth
roat of unity £, and an “sigenvectar” « in ¥ such that ale) = poza.

[Sketch of proof of the Fact Since oP = d, hut o = id, o =atisfies tha
polynarmial ¥P-1 = 0, but not X-1. Hence the minimal polynomial f
of o over % divide: ¥P-1, but is not ¥-1, and thus f has a roet § = 1
which is a prirmnitive pth raet of unity. By the "Caylay - Hamilton™
thmererm, o also satisfies its characteristic polynomial % 1K), which 15
thus & multiple of the minirnel polynomial £, so that ¢ is also a root
of « It follows that ¢ is an eigenvalue of ¢, hence some
corresponding eigenvector « exists such that gla) = g = & ]

Using this fact, to prove the lemma it suffices to note that if kCL is
a finite extension, then L is a finite dimenzional k vector space and
any o in Gk{l) defines & k- linesr transforrmation of L.

QED for lst proof of Lemma,

For the second proof of the lernma, we will use an impartent, bBut
emsy, fact sbout "group characters’, which we will prave completely.
Definition: If G 15 & group end L is a field, a "character of G in L" is

a hormmomorphism o G—L* {rorm G into the multiphcative group L*.

aublermnmalE. Artin / R. Dadekind): Any set {o1,. ,on} of distinct
characters of a group & n = hield L, is L-linearly independent.

proof of sublemma: The staternent means if a1, .,ap are elements
of L which are mot all zers, then the rmap G— L defined by Zmii does
rot teke every element of @ o 0. It is true forn = 1, since then for



svery x in G, o1ix) = 0, soa = 0 implies agiix] = 0.
[New let o> 1, and assume
{+)B1Ty* . 4anTn - O,

iz & dependency relation, but that no such relation holds with fewer
thar n characters. Then ne aj can be zero, since if say ap = 0, we
would hawve s depandency relation among g1,.0p-1. Since o1 = 77,
there is some® 2 in G with a1iz) # a#z(z). Since far svery x in G, we
have O & aigilxzi+. +aponix=} = atrif=zlei{x)r +anapnlzlanixl), and
since aiz)x0, hence

{++) aio1igio. +tapoplelen = 0,
i5 another dependency relation among the characters o1,..an. Mowr
if we multiply the first relation (#) by o 1fz) and zubtract the result
frofm the second relation (# +), the first terms ajo1{z) o1 cancel and
we have a relation amang o2,...9n

{+se¢} a2 loz(z)- oylzdlaz + ... = 0.
Since o1iz) = g2i{z) by choice, and az= 0, the first coefficient of {4 ¢4}
is not 2era, and we have a shorter relation, which 1z a sontradiction.
QED. sublamma.

2nd proof of the lemma: First we want to cook up an alament o
in L such that g{e) = to. Egwiwalently we want an « such that

c-lafet = «. Sa we want an element of L which is left unchanged
when we apply 7 1e to it. Choose £ # 1 a primitive pth root of
unity in k, and recall that gP=id. Then T = 77l is & k linear
transiormation oo L with €8 = id, hence the glements id, T,

12 ___ 1P ! jorm a proup whose elements are simply permuted by 7
Thus if we add them up we get a linear transformastion @ =

id + T + te+, . +tP" 1 which is left unchanged when we apply T to it
I.e.T{;p]I:'l:+'|:2+ ..... + P =+ T2 + .+ id = . Thusz if p i3 any
elernent of L, and « = (g}, we get t{e) = . Thus tlw) = - lof«) =
o, 30 (e} = Tox

The anly thing remaining is to show that we can cheoose & so that
P 2 . Since 01, thiz can only happen if «=0, and here is where
the sublemmea cornes in. Since id, &,....aP~1 are distinct characters
of the group L* in L, they are independent cuvar L, so the linear
treansformaticn ¢ - 1d + 5'1 O o+ :‘E gev. .. g 1-p 7P 1 is not zero.
Hence we can choose p ta that o = @{p) = 0.

LED for 2nd proof of Lemma.



Remark: This praof shows that svery pth root af unity it an
migenvalue of o, a stronger statarnent than the first proof gave.

Terminslagy: For ¢ a pth root of unity, the expression

@lp) = B+ ¢ alpl v t2 g2(p)e.stP~ 1 oP~1(p) 12 called a "[aGrange
resolvent”. The only plece we needed the Artin/Dedekind rasult was
ta imsure the existerce of & now zero LaG@renge resolvent with ¢ = 1.
In our next and last proof, possibly the classical one, we wall show
directly that some such resolvent must be non zerg

3rd proof of the lemma: Let # be any element of L not belonging
wk, and vz 1 any primitive pth rost of unity Then 1.8, bl are
the distinet pth roots of unity, and all but 1 are prirnitive. Now we
sirmply form all p of the corresponding LaGrange resolvents,

w1, ., %p-1, and prove at least one of ®1,.. ®p-1 is hono ZETH by
adding therm up. le.

«xQg = B * alp) + TElBY %, - ab-1{g)

ey = B+ Foglp) s B2 GEIB) %] L+ ep 1l oplip)

@z = B o+ glaip) +  ghadip) o+ ¢ w2(P- U a0 1(p)
®xy = B+ glolp) + r€d g ZfB) *on + 2P 1) ap-1(p)
“p-1=§ * rP-latp) + 201 22ip) ¢ + elp-1Np-1} 7P~ 1{p)
Ohserve:;

(i) In each row and column to the right of the equal signs, except
the first, the coefficients cccurring are the full set of distinet pth
roots of unity. For exarnple, in the jth row and columnn, the
coefficients are 1, :J, L ,;JLF"”. {Here, ) runs fram 0 to p-1]
{ii) By the formula for summing geometric series, the sum of the
pth ropts of unity 1+ gl+ e2d +. o+ pdlpr1) = f1-ciEiF(Ll-2J) = B,
(ji1) oiop) = =g, so =0 belangs to k

Thus the surn of ]l the colurnns iz zero except the first, whose surn



is pp. Hence aproi+. +tap-1 = ph. J3ince p 15 tn k, but B 15 not, the
right side iz not in k, hence neither 1s the left tide. Since «() does
belong to k, sorme e with ) 2 1 is non zero. Fer this « |, ale ) =

;'Jacj z & ] which proves the lemma.
QED for 3rd procf of lemma.

Remarks (i) Note that this proof somplements the second proof,
since the second proof showed that for each £ there iz &
correspending B in L for which the Lagrange resolvent 1£ IO Zerd,
while the third proof shows that for every p in L-k there 1z &
corresponding £ # 1 for which the Lagrange resolvent is nen 2ero.
{ii) The theorem we have just proved, that = polynomie! pver ¥
with solvshle Galois group G is selvakle by radicals, is true for
polvnomials over all fields aof sharacteristic zero, and even over fields
of prime characteristic q, provided q does not occur amang the
orders of the sirnple constituents of G. The proof is the same asz we
have given. To see what goes wrong in the third proof for example,
in characteristic p the gquantity pp would be zerc, hence it would lie
in k, and we would have no cantradiction. As for the first proof,
there are raatrices of order 2, in cheracteristic 2, whate eigenvalues

are mll 1, such as the linear transformation of kZ, where k = 22,
defined by (1,0}~ (1.0}, and (0,1} (1,1}, In the second proof,
priruitive pth roots of unity ¢ do nat exist in characteristic p, since
then (XF-11 = (¥-1]P, and 1 iz the gnly pth root of unity.

Application: Fundamental Theorem of Algebra:

(laim: The field © = B(i} = R[K]/{¥Z+1), is nlgebraically closed.
"Wa reed two factz:

Fact (a); Every polynormial of odd degree over E has a root in B,
Fact (b): Every clement of £ has & square root in €.

These twa facts have Galois theoretic formulations as follows:
Lemma Al: B has no non triviel finite extensions of odd degree.
procf: [f RCF is & finite extension of odd degree, the prirmitive
elernent thecrem implies F iz generated by one elermnent whose
minirnal irreducible polynomial cver B has odd degree. By fact a)
above, thiz minimal polynomial haes a roat, hence 15 irreducible iff it
has degree one, so R = F, QEL.
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iz pp. Hence «p+ax 1+ *%p-1 = ph. Since p iz in k. but p i3 not, the
right side is not in k, hence neither it the left side Since o« doms
belong ta k, some o j with j : 1 & non zero. For this « ], c:rlin.zJ'II =

r'Jn:J' £ oo, which proves the lemimm.
QED for 3rd proof of lamma.

Remnarks: (i) Note that this proof complements the second proof,
sinice the second procf shawed that for each ¢ there iz
corresponding B in L for which the Lagrange resolvent is non zera,
while the third proof shows that for every g in L=k thereis a
correspending ¢ 2 1 for which the Lagrange resclvent is non zero.
{ii) The theorem we have just proved, that & pelynarmal over Q
with solvable Galois group & s solvable by radicals, is true for
polynomials over all fields of characteriztic 2ero, and even over fields
of prime characteristic g, provided q does nat ococur amang the
arders of the simple constituents of 8. The procf 1= the tame as wa
have given, Teo sse what goes wrong in the third proof for ex armple,
in charactarictic p the gquantity pp would be zera, hence it would lie
in k, and we would have no contradiction. As for the first proaf,
there are matrice:s af order 2, in characteristic 2, whose eigenvalues

are all 1, such as the linear transformation of k& where k = 22,
defined by (1,0)—(1,0), and {0,1)—(1,1). In the second proof,
prirmitive pth rocts of unity ¢ do not exist in characteristic p, since
then (XP-1} = (X-1)F, and 1 is the only pth root of unity,

Application: Fundamental Theorem of Algebra:

Claim: The field © = B() = RIX]/(XZ2+1}, is elgehrnwcally closed.
we need two facts:

Fact (a): Every polynomial of odd degree sver R has a root in K.
Fact (b); Everv elamant of ¢ has a square root 1n [

Thes& two facts have Galoiz theoretic formulations as follows:
Lemma &) [FE has oo rion trivial finite extensions of odd degree.
proaf: 1f ECF is a finite extention of odd degree, the primitive
elernent theorem implies F is generated hy ane element whose
minimal irreducible polynomial over B has odd degree. By fact a)
above, this minimal polvnomial has a root, hence is irreducibkle iff it
hes degres one, s0 B = F QED.



Cor: Every finite Galoiz extension of R has degree 27, for n:l.

proof: Let ECH be a finite Galois extensioh, with group G, and 3CG 15
a Sylow Z-subgroup If FEK s the fixed hisld of 5, then [KF] = #(5),
and hepce |[FR| = #{(G/#{5) 15 odd., Thus B = F,. G = &, and [KR] =

#(o) - 20 where n ¢ 0 QED.

Lernma B): € has no quadratic extensions.

proof: If CCH iz a quadratic extension, then by our lemma in the
proof of Galeir theorem sbave, since T contains -1 (8 primitive
square roat of unity} K is generated by the square root of an
element « of ©. But by fact (b) ahove, = i3 in €, so0 € = K. QED.

C'ar: The field § has no Galois extensions of degres 27, for n > 0.
procf: 11 CCK is Galows of degree 21, with group G, all simple
constitusnts of § are & £2. Thus the fundamental theorem af Galois

theory irmplies such an extension decornposes Into a tower af
guadratic extensions. Since € has no quadratic mxtensions n = 0.

QED.

Corollary: The held € iz mlgebraically closed.
procf; It suffices to show every finite extension of € aquals €. It
tcLl is any finite axtension, then BECL is also finite and can be

enlarged to a finite Galois extension RCK, where IKE] =27, by the

corollary of lernma A Then CCK iz also Galois and [K:¢] = 211 By
the corollary of lemma B, n = 1, and ¥ = L = €. QED.

Fxercisa #107) Provs: (a) Every patynomial of ndd degrec aver R
kas a rogt in R, end (b} Every elernent of © has a square root in €,
herce € has no guadratic extenzions {(Hint: Use the 'intermediate
wralue theorem' from caloulus for (a))

This completes sur discussian of the praof of Galeis’ general theorem
on soluability of polynomials with salvable Galois groups. We want
tes show in the next section how to actuelly produce sglution
formulas, for the general squations of degree thres and four,

§14) Elementary symmatric pelynomials and
The Galois group of the 'general squation’ of degree n
We know now, since every subgroup af Sq 15 & solveble group, that



svery polynornial sver @ of degre= ¢ 4 is solveble by radicsls, which
menns that its salutions lie in a field ebtained from O by the
successive adjunction of square roots and cube roots. Consequently,
the splutions: af such a polynamial have rational expressigns in
terms of rational numbkers, squars rocts, and cube roots. But how
do we find such expressions explicitly? It would be rether unwieldy
if every polynarmial of degree thres, say, had a different solution
formnula. We would greatly prefer a "universal” solution formula
that works for all pelynormiels of degree three. In that case we
really should be trying to salve, not all particular polynernials, but
the cne "genersl’ polynomial of degree three, the one whase
cnefficients are latters, 12, vartahbles.

The general polynarniel of degree n is s polynormial f(X) =

Hilemq AN™ 1, _+mp-1X+an, with letters aj for coefficients, where 1t 1z
understood that any rationel nurnker fnay be sukstituted for each
letter aj. Thus the coefficents are tharmselves independent variahles
aver . Hence thiz iz a polynomial over the field k = Qial,...an) of
ratisnal functions i the n independent variables a1,..,8an, over 0.
This field iz the fraction Field of the polynomial ring Qlay, .splon
those independent variables, and f belongs te the polvynomisl ring
Oiai. .epHl¥l = k(¥), where ¥ is en elernent which is transcendental
aver k. Thus, with reference to Q, X is another variable,
independent of the aj. Now since we wont to splve F, cur first
guestion is: what is the Galois group of { over k7 Since f has degree
n over k, and k iz a field, we know the Galois group 18 isomorphic to
a subgroup of Sn. We claim that in fect Gif) = 5n

Theorarm: The Galois group of the "general” palynormiel (X)) =

Nemj it~ le  +an-{K+an, with coefbickents in Qiay,.. anl, (where the
m, are independent transcendentals over 0Q), 1z = 3pn.

prooE: To see this, first let a1, . on be roots of fin some extension
field of k, and let L = k(o 1, . .oqn) be the splitting field. Our first
remark is that L = ©{x1,. . ¢l le, at first we se& that L =

Klwq, xpn = Qlal,  en«l, . ,%p), but since (X} = Kl+a i XR™

1+ +ap-1X+ap = TT(X-«{), it follaws by multiplying out that each =
iz + & surn of products of the e ,i. In fact ap = (-1)0TTe j. and a1 =
~(Ze i), while mg & Teym), summed over mll i<j. Similarly ag =

(-1)%{the =urn of all products of s distinct «'s). In any case, each as



15 in the field generated by the «'s pver @ se L = Qleq, .xpl, ez
claimed. Thus we want to compute the Galois group of |, 1= the
Galoiz graup of the extension O{{aq,  ap)cQix], . &n), whers the
{a;} are independant variebles over Q, and the «'s are related to the
a’: agz above

Now let's take a dual point of view: consider a set of n independent
trantcendentals 8y, pn cver 0, and let L =Qip1,...Bnd. Form the
pelynarmial g{X) = TT{X-p )= X=g Xt 1le +i-1nlep- 1 ¥e(-1)00 g,
where ag above, each o+ is the zum of all products of t distinct B's.
le. a1 = -(&pj), o2 = Zpifj...., and an =(-1)7TTg;j. These functions
gt in the variables {8} are called the "elernentary symmetric
functions' of the pj, because they are among the simplest
expressions which are unchanged by every permutation of the p's,
and because they generate sll symmetric functions in e sense which
is made precise in the “fundarnental theorem™ in section #13} In
particular, the expressiocns Telf1,. ..k Aare invariant under the
action of the symmetric group Sn on the p's.

