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Math B44, Fundamental Theorem of Galoiz Theory,
application to soilution formuleas for “solvable” polynomials,
{eopyright 1996 by Roy Smith}

§1) The problem of finding maximal idsals, with application
to constructing "universal splitting fields.

One new topic we want to cover 1t & technical digression into set
theary and logic, not completely essential to do rmast of field theory
in rmy optnien, but uszeful, and slmest universally accepted as part
of the toal kit of rnatharmaticianz today. [t has however an
upneanstructive flavar that meaekes it chellengingly abstract and
therefore unpleasant to sorme people. Thiz 1s the uze of Zorn'z
Lemma to deduce the "existence” of some things which cannat be
explicitly constructed in a bnite, or even a countable nurnber of
steps, indeed sometirmes for which no explicit construction ¢an he
given at all Questian: of thiz type include whether every field can
be embedded in an algebraically clesed field, and whether every
carnrmutative ring cantaimn: maximal wdeals. The difficulty seems to