Thusz the relation between the zolutions and the coefficients is the
sarme for g(¥) as for f(X), the anly difference being. for f we assumed
the coefficients were independent variables, while for g we assurned
the solutions were independent variables Naw we clairn: (i} the
Galois group of p(X) is = Sp, and (i) HX) and g(X) have isamarphic
Faloiz groups.

To see (i), recall that the Galois group Glg) is the group of the
externzion Qlaq,. . opJCQlp1, ... Bpl, and iz izomorphic to & subgroup
of Bij({ﬁj}}ESn_ Ie. since every autarnorphism of a1, ....Bn) which
fixes Qla1,..an) must permute the p's, restriction gives a
hernormoerphism Glg)— Bijl{gjl) = 3n, which we know 1% injective
Thus to prove S{gls S, we just have to show this restriction
hormornerphizim is surjective, ie. that every permutation of the ¢'s
extends to an automorphizm of the extension
Qlo1....oncQ{g1,. .Bn). But since the [p)} are independent
trenscendentals over @, every parmutation of the B's extends to an
automerphism of the polynomial ring QIE1,...Anl. and hence to an
autamoarphism of the fraction field Lip1,....Br). Morepwer, since the
functions I+ are invarient under all these permutations, every
element of 3 vields an sutornorphism which fixes the field
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Qi{a1,..on). Hence Gig) = 5. QED (i)

Now ta prave {ii), that #{X} and g{X) have the sarne Galois graup, we
want ta show the extensions Q{e1,...on)cQ{p1,....bn/ and

Olai, .ap/CQixe,. o) are itamorphic. Jince these are the
splitting fislds of the polynomials g and f, it suffices Lo find an
isorneorphisrn between Q(al,.. an) and Q{o1, . .op) which carries the
palynomial f{x) mnto g, Thus we need an isomorphism of fields
Qlmy....an} = Olg1,...0n) that carries esch cosfficient aj af f into the
correspanding coefficient (-1)igj of g [t will follow that there exists
an isemorphism of splhitting helds Ofocq, ... =) = Qlpy.....Bn), and
sinee the autormarphisrm group of OpL,...Brn) over &{a1,. . .an)
captaing arbitrary perrnutations of the p's, we can sven choose the
auternorphism Ofec 1, ,&n) = Qip1, .. Br) to Carry each =i Into Bi.
So finally, to prove the exiztence of an izarncrphizm Qial,...an) =

Qfe1,...0n), we just need ta thow that the {{-11g; } are themselves
independent transcendentals over §. Let's be precize sbout this:

Definition: A collaction of elements ©1,...Trn 10 an extension field of
k, are independent transcendentals owver k iff the orly polvnormial
£(Ty,. .. Tn) inn the polynomisal ring kITy,...Tn! which vanishes when
each Ti iz replaced by 71;, is the trivial polynomial fF=D.

Remark: (i} Another way to think of the previous definition iz that
the T1,...7n are algebrajically independant aver k, which means
simply that any finits set of distinct manomials in the Tz are
tnearly independent over k

[(ii} Stul! ancther way to think of this definition 13 that T1,.., T &re
independent transcendentals over k iff any for choice of elements
®1,.,%pn in any extensan field L over k, there is 8 unigque k
homarmorphist kity, .tnl—L teking each 7i to «j. (It 1s because of
thizs pmnt of view, which we think of as "substituting” the «'s for
the t's, that we sometirnes call such *'s 'independent variables”
over k}

Leynmaa: [f ¥y,  Hpn sre independent trenscendentals over k, and g j
is the jth elementary symmetric function of the X's, then
{{—lljcrjij: 1,.n, are al:o independent transcendentals over k.
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procf: Let F{T1,...Tn) be any polynormial in o variables over k such
that Fl-a1,..(=1aqn) = Fl-a1(X1,...Hnl... f-1Monlx,. . Xn) = 0 in
kI¥1, . . ¥pal. Then we should get zerc by substituting for the X's, any
elerments of any field extension of k; ie we should get =zero when
substituting « j for Xj, where the «'s are the sglutions of the
polynornial f over Ola), .an), given above. e then
Fl-agqley....o%nl,. f=1anie 1,.mnh = Dban Oley,. . en). Howevar,
cince the relation betwesn the solutions and the coefficients of f mivel
g are identical, we Know (1)l jfes,.. .mn) = &) for every j. Thus D

= Fl-oil{etd, ...tn),. =1 Mapley, anlh s Flaq,..apn) in Qle,..xn).
Since we have assumed the elements {aj} were independent
transcendentnls over Q. the polynornial F they satizfy rmust be
identically zero, and thus by definition, the elernents {{—1}jdj} are
ulso independent transcendentals over 0. I0f course the (o], without

the minut signs, ars also independent transcendentals ouer 0 ]
QED lemma.

The previous lermme completes the procf that the Galois group of the
generat polynomial of degree n is & Sn. QED theorem.

Remarks: [i] Since the Galaiz group &(f} = Sy, in particular Gl acts
transitively om the roots, hence the general polvrnatrial is irreducible.
{ii) This proof appears ta work alsc in characteristic p, in particular
the general polynormial f is separable tn charac. p, with Gif] & Sn.
(iii) In spite of the fact that the general polyromial of degree 3 say
hasz Galois group 53, in characs. 3, we do not sxpact the polynomial to
ke zolvakle by radicals, since 3 divides #{331. In fmct, even the
generel quadratic equation cannot ke talved by radicals in charac. 2

Exercise % 108) (i) If k€L iz a hinite Galois extension with Galols
group 3, and if HCG is any subgroup af [, prove thers exists a finite
Galois extension ECF whote Galois group is isornorphic to H

(i) Prove, if @ it any finite group et all, then there is a finite Galois
extension ECF whose Gealois group is isomerphuc to G, and that E can
he chasen to have any desired characteristic.

Unsolved preblem: To deternune whether for every finite group G,
there is & finite Geloss extenzion OCL with Galals group = . W wrill
present below & proot of the special cuse where G iz abelian,



§12) Discriminants, and the Fundamental Theorem on
Syminetric Functions

Althaugh Sy iz not solveble for n > 4, there is elvweays one normal
subgroup of Sp that yields a cyclic guotient, namely An<S3n. This
means for the general polynomial of degres n, there i aiways an
intermediate field between the coefficient field and the sphtting field
that is quadratic over the coefficient field, and (in charac. = 2)
which is sbtained by adjoining a sguare root of an expression in the
coefficients. In degress 2, 3, 4, where the general polynornial is
solvable by radicals (8t least in charac. = 2, 3], the first step in
finding & solution formule iz to deterrnine explicitly & generator of
thiz first radical extensionn. Let us assume kelow that the
characteristic iz neither 2 nor 3.

If 1,...%pn are the roots of the general nth degres polynomial f, to
find & generator of the fixed field of An, we seek u rationsal
expression & in the «'s, which is invariant under even p#rrutations
of the a's but not under odd ones. Moreowver, since we want to show
the extension is radical, we weant § such that 62 = D lies in the field
fixed by all perrnutetions Thus, for any permutatian ¢ we should
have 52 = @(E2) = plEielb), so that b and (8] have the same
square, and yet p(dl=5. It follows that we must have p{&) = -§. So
we logk for an expressian & in the a's which changes sign when we
transposs two of the «'s. Now, if for same particular pelynamial bwe
roots mre equal, we would heve an expression & which changes ZIETH
when those two roots are transposed, yet alse stays the sarme! The
only such field element is zero. Thus we are lacking for an
expression in the o's which changes sign when two a's are
interchanged, and squals zero when two o 's are given equal values.

If we still haven't guessed 1t, we can consider the familiar case af
degree n = £, the general (rncnic) quadratic eguation wo+bx+e, whose
rocts are a1 = (1/2)-b + [(b2-42)1/2]), oz = (1/2)(-b - (bhZ-45)1/2]),
These twg roots are equel precisely when (bZ2-4c)1/2 =0, 1t follows
that good candidates for B,D are b = (bZ-4¢)1/2, and D = 62 = bl-4c.
We see also that § = «1-a2. What meore logical way is there to get
an alsment which vanishes when two roots are equal, than to
subtract the two roots from each other! Mote that § alsa changes
sipn when we transpoze the two roots.



MNow let's find an mpaelsgous elemant b for & mome polynomial of
degree n=3, whose roots are «1,«2,%3. We need to involve the
differences (o 1-%32), (21-«3), and («2-«3), in such a way that the
elernent & vanishes when any twa of the rootz are equal, soa
plausible candidate for & is the "difference product’ § = (ee1-a2iled-

w3ear-x3). Then O = 82 - t-e:-:;l-cw.z}zt-::f.1-&3}21-:-;2—:::3}2. The
squared element D = B2 (lying in the coefficient freld) is called the
"dizerirrunant’ of the polynomial §

Definition: lf f iz a monic polyvnomial aver a field k, with roots
@q....%p in some splitting field, the diserimunent of §is the

expression I = W{ai-mﬂz, where the product runs ever all i.j with
1< 1¢)tn.

Remarks: (i) The discriminant D = £ is always an element of the
corfficient field k In fact, for the case of the (separakle) general
polyrncrmial, D is fixed by the entire Galois group Sn, hence It belongs
to the coefficient field. Since this holds for the general polynomial it
holds for all particular pelynomisls We will se= later that D ic
actually an integral palynomial in the coefficients of f, and will even
find an explicit expression for D in lew degrees.

(i) In charac. p=2. note that § itself lies in tha coefficient field of the
genera] polynomial. le & transposition takes § to -4, but in
charscteristic 2, we have § = - & Thus b 15 fixed by the Galoit group
of the (separable) general polynomial, hence lies in the coeffinient
field. In particular b doss not provide a generator of the splitting
field of the genersl gquadratic polynomial in charec. 2.

{iii) We sornetunes encounter the similar expression Tej-o« jl,
where i,) run over all pairs with iz j. However this expression is
slightly different from D since it conteins the factors fo = e jMax j-exid

n place af l[ur.i—uj‘lz Hence this new axpression iz nat I but
{—1)“'["1"1]""IED, g fact which is not noticed in same books.

Now recall that a 'sclveble’ polynomial f iz one whose roots lie in &
field cbtaired in stages by adjoining generators, each of which has a
power lving in the previous subfield. Hence in order to find a
formula for the rasts, involving enly the coefficients of . we could
express the sppropriate power of each of these generators in terms
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of the generator of the previous subbeld, until we get dawn to the
cnefticient fleld. Hence the last step in every case wauld seem to be

expressing the square of the quadratic generatar Ee = Din terms af
the costficients. (A formuls for the solutions can also be obtained
directly, without the interrmediate step of finding one for the
discriminant, but having a formula for the discrirninant iz alsg
useful later for computing Galois greups of special cubics lef. ex. #1110
below]) Corputing the discriminant formula is not an entirely
trivial task, and offers a convincing demonstration of not just how
clever and insightful the rnathematicians of old were, but also how
diligent and skillful they were at performing lengthy and arduous
calculations accurately. [ know about four different approaches Lo
this general caleulation which [ will describe. Fartunately todey one
can alss appesal te B computer slgebra program like Mathemnatica or
Maple, to make carrying these calculations sut rmuch less odious.
Finally, in the special case of the discrirminant of & cubic with no
gquadratic terrn, we will give a relatively easy determinant
caleulation using the "resultant”, and another sven easier
calculation pointed cut by Robert Varley.

Theorem: (i) 1f §2 = D is the diseriminant of the palyneornial f, there
iz an =xplicit computetional procedure for ax pressing D as &
polynornial in the coefficients of £ In fact, for each n1, there = A
universal formuia for D, which holds for all { of degree o,
(#i) fn = 2, apdd f = Xe+h¥+c, then D = bZ-4c.
() 1fr = 5 and f = XJ+pXen, then D = -4p% - 27g%.
Giv) If i = 3, snd f = ¥J+pHesg¥+r, then

D = p242 - 43 - 4p3r +18pqr - 270"
proof: Consider the general polynomial f of degree n. We know the
discriminant I is fixed by all elements of the Galois group, hence hwes
in the soefficient field, so [ is the guetient of some pair of
polynomials in the coefficients of £ Bub we want Lo express D as one
polvnomial in the coefficients, and we want ta give an explicit
procedure for preducing that polynomial. We procead az follows.
By definition D = TT{x)y- )2, product over alliji1 ¢ v ¢ ) < n, where
the «'s, the roots af £, are indepencdent transcendantals over the
hase field. Permuting the o's merely permutes the factors of D im
sorme way, hence leaves D fixed. Thus D is & “syrmmetrie
polyromial” in the «'s, in the sense of the following definition.
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Dafinition: & "syrnrmnetric polynomial” in n wvarables X1, .#An
suer & field k, is a pelynomisl in kl¥1,.. . Xnl which is left fixed by
every perrnutation of X1, An.

Definition: The jth "elementary symmetric funetion’ of the
variables ¥1,...%n, is o j = a1, Ka) = EXif1)... K 5), the sum of
all products of j different varnables among the Xy . Xn.

[In particular, o1 = X1+ *¥p, d2 = L ¥jXj, tor all 1< 14<]tn, and
T = TTHil

Since, up to }gn, the coefficients of F are just the slementary
syrnmetric functions in the roots, part (1 of the thesrem abkove
follows from the so called "fundamental theorem on symmetric
functions", proved next. We will give two proofs of this result.
Proposition: Fuery "symrmetric” palyromisl in kX1, Xnl helongs
to the subring klo 1, onlckiX1,...4nl. Mereover, thers iz an
effective procedure for expressing & given symrmetric polynormal £,
as & polynomial in the {o ).

First proof: The method is to order the rnonoruals in the
polynomial f "lexicographically’, and then show haw to reduce the
"degree'' of the leading rmanomial of { by subtracting an explicit
monomial in the oj. This process mey introduce new rnancroials in
the Xj into f, but only onez of lower degres. Jince this process lowers
the degree of the leading rmencrnial at each step, and there are enly
a finite nurmber of menomials having degree less than any given
ane, this procest must stop in a finite number of steps. The number
of steps it at most the number of moenomiels having degree ¢ the
degree of the original leading term of f, (which can he larger than
the number of terms in the original polynomial f).

Pecall that in the “lexicographical ordering’' on rnonomials in the
varinbles X1....Xn, we have ¥11X2i2. Xpin » X1J1x2JZ HAnln iff
the first non 2arp integer in the segquence (i1-31J, (iz-jz),. dipn=jn) 15
positive. The “leading term” of a polynomial in X1,..,Rn is the term
whose monomial iz largest in the lexicographical ordering.

Lernma: if f iz & symmetric polynornial with leading moenermial

o= XilXz2 Mpln, then i1 2 iz..2 in

proof: Since f 1s symmetrie, F rmust also contain the monarmeal oim)
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for mvery permutation o Thus if « ¢ B, end o is the transposition
(xp), then [ contains the monomial afmd =
Ejiﬂ{ziz....Hmiﬁ-....}{E.im....]{nin. Since m 1z the leading term, we must
have m * alm), e iy - 1y : 0 QED.

Exercise ¢ 109) Prowve:
(i) The leading terrm of the product of two pelynomiale, in the
lexicographical ordering, is the product of their lemding terms.

(ii) The leading term of ajf iz (X1Xz.. X7,
{iii) The leading term of o{®1a2%2 on%n is
{}{1&1+52*....+an}{}{zaz'33+....+anj{}{333+....+an]||: _____ WXl

As a consequence of the previsus lemma and exercise, if £ =
£¥111K212 . Hpin is the leading term of & symrnetric polynarnial f,

symrenetric and has smaller leading terrn than b Thus if we repeat
this process, to reduce the leading tevm of g, and so on, we will
eventunlly get ere, at which point we have sxpressed f az a
polynemial in the & ;. QED fer the first procf of fund. thm. on
symmetric functions, hence also for part (i} of Thecrein.

First proof of ganersl cubic discriminant formula:

Remarks: Using the algorithm frem the praof of the previgus
proposition to express D = (K-I2(H-212(Y-Z}2 in terms of o1 =
W+Y+Z, and a2 = XT+X2+YZ, and o3= XYZ, iz & bit tedious when
done by hand. So let's use Mathernatica to do the caloulations. Care
must be exercised Rowevsar, Since even cornputars can give wWrong
answers when the data is entered in & forrm they do not recognize.
In particular, ane needs to separate the factors being multiplied like
bhis: (M ¥ + X Z + Y Z), since if two multiplied letters are tao close
tagether, the program treatsz them as one symbol XY and pives
rasuelts like X XY +X< ¥, instead of 2uEY . Indeed, unless sufficient
spaces are used genercusly to separate almost everything, the
calculstion can yield sirnply the wrong answer, with no wWarning.
When entered correctly, the whole calgulation toak five steps, each
cornputation taking 4 or 3 seconds on & Macintosh llsi with 17 megs
of built in RAN.
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Step one: Begin with I = §2 = (-YI2(X-712(y-2)2, and notice that
in the lexissgraphical ordering. the leading term of {(X-Y) iz ¥, the
leading of (X-2Z) iz ¥, and that of (Y-2) is Y. Jince the leading terrn
af & product is the product of the lemding terms, by exercise #109)
above, the leading terrn of D is ¥4Y<Z Then the elgorithm in the
proof of the Prop. tells us to subtract from D the monornial #1Z2a32

= (M +ZNE MY+ MP+TIE

We evaluate D - g1€g2% in Mathernetica by entering the cormmend
Expand({X-YI*2(H-2p2{r-I12 - (X+T+Zm2(KY « L2+ T212], (but
separating the symbaols by more spaces), and hitting the two keys
“eommnand” and “return”. The result of this caloulation has 13

terms, the leading ane being ~4K4YZ.

Thus the mext caloulation is D ~or12022 +d4o1%03. le.

Step two: In Mathemaetica one can re enter the result of a
previous calculation by typing %, instead of retyping everything, so
this tirme we enter BExpand[® + 4 (X + ¥ + 23 {X ¥ 2)], spaced like
thiz, then hit command/return. Result: 20 terms; ~qEIYIe

Sten three: Expand|¥ « 4 (X Y + X 2+ 7Y Zird]: 17 terrmns;
18M3YEZ +

Step four: Expand(% -18(N+Y+2ZNK ¥+X 2% ZUX ¥ ZH (with more
spaces between symbels); 1 term, ~ZTREYEZE,

1 can do this one, but Mathematica gives:
Step five: Expand[% +27(X Y Z»z] = D.

After cornbining the calculations we have
D -ri12ez2 + 401303 + 4022 - 18ciozg3 + 27032 = 0O,
Herce, D = o32a72 - 421307 - 4023 + 18m10203 - 27032,

Of course we sren't quite done, since the o's differ from the
cocfficients of f by minus signs Te if f = H3+pK2*qE+r, as in the
thearem, then o = -p, o2 = o, 7% = -r, =0 in fact the rminus signs
all cancel, and we get [ = quE - 4por - =1q3 +18pgr - 27re

QED, tirst proof of diser. formule for gensral cubic



1 3

Second appreach to fund thm. of symmeatric functions.

‘We pive a second, faster algorithm for expressing SVITLIMELric
polynormials in terms af elermentary ones, and use it on D, again
with the help of Mathematice This method uses induestion on the
numkber of variskles, so it is mest useful when n = 3, since
carmputations for n = 2 are easy, making the inductive step simpls,

Let g be a symmetric pelynomial in n variables, and set

g (¥1,...¥n-1) = gl¥1,... Xn-1.09). Then E is symrmetric in

n-1 wariables, hence by induction can ke written as a polvaornial
f¢3) in the elernentary symrnetric funetions 7 j of n-1 variables.
Mote & j(X1...Xn-1) = @ j{X1,...%n-1.0). Now put G =g- kig). By
construction, 8 it syrametric s n variakles and EXK1, ... Xp-1.00 = 0.
Thus Xp, divides G, and thus by symmetry all Xj divide G Thus G =
Tnegl, where the degree of every term of g1 is three less than the
deprees of the terrns of g Tow repeat this procedure on g1.

QED 2nd proof of fund thm on symm fnes

2nd camputetion of D for general cubic:

Since the new slgorithra lowers the degres by three each time, 1L
should only take two steps to cormpute the sextic discriminant of a
cubic, as apposed to the five steps of the previeus algorithrm. But we
da have to cormpute the inductive steps as well.

Step one In D =(X-TI2(X-2)2(Y-2)Z, set Z=0, getting D= (-
v12%2Y2 = (by hand) {X+Y)2 - aRYHNTIZ = [71Z - 4az] (az)e =
F12a22 - 4oz

[[ate we already have twa of the terms from our previous
algorithm ]

Mow consider E = D - 512522 + 4::23J which we calculats on
Mathematica, getting E = (XYZ)h = o3 h, where h haz 10 terms,
In fact, h(X,¥Y,2) = ~ARIAHEY » BRYE -4 D + 2.}, =o setting 2=0
i h, pives R Y)Y = -4¥3+6HEY + EXYZ -4Y> = (by hand)

4 {XAYIT - BOHLYHKYI + BIXYIE+Y) =

~a(X+Y)3 S LBIXYIX+Y) = -4015 + 18 7102,

Again an Mathematica, we compute h + 4017 -1Boiaz = -2TEYE =
-27a35 Thus h = -27a3 - 4013 +1Br102, and

E=o3hs= -2703L - 4217073 +18a1a203.
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Then DD = E + a::rj_z-e:l‘z2 - 4633 =

~27a03% - 431907 +180 19203 + 012038 - 4027 =

-27r¢ - 4pdr +1Bpgr ¢ plgé - 43, as desired.

QED, second proof of diser. formula for general cubic,

Exercisze *110)

(i) Express (¥-Y)2 as a polynomisl in o3 = XY, and oz = X¥.
|IQED for part (i) of tha discriminant theorem nbove]
{ii}) Express K2eW2+Z2 as a polynomial in g1 = K+¢YW+2, oz =
WY+ RKZHYZ mand o3 = KYZ

{1ii) Express XF+¥3+53 @ a polynomial in g1 = X+¥+2, gz =
Ky +XZ+YZ mnd o3 = XYZ
{iv) Express ¥2+v4479 az a polynomial in oy = X+eY+Z, oz =

WY+ MT+YE, and o3 = XYV

Third derivation of gen’l cubkic discrim, formula:

(Sketch, using Van der Monde's determinant).

Consider I = 82 = [e1-22)8{a)-3)e(ez-23)2, the diseriminant of
the general polynomial of degree 3, with roots sy ez,«3. Then § is
the determinant of the 3x3 matrix A, whose jth column is

(1, &j. «j2), and thersfore 8 is also the determinant of Ab the
transpose of &, Thus D = 582 = det (AAY) =

TOW2W4 + 2w W AT - 1723 - -rr(j-n:-'..2 - ﬂlaﬂq, where

mi = ocli*cr:ziﬂ:qi. Now Jzing sxercise #5308} and the fmct that 1f [ =
¥i+pHe+g¥+r, then p = -g1.q = g2, v = -g3, We can get part (ivr) of
the dizgcriminant theorem, by substituting and sxpanding.

QED, third proof of gen'l cubic discrim. fermaule.

Since the previous arguments depended on use of Mathematice, we
give a direct argurnent for reduced cubics, due to Robert YVarley.
Derivation of the special cubie discriminant(Varley):

Iff= 15{3'+p}=:*q we know by the fundermental thearern onh
symrmmetric functions that Dif) can be written 8z a polynomial in p, q
with integer coefficients, and we want to calculate it Let's ask
ourselvas what this polynornial rmust look like. Observe that D =
{ui—mz]lzliai—ﬁjﬁfuz—cxsjz it homogenepu: of degree six i the
roots e, while p = g2 = (@¢im2+a1x3+ezx3) is homogeneous of
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depree twao, and g = {123} is homogeneous of degree three. It
followrs that the only possible rmonomials in p, o which can pccur are
pY and g2, so that D must equal a polynomial of form apovbgs. Now
we just need to cormpute 2 and b, which we can do by caleulating D
for m couple of convenient cubics. We need to choose twa simple
rronic cubics whesze roots add to gero, such as £ = (E-1){X+1)X =
¥3I-%, and g = {-10Z{x+2) = ¥3 -3X+2, Since g has two equal roots,
we know Digl = 0 = api+bgs = al{-3)3 + b(21€ = -27m+db. Since the
roots of £ are 1.-1,0, we compute D(f} =(1)€(1)2{2)2=4 = apo+haé =
mi~11% = —a. Thusa = -4. From Dif} = 0 = -27a+db, then b = -27.
QED.

In the next section we use a gensralization of the discriminant o
ohtain & calculstion for the general cubic that can ke done by hand.

§17) The Rasultant, and its formule az a determinant.

In this section we sketch ancther approach to calculating
dizeriminants using the determinantal forrmula for o related
invariant, the "resultant” of two polyneamials. Fecall that for a
monic polynornial | = WNagy K- sgu. jHran, with roots «1,..%n,
the diserirninant is defined as D(f) = TT{aj-« )2, product cver all i
Thus DIEY = O sff for some ixj we have «j=oj, iff the rosts of f are
not all distinct, iff f has sarme "multiple’’ roats, iff £, {' have e
common roct. We alza knew that DA iz & "universal’ polynomial in
the coetficients of f Naw if f,g are two monic pelynarmials over &
ficld k, it is of interest to have a way to measurs whether they
have a root in comraon. If the roots of f are «1, .4n, and those of g
are B, . .Brn. One way to rneasure this is ta introduce the
“rasultant" of tg, dencted R{f g), end defined by the difference
product T{ei-p ), for =il i,j Meresver, zince & polynomial haz a
multiple root iff it has & rost in commen with its derivative, there
should be a connecticn between the discrirninant of f and the
resultant of f and f. Since f, f are not usually both menic, we need
to extand the definition of resultant, and of discrirninent, to non
monic polynomials. “we do so a3 follows.

Dafinition: If f - agX9+a1 X9~ 1+ sap-1X¥+ap. is & polynomial with
coefficients in a field k, with rosts & 1,.,«n in some extension field,
end if g = baMT+ g K- Ly by -1 Htbm, with reots p1,..,Bm, then
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we define the dizcrimnant of f as D{f} = ag2n-Z “Emi-mj}z, for all
i¢j, and the resultant of {,g as Rlf,gh = ﬂnmbuﬂﬁimi-ﬁjj, for all i.j.

Remarks The conztants in these definition= do neot affect the
venishing properties of these quantities, az long as agbg=0, and hawve
the following advantages: the factor in front of D{f) makes the
discriminent of aXZ+hX+¢ carne out as bZ-4ac, instead of
fbi-4aci/ac, and the factors tn frant of R{f g} make the determinant

s

forrnule below corme gut simpler, and hence easier to rernember.

The deterrminant formula for the resultant is based an the following:
Lemma: For f,g as in the previous definition, non constant
polynomials, the following staternents are equivalent:

(i) f,g have & common root 1n some extension field of k;

(1) the god of f.g in k[X] has degree & 1;

(1it) the lermn of (A B) in k[X] has degres ¢ m+n-1;

(iv) there are non zerc polynomials A, B i k[X], with dep{Al) £ m-1,
deg{B) £ -1, such thet Af = Bg;

{v) the following s=t of polynomials

fxtn=1f yrnm2g  w2F gf f kDo lg, wnm2g,  xZg, xg. g

is k = linearly dep&ndent in k(X

{vi) the casfficient vectors (an, a1, ..ap.0,....0],

{0, ag, 21,. .an.00000 A0, . 0.&Q, ai.. .aph
Chp, bi1,....0m.0, . DJ (g, ba, by, . b A, .U].. ......... s
(G0, 0 B, Bi....bm!, of the polynomiels in (v) are linearly

dependent in kDT,

{wil) the daterrninant of the matrix whose rows are the coefficient
vectors in {(wil 1s zero.

proof: Thiz iz & straightforward exerciza. QED.

This teads to the following "Svivestar’s” formule for the resultant:
Prap: For f, £ as in the previous definition, the resultant R{f g}
equals the determinant of the following (m+)«{mm*n) matrix, where
there are m rows of «'s and n rows of p's, and where spaces not
containing a's or b's are filled in by zeroes:



R ag a1 e By = R{f,g)

Procf: Sketch: Conszider the casze of the general poiynomials £ g
where the «'s and ¢'s are variables. Let J§ in 2[...,&1,...,1:_5, .| stand for
the determinant above. |f we factor out ap from the first m rows,

and bp from the last n rows of 3, we see S = ap™Mbp™- (polynomial in
the ai/ag's and bj/bo's), and since the ai/a0's and bj/bQ's, up to sign,
are elernentary syrometric functions of the «'s and p's, 5 can be
expanded ms agThat (polynomial in the w's and p's). Then since 3
vanishes when f,g have & comman root, 3 is a multiple of

an™bg™ [T, {etj-B ;) = R, in Ola,bl. Moreaver, £ iz homogeneous
af degree m in the a's and of degree n in the b's, and when expanded
i terms of m's and b's, it contains the {product of the main diagonal)
term apn™Mbol. We will prave the sarme properties for the resultant
FE = Rif,g) = ag™bnDTl jleci-pj) Since R is syrnroelric in hoth the
«'s and the p's (separately). R can at least be written as some
polynomial in the a's and b's. (le. ﬂi}_j':-ﬁti,—ﬂ_j'! cean be written as a
palynarmel in the aj/ag, and bj/bg, and then the factors antf™, bgh
silow clearing denominatars.)

Since glX) = boTl; (X-8;), one gets Tj gle) = BV 3,5 (e i=p ). Hence
Rif,g) = an™hgnIT jlai-pj} = ap ™Il gleci). Since g2 homogeneous
linear in its coefficients, the b's, this shews that R i1z homogeneous of
degres 1 in the b's. Sirmilarly, f{3) = agTli (X-«;), so TT f(E-JI' =

agtn T'I'i,:j (pj-eci) = (~1)0T kD i,y tei~fy. Thus R <
{(-1mmeanTl j f{p;), s0 R iz hemeogeneous of degree m in the ', Naw
that wa have shown both R3S are hoth polynormals in the n's and
h's, mnd homogeneous of the same degrees, and that R divides 3 in
D[na, b, it follows that 3 is a retional multiple of K.

New we know 5 containg the term ag™hmD (with cosfficient 1)
Hence it suffices to compute the coefficient of this monomial in R.
Since we saw above that R = ag™MTl, gle;) = agTlj (boeify . rbyn),
we see that the product of the constant terms of the factors in T is



Bm D, herce this expansion contains exactly the term ag™Mhm, T It
follows that B(fg) »auals the determinant 5. QED

Finally one can prove, from the equation | = anTl{X-ci), and using
the preduct rule for the derivative, the following connection
between the resultant and the discriminant

Prop: With f as in the previous definition, we have

Fiff % = ag<n™ HTixi-=ji, for 12 j,
= (-0~ 12 qo20-1 THoy = afi2, far i<,
= (-1)nin-1M2 ag DI,

Corollary: If { is monie, 1.£. a0 = 1, then Rif f9 = (-13nin=1M2Z pif).

Corollary: (i) §f £ = X3+pkeq, then D(f) 12 minus the determinant of
the 5x& matrix:

10 pagdd
010 pana
3 0p 0O = 4p3 + 27g2.
03 0 p O
703 0 p

(34 If £ = XF+pXZegX+r, then DiE) is minus the determinant of the
S=30 maetrix:

1 p g r Q
o 1 p g r
7 2pg 0 0 = -piqZ+4qg? s 4pdr -18par+ 271
0 3 Zp g O
0 0 3 Zp gq

Remarks: In sorne pesmetry books the discriminant is defined as
R(££f7. This is mdventageous for projective geometry since DU} then
vanishes also when f actually has degree lower than n, which
reves)s that the hormogeneous polynomial of degree n, of which fis
the mtfine version, has & root ‘at infinity" in commen with . Eg. if
n=2, this makes the discrirninent of aXZ + b¥ +¢ equal ~afbZ-4ac),
which vanishes also wher a=0. On the other hand, this is
dismdvantsgesus for Galois theorists, since we like the fact that our
ald discriminant has s square root in the coefficient field precizely
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when the Geloiz group is contained n the subgroup AntJn.

Ewarcise #111) (i) Aszsurne f is a zeparable polynomiael aver a field
k of characteristic 22, with distinct roots o ],...%n in same tplitting

field, apnd discriminant D = W{mi"m‘j]lz. Prove D has a sguare roak 1n
k iff the Galois group of f is contained in Ag.

(ii) Why would part (i} fail if we defined DUf) as R{f ) 7

(iii) If F 15 an irreducible subie over a field of characteristic =2 and f
is separahble, prove GlF) & Z3 1ff DU has & square root in k. and G
= 23 iff not.

(iv) Compute Gf) for f = X3 - X+ 1 apnd k = 23

(v) Compute G(F) for f = ¥I-%X+1andk = 25,

(vi) Compute G(f) for ¥3 - 3K - 1, over Q.

(i) If £ = WY - ¥ o+ (nF}M + 1, where = iz 10 @, prove that fis
irreducible over €. and DF) = {«Z-3x +3)¢; hence that G(f} = A3

14} "Cardanc's" formula for ths roots of a cubic

The solution of the general cubic equation was apparently found first
by Scipione del Ferro around 1515, rediscovered by Niccelo Fantana
(or “Tartaglin' = the starmnmerer) about 15335, and revesied by him
to Girclams Cardano, who pubhzhed it, with due credit to both del
Ferrc and Fontana, slthough evidently not with Fontana's
perrmission, itr his book "Ars Magne' in 1545 Sinece pricrity is
ustially establizhed most firmly by publication, these forrulas have
become known by Cardanc's name. We will see how a salution of the
cubic can be derived fairly easily using the rmethods of Galos theory,
mnd then we will campare the solution to that of Fontane/Cardana.
First consider the genera! monic cubic equation YI+a¥iebY+c = 0.
We know the sum of the roots ¥ eguals £1 = -a  3ince there ara
three roots, if we were to subtract (s1)/3 from sach root, the new
roots would have sum zero. Hence if we denote the new roots by X,
where ¥ = Y-{e¢1)/3 = T + {a/3}, mnd substitute ¥= X - a/3, the new

equation {X - /303 + alX - w/3)2 + biX - a/3) + ¢ = 0, becomes

¥3 s+ pX + g =0 If wecan solve this sitnpler equation for X, then
the solution of the angineg] equation is ¥ = ¥ - a/3. Thus we may

consider only the equation (X)) = W3+ pX v o= 0.
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Recell the Galois - theoretic point of view:

{i) Exhibit the splitting field of { as a (good) radical extension of the
coefficient fisld, ahtained in stages by adjoining pth roets, for all the
prifmes p occurring in the compasition series for the Gelois group .
{ii) Then use LaGrange resclvents farmed from the generators of the
eorresponding gquotient groups of 5 to actually compute candidates
for these pth roots p.

{iil) Express all these pth rosts in terms of the coefficients of F, using
the svmmetries of G

{iv) We have already observed that the sclutions o of the
polynemial can ke obtmingd by adding the rescluents B

S0 let k = Qf{w p,g} be the field generated over © by the coefficients
p.o of {, and & primitive cube rook w of wnity, wé s+ 1 =0 If

@ ],®%2, %3 are the roots of [, the splitting field 15 L = kie],xz,x3). If
f is the general polynamial of its form, 1e. if p.g, are variables, then
D{F = -4pJ-27g4, 1t not the square of an element of k (simce p is
not & square med {g)). Thus by ex. #99, the Galois group of £ is 5 =
Bij{{ec1,2c2,03}). The composition series for G is jel © A% € 53, and
thus there are two stages to building up the splitting fleld L, kC FCL.
Here F = ki$} is the guadratic extension generated by b = pl/ Z and
I = FIRp), where p = « + w-s{x) + wi-rlled, 12 & LaGrange resglvant,
T i3 m generator of 47 = the Gelsis group of FCL, and = is & suitable
elermnent of L. wWea choose o = 1, one of the roots, since wWe wrill
sventually want to solve for the roots in terrms af p, and choose T =
fee 1 2ee3). Our third, explicit proof of Galos” theorermn showead that
at least one of the twao following LaGrange resolvents will serve as p
either Bl = «1 + w-=z2 * U.I-E--::atj, ar Pz = @l * Wiz + weaF. (Since
we will s&& just below that p{ and pz are Galais conjugates, they are
hoth non zero, hence either would serve as §) We also saw how ta
solue for «1 in terrns of these B's, since if we define pQ = o] *x2 ¥
xg , then 1 + w ~ we = 0 = pg. Thuz we get p1 + B2 = 3], 50 that
xi = (1/3¥pt + (1/3)p2. Since we have expressed «f in terms of the
#'s. we would be done if we could express the B's in terms of the
coefficients p, q.

Now it followed from the construction of the LaGranpge resoclvents
that both p12 and gz belong to F. {because they are fixed by T},
and thus are quadratic over k Thercfore, in arder to axpress them
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in terms of p,q, it sufftces to find the quadratic equation over k they
satisfy. This eguation can be found by Galois theory. At the
heginning of our study of fields, we noticed that the roots of a
quadratic equation over B are complex conjugates of each other,
and the coefficients of the eguation are [up to sign) just the surm
and the product of the roots [n the present case, we recover the

coefficients of the quadratic equation for p1° by adding and
multiplying 17 with its Galoiz conjugate in F. Since the Galois group
of F/'k is just S3/A% = 22, and is generated by the coset of any odd

perrnutation, wWe rmay represent a genatratar by the tranzposition @
= (7«3, Then the Galois conjugate of p1 15 vip1) = p2. Thus the

aguation over k satisfied by B13 is jqust T2 - {p1F+pzT)T + (p1p2)7.

L=t's calculate the casfficients of that guadratic equation. We know
if we express therm in terms of the «'s that they rnust be
syrmmetric, and hence there is an algorithm for writing them in
terms of p. g but we hope it will be easy to do by hand.

First we get p1p2 = (w1 + w3z ¢ w2v¢3}{m1 + wz-ag * L g) =S
w12+ 22 + w32 ¢+ (wiiweiaz) (waegad{oc o) + fwZrwdwe),
and if we note that wZ+w: +1=0 implies {w+w) = -1 this becomes
p1pz = =12 + w22 + @32 - (agez) - (w13 - (xzx3) =

.:rj_E - Z2@2 = g2 = o1 - 3g2. Sinee 1 = &1 +az + «3 =0, and a2
= p, this iz just B1pz = —Ip. Hence p13ﬁ33 = —2'?1:-3.

MNow for #12 + B22, we simaplify a bt first: B2 + pzd =

(p1+p2)3 -3pap2(R1+p2). Then we calculste p1+p2 =

2oc 1w vl e ada® F 2ai-x2-«% = Jotl, where at the last
step we added 0 = ap+x2+®3 to the expression.

Substituting 3«1 for p1+p2, and -Tp for f1P2 in the expression found
above gives B12 + p2d = (3eq)d - F-Ipi(Teq) = 2Tl 12 + p}.
Sinee p = a{o? P wlaET + X, we get

{12+ p) = (12 » ez *» 1w ¢ xzx3) =

{opleeq + p + @3] + wza3) = wzas Thus

813 + p23 = 27mqiozas = 27o5{x) = -274.

The guadratic sguation satisfied by &13 and 523 13

T2 « (27q) T - 27p3.
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Then the gquadratic farmula yields:
813 = (1/2) {-27q + (272 + 4(27pT)]|1/2}
823 = [1/2) 1-27q - [(27q)2 + 4{27p3)]1/2}

Thus 1 is che of the thres cube roots of the first expression and p2
= -3p/p1. Finally we have oy = (1/3)p1 + (1/3)p2. The three choices
of a cube rogt of the expression abave vield the three roots

o 1,002,a3. If we simplfy the expression & little we notice that

272 + 42Tp3)3 2 = {-27D}1/2 50 that
pi12, pzd = (~27qg) 2 ¢ {3/2-31/2 and the three roots of f are

) =

(1/3) ((-27e)/2 + (3/20-3D) L/ 2|1/ 5 j(-27q)/2 - (3/2)(-30) 1/ 21173},
whers the first cube root iz chosen arbitrardy from the three
cheices available, and the second cube reot is chesen so that the
product of the twa cube rootz 1z -3p.

We can simphfy the formula a bit more, by putting the factor of 1/3
under the cube root sign, and the other fractians under the square
root sipn, to get the following werstian of:

T cy ki 1 F a
The szolutions of X3 + pX ¢« g = 0, are given by:

«i ={-q/2 + [-D/108]17/2 1/3 .+ (-q/2 - [-D/108]1/2 )1/3,

where [ = —4p3-27’q2, and the product of the two cube rogts 1z -p/3.
Choosing the complex cube root of the first term in all three pozsilile
ways vields the three solutions «1,%2,+3.

We give two interesting exeamples of using this equation:

{i' X3 -12X%+16 = 0 Here the solutjon ¥ = 2 would zeem to ke the
simplest, but since D = 0, the formula yields (-g31/3 4 (-8} = -4
Since the polynornial factars sz (M{-2)(¥-2){K+4), we see that -4 15 8
solution. Hpweusr the other two solutions, both X = 2, can
aspparently be obtained only by substituting complex cube roots of -8
into the selution fermula. Phencomena like this were ssrmewhat
disturbng to earty workers whe had not yet fully accepted even
negative numbers, much less complex numbers. Indeed, ane can
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-how that s cubic with three resl roots, irreducible aver ), cannot
he solved entirely by reeal radicals.

{(ii) X3+X=-2 = 0. Here ¥ = 1 iz & real soluticn, and ene can show
there is only one real solution of this equation. Therefore the real
answer given by Cardano's formulas, narmely

¥ o= (1« (23 17310 20T 4 (1 - (273 1773102 3173 must equal 110,

Exarcise #112)
(1} Show that Cardane’s formulas do yield all three solutions of

X3 -12X+16 = 0.
{ii) Show that Cardaenc's forrmula is correct for HA+M~2 ie show
(1 + (243 1731723073 o1 - f2r3) [7rs1t/243 o

Finally, if we compare with the original sclution as given to Cardanao
by Fontmana, 1n & short posrn, Fertana's prescription for solving

W3+ pX = r, was simply to find two numbers 2,b such thet m-b = r,
snt 27ab = p-. Then the desired solution is X = al/3 - p1/3

This iz the same as aur solution if we put -r = g, £7a = B13, and
_27b = 23 le then a-b = r iff p13 + p23 = -27q, and 27ab = pJ
iff p13pz3 = -27pY, exactly the conditions we found above which if
satisfied by #12 and pz- implied that our cubic has solution o =
(1/3Mp1 « p2). So Fontans's prescription was s description of the

rogts of the resolvent guadratis” aszociated to the cublc, and haw to
uze thnse roots to express roots of the cubic.

1t iz usuml to describe Fontana's salution of the cubic via &
prescription for transforming the cubic equation inte the

corresponding quadratic eguation as follows: Ta selve K3+pKeg = 0,
put ¥ = u+v, obtaintng D = luru)3 + plurvl + g
= ud e ud 4 g+ (3w + pilury). Ohserve that this equals zera if

simultanecusty (3uv + p) = 0 = u? « 3 + g To solve this pair of
equations we substitute the formula v = (-p/3u) cbtainsd frorn

salving the first sguation, into the secand equetion 0 = ud + yd + g,
Eeiling ud + (-p/3u)3 + g = 0. Multiplying by uY and rearranging
prves u® + gud - pEIET = 0, which iz guadratic in us, Note: If we set
w = f/3, thus guadratic equation becomes (p)2 « (27q) g3 - E?FIE',
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exactly the quadratic equation derived abhove for our E-13, 523.
Hence u = (1/31p1 and v = {1/3)¢2. and the rontz of the gubic are X
= yev =« = (1/3)p1 + v = (1/3)p2,. as expected. The amazing thing
about this last prescription for solving & cubic is that to usze it we
only need one insight: namely, the selutisn is the sum of two cther
asuxiliary guantities. Apparently del Ferro discovered this was the
right way to proceed, perhaps sensing that it rnight be easier to
selve two equations in tws unknowns, than to solve the original
eguation in one unknown. In this discovery, that a general cukic
could always be salved by adding the cube rootz of the twa solutions
of an auxiliary quadratic equation, we can se2 the germ of the
decomposition theary of Galois for normal field extensions  Jt just
took 300 wvemr:z to realize it fully

§15) A few remarks on =olving guartic polynominls

The camposition series {e} © A3 € 33 for the group of the general
cukbic f, with gquotients A% = I3, S3/A% & T2, mirrored &
decomposition of the splitting field L of f inte the tower KCFCL,
where k iz the cosfficient field, and F iz the fixed field of AZ. This led
uz to atternpt the solution of the cubic in two stages, first we
constructsd sorme AT - invariant combinations of the roots of { {gur
B1Jdand B2> above), which ganerated F. Then since we knew the
Galois graup S3/A% = 22 of F over k, we could find the gquadratic
equation aver k zatisfiied by thess penerators of F. Uaing the
gquadratic formule, we could express the generators of F in terms of
the coefficients of f. Finally we knew how ta express the roots of fin
terms of the generators of I,

Ta solve a quartic f in an enalogous way, in as few steps as possible,
the normel series {e} © ¥V € S84, where V 2 Z2 « I2 and 54/V = 53,
supgests considering the tower of fields kCFZL, where k is the
coefficient field of £, L is the splitting flald, and F iz the fixed field of
vV We ran then look for some ¥V - invariant combinations 8] of the
roots: of f, which generate F. Since the Galois group of F 19 S4/V =
%3, we expect to find an wreducible cubic aver k satisfiad by the .
Using the Cardanao formulaz just derived above, we can then write
the B in terms of tha cosfficients of f. and finally try to express the
rogts of f in terms of the 8] We refer the reader ta the excellant
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dizcuszzion in Van der Waerder, which we summaries belowr.

Denote the rocts of £ = % « pRZ + ¥ + r = 0 by «1,x7,«3,04, the
"coefficient field" by k = Q{,p.g). the splitting field by L. and the
Galois group G = GL/K) & 34 3 Bijt{xil). Then the normal subgroup
T2V = {e, (12)034) {173324) {14)123)), and the fallowing three
elarnents of L are V- (but not 54) invariant:

@1 =fer1+e2MexTred), B3 ={xivo3loazrod) B3 ={wireqaz +adl
Conszequently the 83 belong to F. the fixed bicld of VY. Since no other
elernent of G fixes gl three of the &), they cannct belong to the hixed
field of any lerger group, henes they generate F. The Galois group of
Fik is G/V = 33 Jince (81,82,83} form a GV ~orbit, they satizly
the following irreducible monic cubic over k: e(U) = T{U-8{). We call
g the resalvent cubic” of . Thus F = ki81,8283) is the splitting field
of g The coefficients of g as usual are + the elementary syrrmetric
functions applied to the EIJ', ie giT}= 3 - 51{@]”2 + s2(EIT - s3(E)

We can sxpress the 3;n terms of the aj and then the coefficients of
f, with the following results:

g{1B) = Zozlxl = 2.

s2(8) = g22(a) » ailedoslal - 4oalx) = pi-dr,

5300 = ailalraialasfa) - o12{alaale) - g32(x) = g2,

Thus the resolvent cubic is U3 -2pUZ+ (pZ-4r)U + g2 = D,
One can then use Cardane/Fontans's pracedure to solve thiz far the
Fj We will see how to recover the roots o« from the ;. Since

st Tred =0, it follows thet By s{apra2axireadg) = - Ifc-::[*mg]lz,
and thus (o +ez) = (-811/2 Similarly, (x3+xq) = -(-811172
(aqrecs) = (-O212, (mpemg) = -(-@2)/2 (wy1+ag) = (-B3)172,
{oz+eam3) = '("53]'1"',2. Thus we have the following fermulas:

2ay = (-ONV2 4 BNV 4 a2,

2z = (-B1)32 - (@172 - (~@nE,
g —[—[31}1.'"'2 + {—EE}L'FE - {_E]E}].J"E
Zoq = -(-B1/2 - (—@lf2 s (a2

[f one wants to compute the discrimmant of the quartic, one can
check that the squarsd difference of any two roots of the arsociated



il

cubic equals the product of the sguared differences of two pairs of
roots of the quartic. Thus the gquartic and its resolvent cubic have
the sarne dizzriminant, and we can compute the discriminant of the
{speciall quartic from the formula for the (general) cuhic

Galoiz groups of guartic polynomials,

Since we can reduce the Galois field theory of the general quartic
polynomiel to that of a cubic polynormial, we can do the sarne for
patrticular guartic polynomials. [e if ¥C354 1z the normal subgroup
of order four mentiched abatre, we can reduce the computation of
the Galois group of a quartic f with group GZ54, to that of its
resglvent cubic, by studying the decarnposition KCFCL of the
sphtting fizld L, where F 1z the subfield corresponding to GNV.

le suppese f is a separable irreducibie quartic over a field k, with
roots x{,x2,0% 4, sphitting field kCL, and Galeiz group G € 34,

Then (VG = HCG is B normal subgroup, with fixed field FCL, and
KCF iz m Gulais extension with group G/H € 54/V = 83, Then the
degree [Fk]| divides {53} = B, so iz either 1,23, or 6. Just knowing
the degree of the subfield kCF deterrnines the Galois group also of the
splitting field kCL almost completely, as follows (from Hungerford):

Theoram: If ¥V is the normal subproup of order 4 in B4, f iz an
irreducible separable quartic over the field k, with splitting fisld
kCL, and Galois group GC24, and if kCFCL is the intermediate field
corresponding to GNY, then

(i) [F k] =6 iff @ = 34,

(i3 [F - k] = 3 iff @ = Aa,

(iad [F: k]l = 1 iff G = V,

(iv) [F - k] = 2, and f is irreducyble over F, 1iff G = D4,

fw)] [F: k] = 2 and f iz reducikle over F, iff G = F4.

praof: We know G is e transitive subgroup of 34, and that #(d) 12 &
multiple of 4. One can check that the only such subgroups are 54,
A4, V, 4 (there are three of these), and T4 (and three of these). V¥
iz & subgroup of all of these except Z4, and it intersects 24 1n two
elementz. We knaw by Artin'zs lermma that in sll cases L 13 Galois
aver (GNV), of degree #{GNV), which equals 2 when G & Z4, and is
otherwise 4. Thus |Lki = 2[Fk]if @ = T4, and iLk] = 4[Fk]| otherwise.
Thus [Fkl] =6if G = 34, [Fkl=3ifG & Aq IFKl = 1ifG =V, and
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[Fk| =2 if pither Ga DaorifG = 24, Thus resding backwards we
have proved (i}, {ii), and (iii).

Maoreowver, if [Fk] = 2 and f rernains irreducikle over F, then [LF] : 4,
o Lkl : B, and we rnust have G = Dy Conversely, if G & Dg, then
VCG so V iz the Galois group of FCL. Jince we know the elements of
Voz {m, (12)34), (13)Z24), (14)(23)}, we see that the V¥V - orbit of «
zaty, it jee .z, aT, 24}, Thus the irreducible polynormial of «1 over F
has degree four, ie f remains irreducible over F. QED.

Just for convenience, we introduce another candidate for "the”
resolvent cubic af & guartic Since the resoivent cublc 13 the
irreducible monic equation satizfied sver k by three convenient
generators of F which form a G-orbit, there may be several af them.
If & gereral gquartic f has roots foeq.o7. 3,4l then F can be
generated over the coefficient field by sither the element: By used
above, or equally well, by the elernents

{11 = iz * ojed, 12 = & 13 + @2ag, 03 = xjog » wze]

FACTS: (i) If £ is the general quartic f = X¢+aXJF+bX2+c¥+4d,
the new tesolvant cubic becomes TI{T-{2{) =

glT) = T3 « bTZ + (ac-44)T + {4bd - a2d - c2).

(ii) If f iz the special gquartic f = X9 « aX2 + bX + ¢, then the
new resslusnt cubic is g{T) = T3 - a¥2 - 4cX - (bZ-dmc), or
T? - g¥Z - 4cX + 4aec-be, as you prefer. One of these last two may
ke easier to rermember in time of need, then the €& version ahove.

Remarks: (i) Ezzentially the same argurnents as for the general
guartic, show that for any particular quartic | = ¥4+ aKZ « b¥ 4+
over ¥k, with group G<S4 and splitting field L, if H = ¥i1G then F =
fixed field of H = k{f21,522.893) = splitting field of the resolvent cubic

g(T), where g(T) = T2 - aX?2 - 4c¥ - (h2-4ac).

(i) According te the previous theorem, we can compute the Galois
group 5 of a gusertic f by first computing the group GNY of the
resolvent cubic. This is easy using the various formulas we have
derived. e birst write down the resolvent cuklc g. [ g #plits
eampletely in k., @GNV & {0), if g has an irreducible guadratic factor,
GnvV & Zz. If g is irreducible. uze the cubic dizeruninant formula to
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determine whether GNV = S3 ar A3, Since [Fk] = #(@nV), the
theorem gives G

Exanmplez: (i) (= X%+ ¥3 + €+ X+ 1, we know by the trick of
putting ¥ = {Y+1i} end using Eisenstein, that f s irreducible over Q.
By the formulas sbove, the resclvent cuhbic is T3 - T2 -3T + Z, which
factors &g To - T £ -3T + 2 = (T-2) (T2+T-1). The raticnal root
thasrern tells us the only pozsible rationsl roots of the quadratic
facter are + 1, neither of which warks. Thus the degree of the
splitting field of the cubic over € 15 2, and the group of f iz GQIf) =
Z4. (We will see below that it £ = ¥P™1 + HP 2+ .+« X+ 1 then
Goif) = Zp-1. if p is prime)

(i) If f = X9 + 1 the reselvent T3-4T = T(T-2)M{T+2) splits in §. Thus
Goif) 2 WV =2 Z2 + F2. (Note: the splitting field of f is the same as the
sphtting field of ¥B-1, and that Zz + 2 = 7g*. We will ses below
that the group of ¥P-1 is alwaysz & Zn*. Compare with ex. (i) where
n = 5) ltis also easy to compute this group directly

(iii) If £ = ®9 - 2, f is irreducible by Eisenstein, snd the resclvent
cubic is TO+8T = T(TE+8). The group of this cubic iz Z2, since T<+8
has no rational roots, so GO 15 either D4 or 4. One can check that
f rernains irreducible over Q[-8]172) = ﬂ(i-EifEL (eirce 21/2 is not
in Q{i-21/21), o Gnii) =2 D4, as we computed directly hefore.
(iv)Iff= X%+ ¥2 4 ¥+ 1, ino cubic term), the resolvent cubie iz

T3 - T2 =4T + 3, which is irreducible (1 3 aren't rootsz}, with
diterirminant 257, which iz nat a square in & Thusz, the resolvant
has group 8%, hence GOif) = B4,

(V) IfF = 4%X% +» 4X + 3, the monic versionas f = X% + X + 3/4, and
the ressluent is thusz T3 -3T -1, The diserirminant of this irreducible
cubic is B1, a sguare in €, 30 the group of the resclvent 1= 3, and
the group of f is SOl 2 A4,

(i) If f = X4 + X2 « ¥+ 1, sz an (iv), but the base ficid is k = Ig,
then f iz 3till irreducible. Ower finite fields we know all Galois groups
are cyclic, so the only possibility iz Gklf) = Z4.

{wii) If k iz m finite field and f iz any irreducible polynornial over k of
degree n, then we claim G(f) = Fp. Jince we alresdy know a finite
extersion of a finite field has cyclic Galois group, we just need to
show the splitting hield of f has degree n over k. 18 that the field L
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ebtained by adoining one roat of  vields the splitting field of F.
However we also know a finite extension of a finite field 15 alwayrs
normal, hence f (which has one root in L) splits in L. QED.

Exercise w113) problern # 10, Hungerfard, p. 277,

Exarcise w114} problem 6. Hungerford, p301.

Exercise #1153} problerm #8, Hungerford, p301.

Exercise #118) problem #9, Hungerford, p301.

Exercise #117) Let k be a field of characteristic p » I

(i) Prove that if a iz in k, and if r = pt with t ¢ 1, then XT-a =

(Y- )T, far some o in an extension of k. [Hint: Then the mop wlL—L
defined by pla) = of is injective, 30 Lok contains at most one root
of XT-a]

(i) 1f f iz an irreducible polynernial sver k, and if { hes & multiple
rogt in some splitting field, show thet the enly terms in f which cen
have non zere costficients are those of formm X5 where p divides 5.
Deduce that £X) = g{¥Y) where ¥ = pt, for zome t » 1, where g(X) is
irreducible and has no repeated roots.

(iii) 1f f is irreducible over k, prove thet all roots of { have the :ame
multiphcity.

§16} The Galois groups GQ{XN-1} of "cyclotomic fields™

It i3 of fundamental interest for number theorists te know as rauch
as postible about finite extenszions of the mast basic of fields, the
rational mumbers. How complicated can a finite extsnsion of 0 ba?
One easier gquestion would seem to be: What are the possible Galois
groups of extensions of 07 We have already zeen (1n homework)
that if wa allow the base field ta be arbitrary, then any finite group
cen occur Aas a Galeis group. If the base held 1= rastricted to be 0,
then it is AN Open quettion to determine exactly which Galois groups
ean gccur. Our last theorem this quarter will be to thow that at
least mll firute abelian groups occur as Galais groups over Q.

QOur approach to the proof of the theorem will be to find 2 big family
of mheliarn extensians of €, and then atternpt to prove that swvery
finite abelian group cccurs as a gquotient of one af these Galoiz groups.
Since every guotient of a Galois group is agein a Galoiz group with
the zarne base fisld (proof?), we will be done. Recalling some of our
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wark frorm the fall, one place to lock for abelinn extensions of O, 15 sk
the groups of equations of the form XN-1. We alrsady showed in the
fail that the group SHIXM-1} is isomorphic to & subgroup of (Zh)Y,
the multiplicative group of umits of the ring Zn. Now we will go

back and complete that argument by shewing GRikB-11 = (Zp)*.
The key ingredient will be the proof that the "syelotomic”
polynorials are aell srreducible in characterisiic zera. {This is false In
pogitive charecteristic )

Rermnark on “primitive roots of unity”: In characteristic 2ero,
{mnd also in characteristic p where p does not divide nj, the
polynominl X1-1 has n distinet rogts (n some splitting fizld) which
{ormn a cyclic multiplicetive proup of order n. A generstor © of this
group is called a "prirmitive” nth root of unity If we define &
prirnitive nth root of unity to be & nen e=ro tlament in an extension
of k which has order n, then k has primitive nth roots of unity iff
characlk) = 0, ar if charac(k) = p » 0 and p does not divide n.

Cyelotornic polynemials: If the base field 12 Q, and n ¢ 1, define
F, = TI(X-r), product over all privnitive nth rosts § of unity, Py i
called the "nth cyclotornic polynomial”. Note: degree P = wind =

# {positive integers relatively prime to, and less than, Ny, where i 15
the Euler "phi function”.

Examples:
T =¥ 8z = X+l 85 = XE+X+1; $g = XEed, Bg = HIHF K241

It appears that thess polynomials actuslly have integer cosfficients,
whichk is one of the first things we want to prove.

Mote: ¥2-1 = 187 X3-1 = &3 ®9-1 = 313284 ¥3-1 = $1¥5,

Larmama: For all n, ¥8-1 = M€y, product gver all r @ 1 dividing n.
proct: Note that the roots of §¢ are precizaly the elements of order r
irn the group €*, and the roots of KI-1 are the elements of C* whose
order divides n. Hence the left and right sides have the same roots,
and the same degree, and both sides are monic. QED,

Corollary: For all n, ¥ hasz integer coefficients
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proof: This halds for n=1. Assume it holds for all ¥ <« n. From the
formula in the lemme, we have XM-1 = kid)-&n, where h(X)= T &1,
product fer all r ¢ n, r dividing n. By induction h{X} has integer

coefficients and 15 monic, hence prirmitive. Jince KP-1 is primitive,
&p is alzo prirmitive, in particular §n has integer coefhicients. QED.

Irreducibility of cyclotomnic polynomials over

Propasition: For all n, ¥ 12 irreducible over Q.

Remark: We already know this result when n = p iz prime, and
then $p = ¥P™ 1+ P2 ¢ 4 X1

Corcllery: The Galois group GRiXN-1) = (Ix*,-).

proof: We know G C Zn* 12 & subgroup, so it suffices te thow that
miG = pin) = #{Zn*). If QCFp is the splitting field for XKN-1, Fp =
Qig) for any primitive nth raat of umity ¢, g0 it suffices ta show the

minimeal polynomial of T aver @ has degree = ¢in). Hence the
carollary follows from the proposition. QED.

proof of prop: Let § be a primitive nth rest of unity with
irreducible primitive (not necessarily monie] polynomisl f over Q.
we claim &m = f. To prowe this it suffices to show every primitive
nth root of unity is & reat af f. Mow every primitive nth root of
unity has form Y where ged{r.n) = 1, end if ¢ = TTpj, then gf =

(eP1IB2 Pz = {(zP1IP2)P3-Ps = _etc. Hence it sufices to prove the!

Lamrma: If £ iz a prirmitive nth root of unity, f an irreducible
primitive polynomial in Z[X] such that fig} = 0, apd p is & prims not
dividing n, then f{gF) = 0.

procf: Let g be an irreducible primitive polynoemial of §F over & If £
and g have a cornrman root, then each ix a primitive irreducikle
pelynomial for that root, hence f = =g Then #7P) = +g(gF) = 0,
proving the lernma. Hence we may assuame f.g have no common
roct, sa thaot gedif,g) = 1. Then since every root of unity 15 a root of
¥n-1, the product fg divides ¥0-1, =0 XB-1 = f{Xg( X h(¥) for sorne
primitive polynernial . We know all nth roots of unity are distinct
over O, but in fact the same holds modula p since p doss not divide
n: ie. the snly root mod p of (¥1-1)' = nX01 is zere, nat & root of

XN-1 mod p. Now reduce the cquation XP-1 = f{X)g{X{X) mod p.
Since the left hand side still has degree n, snd no rultiple roots, f.g
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each have the samne degree mod p that they have over €, so they do
both have roots in g, but f and g cannct have a comrncn root rouod
p. We will show in a rnoment however, that every root of f mod p
15 alse & root of g, First obzerve the following:

Sublemma: For anv g in Z[X], g(XFP) = (g{H)F, mod p.

proof: gi¥) = X&a +¥bs 41T, for zome exponents a kb, ¢, not
necessarily all different. Thus (g{X)P = (X2 #¥bs  +HOP =
(RAIP +(XBIP & 2 (XCIP = (KPP (HPID »  +(XPIC = p(XPF). QED.

This gives a contradiction as follows. Jince gleP) = 0, ¢ satichies
g{XF), so ((¥) divides g{¥P). Thus glXP) = fX1ml ¥} in Z21X]. Reducing
mod p, we get g{EF) = (g{XNP = ({H)m(X) in ZplX]. TFincs degree f is
stall positive mod g, f has 8 root med p, which 1z thus also a root of g.
This contradicts tha eonclhasion reached just before the sublemma.
OED for the Lemma and the Frop, ie. ¥ i3 irred.

In the pext section we study the groups Zn* a bit mores to see just
how many abelian groups are quotients of groups of this form.

§17) A product decompesitien for the groups In®

we know the groups Zn® are abelian, and we would like to classify
them further. The sirmplest abelian groups ere the cyclic ones, and
we know that the product of ebelian groups is abelian  This lets us
construct & large array of shelan groups, by taking arkitrary
products of cyclic groups. How many different abelian groups do we
get thiz wey? Eventually we will show that all finite mbelian groups
are isarnorphic to products of cyelic graups, but for new we want to
prove a partisl decornposition result for the groups Int. First we
recmll the definition of & finite product of abelian groups.

Dafinition: {i) if A P are abeliann groups, their "product” A=E is the
group whose underlying set is the Cartesian product AxB = {all
ordered pairs (a,b} with a in &, b in B}, and with group aperation
defined "componentwise’; ie (a3, bil)-lag, k2) = (m1az, bi1hz)

(ii) More generally, if A1,...An is & finite collection of ahelian groups,
we define themr product as the set TiAj = A1x A2 _xAp, with
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Componentwise group operation.
Proposition: If n = abk, where gocdla,b) = 1, then Fn* = Lg*udpt.

Lemma: (Chineze Remainder Theorem, CRT): If s, k> 1, and
gedla,b) = 1, then for eny integers 5.t, thers & an integer m such
that rm=s{mod al, and ms=timod b)

proof; This savs the map g Z—=Zg*Zk where gim) = {([mlg Imlp), is
sur jective. If we note that pim) = 0 iff both a,b divide o, iff ab
divides rm, we see that there 1z an induced map 5:25,1;—' Lynfy,
which 12 njective. Since source and target have the zarne finite
cardinality, ¢ is also surjective. Then ¢ is surjective tos. QED.

Remark: The map ¢ iz a ring map, hence a ring isomorphism.

proof of prop. Jince P iz & ring isomorphism Iy = L d], it
induces an isornarphism af urnits Zp* s (Zgxp)* =gt 2 Lpt
QED preop.

RPemark on notation: We use I, 2/{n), and Z/n interchangeably.

Corollary: If n = TIj pifi, all pi distinct primes, and if nj = pi':, then
In' = TT] {Ii‘ln[}*.

Corollary: If n = T pj, all pj distinet primes, then
In* = M t&/py*= TI; (Zipi-11].

The previous corallary thow: at least if n has no repeated prime

factors, then Zx® 1t amerphec to e product of finite cyelic groups
1f we appeal to the farmous theorem of Dirichlet, we can now prove
that every finite product of finite cyclic groups eecurs as a Galols
group ower Q.

Theorern of Dirichlet: if m » 0, and ged{m,a) = 1, then there are
infinitely meany prirnes p in £ such that p=almod m).

Corollary: If v » 0, thers are infinitely many primes ps 1{med m).
Remark: We include below a summeary of Jerre's account of the
proof fromn hiz book & Course in Arithmetic.
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Corollary: Every finite product of finite cyeclic groups is & quotient
of & group of form Zx* for some n.

proof; Let @ = T {Z/ny), {where 2/r denotes Zr). Choosse pi=1{mad
). Then choose pz > pi fuch that p2=1{mad nz) Coentinue 2o that
for all i, pjml{med n,) and p; > pi-1 These chaces are possible by
Dirichlet's theorerms Then for oo = TT§ pi, sinc® n has no repeated
pritne factars, Zp* 2 M, (2/pt = MEZ/Hp-11). Now pi=1limod ni)
irnplies pi-1=0{mod ni} o for each i, pi-1 = nimj, for sorne mjzl.
Then consider the subproduct T{Z/my) © TT(Z (pi-13 = Zn®, with
guatiane H{Z/ni) = 3 (We embed each (£/rmj) as a subgroup of

(A g~ 1) = (Z2/nimi) by the map [x]1—[nix], and thus TI(Z/mi)
ermbeds i T3 (Z/(pi-1)) as a subproduct by (bl =00 ngxil, 0]
This solves our problem. QED,

Corollary: Everv finite praduct G of finite cyclic groups iz 2 Galois
group over 0Q; in fact @ = GQIL) where LCFy 15 & subfield of sorne
eyeletornic field Fp = ©Q{z), where ¢ iz a primitive nth root of 1.
proot: 1f G = T{Z/n;}, choose n as in the previous corollary so that G

= (Fn*)/H for zome subgroup HCZ . Then G is the Galois group of
the fixed field of H, in the splitting field Fn of ¥T-1 QED.

Rernark: The Chinese remainder theorem says precizely that a
decomnposition of an nkelian proup as a product of cyclic groups is far
from umque. le. if {pj} is a coll=ction of distinct primes, and n =
Ty, wea proved that £/n = TTZ/py) Thuz: en the left we have &
product with one cyelic factor, while on the right we have a product
with 8 Jarge number of different cychic facters. DMareaver, every
dizstinct partitiosing of the factors [pjt into r disjoint zetz vields a
different product reprasentation of 2/n, with r cyclic factors.

We finish this tapic in the next section by proving that in fact every
finite mbelian group is iscrnorphic to a product of cyclic groups. We
nize gite & condition which makes a decomposition unigue,

§168) Every finite mbsalian group G is isomorphic to a product
of cyclic groups, hence is a Galois group owver Q.
Theorem: If G is any finte abelian group, there exists a finite
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normal extension OCL, such thaet GL/D) & 3. 1In fact there iz a
positive mnteger n such that LCFp = splitting Dield of X1D-1,

Definition: An extension is called "abelian' iff its Galois group 13
aebelian. Note thet everv subfield of an abelian extension of Q is alsa
Galols (and abhelhian} aver 4.

Remark: We already know every cycletomic extension of Q is an
abelinn extension gf Q, and thusz 5o iz every subfield A farmousx
theorern af Kranecker zays that converse]ly suery abelian extension
of @ 1z a zubfield aof a eyclatarmie sxtension, so cyelotornic extensions
are in & sense the only anes that yield abelian extenzionz. This shaws
some of the cormnplexity of the study of roots of unity, 1e. all finite
mbelian groups ocour as Galois groups of subfields of cyelotormic
eXienslons.

Remarks: {1) Shafarevich published sorme 40 vears ago a difficult
proof that every finite solvable group G occurs as the Galois group of
some extension of @), He recently pointed out an error in his proof
related to the prime 2, and gave mndications of how to repair it

{ii) A finite group is seid to ke "nilpotent” iff it is & direct praduct of
pgroups for various p. Any Anite skbelian group is nilpatent as wWe
will thow below, and & finite nilpotent group is solvable. On the
other hand Dg iz nilpotent but not abelian, and 533 iz solvable but not
nitpotent. Thus the implications ebeliane nilpotent = sclvakle which
hold for finite groups, are not reversible. The special case of
Shafarevich’s result where G is B p-group, 1e. of order p', with p an
odd prime, seerns to have been proved beyvond doubt, and implies
that every "nilpotent” group of odd order is a Galoiz group over 0.

It follows frorn the last corollary of the previou: zection that to
prove the theorermn above, we only need to prove the fundeamesntal
thegrem of finite abelian groups, that every finite abelian group
iz 1zomorphic to & product gf cyelic groups. We will prove latar in
thiz zection the following more precise statement-

Theoream(FTFAM): Eat @ be & finite abelian group of order : 2. Then
there iz a unigue seguence of Integers 1l Nz, nr, &ll @ 2, such that
fer all i, nj divides nj+1. and such thet G = TT{Z/n,).
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Remarks: The whels difficolty 1o proving this propozsition 15 present
already 1n deciding the following questian: 1f & is & finite abelian
group end (x)CA 1t a cyelie group such that the gquotient Af(x) 2 (=)
15 also cywclic, when iz A = the product (x] = (=7 Naote that this is
not entirely obwvious. For saxarmple, if & = #f, and x = |2] generates
(x) = I3, then Afx) =2 22, and indeed 4 = Fz«23 by the CRT. On
the ather hand if & = Zg, and x = |Z] generates (x) = Z4q, then Af(x)
= X2, but A 15 not isomoerphic to the product £22x 24, since Ig
contains elements of order 8, but F72=F4 does not.

The key to recognizing & group A which 15 2 to B product B-C, 15
finding the approprigate suhgroups 1s3omorphic to B and © inside of A
le if & = BxC, then A conteinz: the sukgrovps Bx{l} = B and {1]1xC =
. In our first exarmple above, 7§ containe the subproups {0,2 4} =
I3, and (0,3} = 2. But be carefull in our tecond exarnple, Ig also
containg the subgraups 0.9] & 27 and i0.2.4.6) & Z4, The difference
iz that in the first case the two subgroups were almost disjoint,
intersecting only in {J), while in the second example they intersest
in {0,4} = Fz. Bince in B=C, the subgroups Bx{1} and {1}=C intarsect
only in {1}x{1}, the good casze iz when the subgroups hawve anly the
dentity in cormrnon. In cazes whers thiz iz shsy to check,
decormpositlon theasrarne are sazy, Az in the following exercics,

Exercise %118} (i) If B,C are subgroups of a finite abelian group A
such that #(4) = #(B)# (), and BnC = {1}, prove the map ¢

BxC— &, pix,v) = xv, is an injective homormorphizm, hence an

IspImer phism.

(il) If & iz a finite akelian group, and B,C are subgroups of relatively
prirne order in A such that #(A) = #(B)&{T), prove A & BxC.

(111) If A 13 & finite abelian group, prove A is 2 to the product of its
Ivrlow p-zubgroups, [1e. 4 is nilpotent].

In wiew of the previcus exercise, the hard part is Lo recognize when
m group & 1z lzernorphic to 22284, or to £9xL75, or in general to
Bx where #{B) and #(C) are not relatively prime. So let's assume
the decomposition theorern for finite abelian graups 15 true. Then
how would we go about proving 1it7 Induction seems like a natural
tao], sp we need to figure out how to split off the first factor. e, if
A iz a finite mbelian group that iz not cyclic, how do we even prove
thamt it zplitz up sz a product at all? If we could do that, we could
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=&y by induction that the two factors were both isomerphic to
products of cyclic groups and we would ke done. The examples
above have shown that A can have a oyelic subproup (xJCA such
that A7/(x) = (v) is cvclic, and yvet A mavy nat be jsormorphic to
(x)xiy). MNeonetheless if the theorerm iz true, and A iz finite, abelian,
and not cyclic, it rnust be possible ta choosze 8 cyclic subgroup of &
which will split off as a factor. [f we loak &t the staterment of the
thesrem above, we see that there i a 'largest” fnctor, the one Z/ny
whose order 1s & multiple of the arder af evary other factor. This
reflects the fact we already know, that there is an element of &
whose order iz a multiple of the order of every other element. Such
elerments can be zeen tn the product decompasition to ke those whose
last component is a generator of the factor #/ny. For example, an
elernent ([x][v]) of & = Zg=Z 1§ whaose second entry [v] = [1], will
have order 1B, the rnasimum possikle, and every element of A has
order dividing 18. Since an elermnent x of maximal order in & always
gxists, this pives us sarmewhere to start. o it seems plausible to try
te thaw & eyvelic subgroup (1) generated by an element of maximal
order should split off from A

The follawing case iz the zjmplest pessikble:
Canjecture: Let A& be & finite abelian group, end let x in & have
meximeal order. If A/(x) = (p) is evelic, then A & (xix{p)

To prove this we need to find a copy of the group (B) inside of A, sand
ane which intersects (x} trivially  If we conzider the canonical map
w. A=A (x) 5 (p), then (%) = kerlg), so & subgroup of A which is
isormorphic to (B), and which intersects (%) trivially, iz precisely a
subgraup {o) which meps isomorphically to (p) via the restricted
rmap ¢ {«)—{p). Thiz rneansz we need to find an element « of A
such that wia) = p, and zuch that ord{a) - ord(p).

The followimg lernma iz therefare the centrel] ingredient of the proof
of the decornposition theorem far finite abelian groups.
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Lernma 1: Let A be a finite sbelian group, and ¢: A—(p) &
surjective homomorphisrn to a eyelic graup (p). If ker{g) = (x)C A, is
cyclic and generated by an slement x of maximal order in A, then
thare i3 an element « of A suech that i) = B, and ord{a) = ord(p).
proof: Let ord({x} = m, and ord{p) = n. We already know the
maximal arder of an element of 4 12 the le m. of the arders of all

elrnents of 4. Thusz f ¢ it any elerment of A, ¥ = 1 [f moreover
pl¥i=p, then 1 = @f{l) = @(yM) = g™, 20 nlm alzo.

Now the full zet of preimeges of § are the elements of form e = ¥-x&,
for eny 5. So we waont to find an integer 3 such that ord{y-x%) = n.
Note that (¥-x%1 = § off g0 = (x=0)-1 = (x~ 1330 In particular 30
would have to equel & power of x. Now @(§R) = g1 = 1 30 ¥ iz in

ker{p) = (=), le ¥0 = xT for some r. The foliowing clairn i3 the rmain
point of this lermnme.

Claitn: If ¥ = T, [where n = ord{p), and g{¥)=pl, then n divides r.
proof of clairn: “We know ¥70 - 1 that m = an for sorme a, and
that ¥1t = xT' Then 1 = ¥ = 8N = x&T Thus m=-anlar, so that
indeed nlr. QED for Claim

If r iz chosen so that N = 7, then by the clairn there exists b such
thet r = bn. Then put « = ¥x"2 sothat pfe) = p, and ol =
(Nex"BN o gNx T = 1. Thus ord{«)n, but we anlready know that n
divde: ordie) whenever ploed = p. So ordla) = 1. Thus o it the
glement sought in the Lemnme. QED lemma 1.

MNext we present the langusge used to describe izsormarphisms af finite
products of abelimn groups. Homomorphisms into and aut of such
products are easy to describe in termes of homomorphisms inte or
out of the factors. We summarize these slementary properties in
the next lemma.

Lermma 2: (i) If AB, C are abelian egroups and ¢:A—C, BT are
hornormorphisme aut of A B, there iz a unigque hornormor phisra
F:AxB—C defined by Flm b} = g{alp{b). If we regard & = Ax{l} and B
= {1ixB, Az subgroups of A=B via the cancnical injections a— (A1)
and b—{1 bj, then F is the unique homomerphisim A<B=C which
restricts to wp on A, and to g on B
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{ii) More generally, if A1,. ,An 15 & finite collection of abelian groups
and if for each i, ¢yA ;= C it & harmomorphisrm out of Aj, theres iz A
unique homomorphizm FITA[~C defined by Flay, .. an) = TTpjla. If
we regard Aj = (1= (lixai=il)x {1}, as & subgroup of TTjA] via the
cancnical injection sj=(1, .i.a,. 1 .1}, then F is the unique
homornarphism that restricts, on sach Aj Lo @i

(iii} Tf 4,B,C are akelian groups and ¢ C— A, 4 C—B are
homomorphisms into & B, there iz a unigus homernorphisrm
Fil—AxB such that Flz) = (plz),pi=)). [f A and B are regarded as
guatients of AxB via the canonical projections wa: AxB— A,

Th AxB—B then F iz the unigque hormmomorphism whosa
compasitions with these projections are (wgl.F = ¢ and (cpleF = 4§
(iw) Mare peneratlv af 41, ,4n iz & finite collection of abelian groups
and if for each i, ¢ C— Aj is & homomorphism into &j, there s a
umigue hornomaorphism FL— 1A defined by Flal, .ap) =
(pefla1),...qgplenl). lf we regard &, as a gquotient of IT;A] via the
cancnical praojection 7y (a1,...68;, .. ,6n)—aj, then F iz the unigue
hormornor phistn whose composgition with each wj, iz mi*F = gj.

proof: This iz easily verified. No ideasz are reguired.
CED lemma 2.

MNow we forrmalize the splitting principle described in the discuszion
Just ebove lernma 1.

Lernmna 3: Assume @3~ H ir a homomorphism of abelian groups,
whirh has a “right inverse”, ie suppose there iz a heraomor phizm

g H— G such that g = idl. Then G = Hxkerl{yg). |'We say the
homormorphizm § "splits” G]

proof: To prove twa proups are isomorphic, by definition we need to
find homemorphisrns in both directions thet are mutually inverse.
With the given assutnptions, it is easy to find a hornomorphism

f: Haker{ig)— 3 Dy lermima 2, we need & pair of homomeorphisms
H—+G, and ker{pl=—3. Such maps are immediately at hand, yH—=G
and the mclusion hormoemorphizm Jker{p)c 3. The resuelting mep
FFHxker({p)— 3 takes {(p,¥%) ta {p,¥) = lp)-t. It is perheps not as
immediate ta find 2 hornomorphism in the other diraction, but with
a little experimentetion we can cook up g: G=Ha«kerly), by setting
gled = (plz), Il 2l [Ie. goy iz not the 1dentity on 3, becauss
need not take gizg) back to =, but § takes piz) back to something that



rmaps to gz}, 5o = and ¢lplz)) both map to the same shject in H,
natmely to plzl; henee [Wlglz))]1l-z maps to 1, and thus belongs to
ker(y))

Now we claim that f, g are mutually inverse. Assume g is in G and
compute (fogliz) = fyplz), [plg(@M 1-2) = Plelz)dplpi=h]"1-2
the other directian, 1f 2 is in H and w mn ker{g}, then glw)
lpefilz,wl = glpdzd-wk = (g{gia)-w), lgp{ptwled-wii]™ Lopizl-w)
Cplpieti-plw), [piz))"lpi=)-w) = {z,w) QED lernma 3,

=g In
1, 5o

H

Maw we can deduce the rmain result:

Theorem{FTFAG): Let G ke a finite abelian group of order @ Z. Then
there iz a unique sequence of integers n1,n2. . .nr, all @ 2, such that
for all i, ni divides ny+1, and such that G 2 T (Z/n)).

proof of existence: The theorern holds for #{3F) = 2, sp we rmay
assume the theorern holds for all non trivial abelian groups of order
less than #{G). Recall that if rn 2 1 is the lem of the orders of the
elernents of 3B, we have proved that € contains an slement x of arder
m. Consider the abelian guotient group H = G/(x), of srder #{8)/m.
1f H iz trivial then G = (x} 2 Z ir cyclic and we are done. 1f H s
non trivial, then by induction we rnay essume H & TTi (pg 5 T
(Z/ni), i=1.. .r., where (pj)CH is m cyelic group generated by By,
srder{pi} = ni. mnd nj divides ni+1, for all i

Look at the canonical surjestive map ¢: G—H. We clairn that ¢ has
a right inverse, ie that there is a homomorphism o H-+G such thet
oy = idH. By lermmaea 3 above, this would prove that G =

2y x H= I = (i 2/ny). By lernrna 2 (i) abave, the only thirg
needed to construct such a |, is to prove that for each i, there iz an
elernent «; in @ such that @lei) = pi and order{em) = crderi{pi]l = nj.
[le. given such «,, we can then define 4 uniquely by setting lpy) =
i getting a homomerphizm such that (pepi(pi) = Bj, far ell L. Then
pop would agree with idH on & set of generators for H hence we
would have gof = dy )

How, for each 1, consider the abelian subgreup A = p~1((p{)] =

p- HZ/ni} €6 Then the restriction ¢ A 2 (#)) iz a = jective
hernormaorphism to m eyclic group (), with kerlyp) = {2} cwclic mnd
generated by an elernent x of maximal order in &, hence Also
mexirnel in Aj. Then by lemima 1 above there is an slement & in A
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such that gla) = 8; and ordi{a;) = ordipi) = n; Moraover, by the
fFirst part of the argument for lernrme 1, every nj divides m. Hence
G = Hx 2y = 2/t ». nZ/nr » F/m, where nilnzl. Inpm. QED,

proof of unigueness (sketch):

Remarks The unigquernsss proof seerms easier using the preliminary
decomposition into a product of Sylew subgreups, proved in
exercise® 107) above In practice, the CRT makes this a useful way
te find the "standard” decompasition, {the ane descrnibed in the
proposition abovel, of an arbitranily given product of cyclic groups.

First we prove unigqueness of the standard decompetition of an
ahelian p-graup

Lermme: If A & Z/p¥]l = 2/p¥2 «...x 2/p"n is a standard cyclic
decormnposition of 8 non triviel akelian p-group A, ie ane such that
14 r]i rjsy for all i, ther the sequence of exponents r1.r2,...I'n is
unigusly determined by the isomorphism class of the group A
proot: [ this proof we will write the pperation in A additively, as in
Zm. WwWe use induction on the order af & Sminca the lernma 1z trivial
for #(A) = p, we mav assumne the result holds for all groups of arder
lezz than #(A)

We will use two auxibiary subproups of A 1n the proof:

Definition: (1) The "p-tarsion” of A, denoted A(p), is the zubgroup of
elernents x aof A such thet px = 0; for, if we were using
rnultiplicative notation, such that xF = 1]

(ii}) The subgroup pA = {elements of farm px for % in Al

Remark: The subgroups Alp), and pA, are simply the kernel and the
irmage respectively of the homamorphism p A— A, g(x) = px

Thus both are determined up io isornorphism by the isomorphism
class of &.

We can reconstruct the sequence of integers in the decompesition of
A, tromm the subgroupz Alp) and phA as follows: let us denote the ith
factor of & by Aj = 2/phy

Then observa:

(i) Since an element of a product is trivial iff each entry 1s trivial,
and is a multiple of p iff sach entry is so, we have Alp) =
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Ayipls _xAplp) and pA = pAix xphn.

(ii) Since px is a rmultiple of pr iff x is a multiple of pf~ 1, for each i
we have Ajlp) = {multiples of pfi~l in & = Zp.

{iii} Consequently, Alp) = (Zp), hence # (Alp)) reveals the number
n of factor group: in the decompeosition of A,

(iv) Since pAj = {multiples of p in & = Ipfi‘l, we have pA =
Z/pr1"1l « F/pT2~l x. .« Z/p¥nl Since #(pAd < #(4]), by induction
the expwnents ri-1 in this sequence which are greater then gerqo, are
deterrmined by the isomorphism class of pA. bence by that of A

{v) Combining (iii) and (iv), we recover both the sequence of
exponents r, greater then one, and the number which equal ene,
hence ml exponents. (The number of ri equal to one, plus the
number which are greater than one, equals n} QED lemma.

Remark: One can aveid mduction in this lerama by usiag the
subgroups of “pS-torsion’ = A(p3) = {all x in A such that p%x = O}
Then, #{A(p)) = p iff n = nurnber af factors in the decompesition of
A with exponent rj 2 1. Also w(A(p2)) ¢ p&™, and #(A(pZ)) = pP*kK
iff k = nurnber of factors with exponent vy 2 2. Next a{alpd)) <

pi*t 2k, and (Al o) = pr*t kI iff tn = number of factors with
expanent rj @ 3 ERteo

Cornpletion of the uniqueness proof. We have proved the
sequence of exponents ocourring in the standard decomposition of
each Sviaw p-subgroup of & finite akbelian group A is determined by
the isomorphism class of & Ons can shew also that the siandard
decornposition of A and that of its Sylow subgroups determine eath
other e indicate how this is done in an example as follows:

Suppose A = Z4xEqxEZzQ=L30Q0= L1800 iz the standard decomposition
of & Then by the CRT, we can decompose each factor into evelie
Bylgw subgroups; Z4 = 24, 220 = 24xZ5, 300 & Z4xI3x 225, £1800
=~ 2g=2nx225. Then the Sylow subgroups of & decampose as the
products of those of the factors: Az = TarFaxZaxPq=2g, A3 =
Zrx?0; &8 & F5xZp5xZ25. But now we can also go back to the
deompusition of A as follows: first consider each Sylow group to have
the same nurnber of factars by extending with trivial factors. Eg.
consider AT = [11x{1}x{1)=Z3xZ05. Then for each Svlow subgroup,
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arder the cardinalities of the factors by size. A2 (4,44 ,4,8), AG:
£1,1,5.25.2%); &%:(1,1,1,3,9). Now raultiply these sequences together
term by term, to get (4-1-1, 4-1.1, 4.5-1, 4.25-3, §-25+8) =
{4.4,20,300,1800), and we recover the sequence of fectors of the
priginal stendard decornposition of &, Satisfy yourself that there 1%
no pther way to combine these same powers of the:ss primes to get &
sequence of integers ni nz,. . ny, such that niinj: ]

QELD for unigueness,

Exercise »w119)

(i} Find the standard decomposition of each of the following abelian
groups of order 864, and decide which ¢f themn are izsomorphic:

G1 = Zz4xZ3g, Gz = Z18-249. G3 = Z2-23~2144,

G4 = ZxIxdzgp, G5 = FpxFoxd1z.

{1i) Do the same for the groups Zn*, foralln. 2 ¢ n ¢ 20

(iii) How many different abkelian groups, up to isomorphizm, are
there of order 07 1057 1087 1ZB7 BHAT

Example: Cyelic decomposition of the groups In*
We can actually decornpose the graups Zn* explicitly into a product

of cormputable cyelic factors, using the CRT and a couple of results
frarm nurmber theory. The point is first to decompose n into prime

powers, say n = 2VaJTj piTi, where the g are distinct odd primes.
Then by CRT, we have a ring isomorphiem Iy, = I2r x M {Z/p"),
and an isomorphism of unit groups Tn* = (Zzr)* = M &/ pi"0".
Hence it suffices to decompose each of these factors explicitly. In
fact these factors are alreadv almost cychic. Mare precizely:

Theorarn: (i) If p iz an cdd prime, (Z2/pf)* = Z2/[(1- 1/pipf] s cyclic,
(ii) (Z2r)* iz cyelicfor r = 1, 2. and & (2 = Zzr-2) 1t r 2 7.

Proof {sketch) (i)

Lernma: lf a generates Zp* where p is prime, then either a has
order p-1 or {(p-1)p in (EpZ)™.

proof: The giernent s has to have order dividing (p-1}p, hence
either k where k divides p-1, or eize kp where k divides p=1. But by
Fermat's little theorem, alP=1)p = aP~1 ynod I, 0 the only way

either of those srders can sccur, if & generates Zp*, iz if k = p-1.
QED.
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Lernma- If a genarstes Ip' where p is prirne, and if a has order p-1
in (ZpZ)*, then a+p has order (p-1)p, and hence generates (IPE}*.
proof: Use binomial theorem to expand (a+p)P~1 and show you don't
get 1 mod pz. QED.

Corallary: If u generates Zp* where p is prirme, then either a or atp

generates (Zp2)* . In particular, (Zp2)* is cyclic.

Lemma: If a generates {Zp2)* where p is an odd prime, then a
generates {(Zpk)¥ for all k > 2 also.

proof: "We need to show that a has order {p-1)pk~1 mod P,
assurning this true for k = 2. Do it by induction on k. QED.
QED. for part (i), Theorom.

Lamma:
i} Every element of (Z2k)* is annihilated by 2% 2, mod 2K

ii) The numkber 5 has crder 2k~ 2 mod 2k
Proof Use induction ann k. QED,

Larmme: If an abehan group (G,) ha: order 2k-1 and an element ¥
of order 2%"Z, and an elernent of order Z which is not a power of ¥,

L

then G is & product of the two cyclic groups generated by x and ¥.

proof: The map teking (rm) to xByIl 5 an isornorphism from
F2=F2k-2 ta G, QED.

Carallary: If k : 2, then {2k}t = ZaxZzk-2.

procf: We know that 3 iz an element of order Z2k-2, 50 we heve to
firel mm elarment of order 2 which it net & power of 3. First, since the
quotient af the bip group by the subgroup generated by 5, has order
twao, any elsrnent will have it: square in the subgroup generated by
5. Then note that any elament not a power of five will have its
sguare equal to an aven power of five, or elze § will have a square
ract, and then this square root will generate the whale group, which
1z known not to be cyelic. Then rnodifving the element whoss square
1z 2 power of five by half that power of five, we get the element of
grder two we want, which 1z not a power of five.

QED. part {ii), Theorem.
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Using the previsus theorem we can find the standard product
decomposition of any (Zp}*. For instance if n = 65, then 25 =
ZouZ1%, so (Zeg)” w (Zg)*x{Z13)* = FqxZ1Z. This time we ars
lucky and the decamposition 15 already the standard one.

If n = 176, then 176 = {16)(11) = 2411, so (Z476)* = (Z1p)* =(Z11)"
= (FzxTg)x{Z10). This decomposition is not the standard one, but
we can now carry out the progedura dezcribed akove for recovering
the stmndard decomposition, by passing first to the product of Sylaw
subgroups. le (ZzxT4)=(Z10) = {F2=Zq1={Z2xZ5), o the prime:
are 2,5 mand the sequence: of prime powers ars (2,2,4], and {1,1,5).
Multiplying these zequance: tagether gives (2.2,24], 2o the standard
decornposition is 2= 22=220.

Ifn = 19800 = (23M32)(52), then (Z1pon)* & (Z23)* x(Z32)*«(Z52)* =
(Z2xX2)x(Zg)«(Zzp) = (Z2xZ2)n(To2xnEF)x{La=ZR) =
TonZonZoxZarEzx?s. Thus the sequences of prirmme powers are
(2224} (1,1,1.3), and (1,1,1,5). Multiplying them together we get
(2,2,2,60), so the standard decompasition is (F1g00)*% =
Fz«z2a82wFan.

[f n= 1729 = (7H13M 19}, then (Z37z0)*= Ze=T12x218 & ZR=ZG*IL36.

Exercize #120) Find the standard decomposition of sach of these:
(i) Z237°%,

(i) Z2360%,

{i11) Z9z4*%.

Beneral Rermnarks on "products’ versus "sums'"

{i)} Strictly spesking there are two differant general concepts,
product and sum, for groups. The property we have stated in (i)
and (ii) of lemma 2 above, characterizing map:s out of the object, iz
the defining preperty of a "sum’, while the property in (i) and (iv)
of that lemma, characterizing meaps inte the obj=ct, iz the defining
property of m "product’. Since AxB satisfies both properties, it is
actually both a product and a sum, of & and B, in the category of
abelian proups. Now when the sarne object satisfies the properties
koth of a sum and a product, which do yvou call it? We have decided
to cell it, truthlfuliy, & product, but take adwvantape of the fact that
it mits mets hike & sum. Later, for reaszans discussed next, we will
have to distinguish the two concepts more carefully.
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{ii) The construction of surns differs froem that of produects for non
mpelisn groups, as well as for infinite collections of abelian groups.
The property in part (i) of lemma 2 for instance wauld not be true if
T is allowed ta he non abelian, zince gpla) and (k) rnight not
commute in C, whereas for (a1 in AxB we must have gpialdlb) =
Fie 1)F(1k) = Fia,b) = Fi1 bWi{a 1) = ythipla). If A= B= Z, and C it
non abelian, the group that has praperty (i) in the lemma would be,
not AxB, but the fres group an twe generators. Even if C iz abelian,
the definition of F in part (0 of lermma 2 would not make zenze for
an infinite collection of group: A, end homomorphisrns gi, since vou
cannct multiply together an infinte collection of values TTyjlaj) n €
In that case, the group having the property in the lemma would hbe,
not TTi4j but the subgroup of ITjA| consisting of elements { &)
such that aj = 1 for sll but = finite nurnber of entries.

§1%) Summary of Serre's account of Dirichlet’s Theorem:
Introduction: Except for 2 and 5, all prime:z end in 1, 3, 7 or 9. We
know there are infimtely many primes, and we could ask if there
are infinitely rmany that #nd in each of those four integers. This can
be phrased as: are there an infinite number of primes p such that
psa{mnd 10}, for every & such that g:‘:dl‘.ﬂ,lﬂ} = 17 The answear 1z
ves, and the ides for the proof is ta show & prime is "equally likely”
to have one ending m=z ansther, ie that given any choce & among
the four nurmbers 1,379 the proportion of all prirmes ¢ o, and
ending inn &, approaches 1/4 as n —+ e . The proof belaw peneralizes

the fact that £ p "+ diverges. A fancy way to say this is that gls) =
Zp %~ loglld{e-10); i= az z—1*, g{s) approaches infinity like
log{1/{5-1}) Recall this give: a proof that there are infinitely many

Frirnes, zince otherwise L p 7% as a finite sum of axponential
furctions, would be finite everywhere, in particular at 5 = 1
Suppose A is & subset of primess consisting say of "half" of all primes

in sorne sense. Then we might expect that the sum gals) = L4 p 7%
would anly go to infinity “half as fast” as the full sum Z p 7% | ie we
might expect that galst ~ {1/2) logll/{3-12). Let's tura this intuition
arcund and rmake thiz a definition. [e. A consists of "half'' of all
prirnes if the quotient gals¥/[(1/2) lagl1/(s-1))] approaches 1, asz

s— 1% and we write this s gals) ~ (172) log(l/(s- 1))

Definition: Mare genarally if A 1z any subset of primnes, we say thet
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Ahasdensitvk, whereQ 1 Kk« 1, if 24 p 7% ~ k lag{Ll/({5-1}]).
Easzy Remark: If densityia) = O, then A iz infimite.

Dirichlat's theorem: Given m : 2, and a » 0 relatively prime to m,
if Pa = Ip: p=alrmod m)}, then Density (Pg ) = 1/plm) > 0. In
particular there infinitely many prirnes congrueent to a mod m.
Cutline of proof:

We must show that gals) = Epsalimed m) p7° ~ (15 plmidiogll/{s-1]),
or equivalently, that ¢({mlgais) ~ logll/{s-1)}.

Stap One Write golics] az & linear combination of easier functions
le, If ¥ Zm*—L"* iz n hermemoerphisrm, define % on N by setting
wind = willn)) if gedin,m) = 1, and by %(n) = 0 otherwise. Then:
Lermma 9 ¢lm} gals) = Zy w{a~1l) fay (3, where fyis] = Zp %(pMp*
proof: This follows from the "orthopgonality relations”.

It is easy to see f1{s) ~ log(1/is-1)), since by Euler's formule, if
Rels) » 0, fi1ls) = M1/1-p~%) Tgim (1-p~= = gis) Tpim (1-p7%) ~
logil/{s-11)

Hence the naxt learmms would finish the proof:

Lernma 8: [F % = 1, fy(3) rermains bounded as s— 1%

Step two: proof of lemma B

The trick i3 o write fy as a difference of two bounded functions.
Lemma; If Ly is] = Z %in)/n%, then

fyls) = log{Ly{s)) = Ip k22 ¥iplikpks.

proof: This gees by expandifig Ly az an Euler product, and plugging
into the Tavlor series for log{1/(1-t))= I tk/k.

The boundedness of the second function on the right hand side in
this lemma iz elementary, in fact Igk;2 1 (pllfepks ¢ Zpk:2 1/pks
i Zplik:z 1/pk%) = Lo (1/p%(p5-1)} ¢ Ly (1/plp-10

$ £ t1/nin=11) ¢ 1.

The hard part is to prove log{L~{s]) is bounded a5 5= 17, but this
would follow from knowing that Ly (1) =D, if ® = 1, since the log of &
non 2ero number 1s finite.
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Step Thres: Analysis of §mfls) = Ty Loy (s}

Lernmua: The function $rfls) = Ty Ly is) iz given by a Dirichlst
series with 3 0 cosfficients, and diverpges for s = 1/g{m).

proof: cymis) has m product expansion convergent in Rels} » 1, as
follows Lenlsd = Tl Logls) =TTy Ty 1/(1-(plp™3} =

Mp Ty [MAL=w{pp =]

Sub Lamma: TT., (1-wT} = {1-T0)} where the preduct is over all
nth roots of 1, j= ouver all w e U

Hence tmis) = Mp Ty [1/(1-%(plp™%)] = Tp pm 1/(1-p HRINEP), by
the sublernmaea, where f{plgip) = ¢(m}. Hence if we expand these
factors as geometric zeri=s, and multiplp aut, we get an ordinary
Dirichlet series, with positive inteper coefficients, converging at least
in Re{s} » 1. However this series can be explicitly seen to deminate
the series &' n~PM)2 summed over those n with ged(n,m) = 1,

which in turn domunates Ly b p"iP':m:'E, which we know diverges
st 3 = 1/(plm) QED

Mow we are ready to prove the rmain result

Step Four: Proof that Ly (1) = 0, wheny = 1.

Lemmen: T{s) = 1/(s-1) + Jis), in Re(z) » O, where § ig holomorphic
proof: Thiz is Prop. 10 in Searre.

Corollary: Ly {1} =z 0, when % = 1.

procf: Otherwisze, since we know every Ly except L1 12 holomorphic
for Refz) » 0, and that Ly has, like ¢{s), 8 simple pole at 5 = 1 {(by the
Lernrna juszt mbowve), tha function Frnls) would ke holomeorphic for
Refz) » 0. Simce the Dirichlet series for rmis) has real non negative
coefhcients, it would follow thet the series itzelf must convergs far
Rels) » 0, by Prop 7. but we have just shown this series to diverge
at 1/plim) » D, QED



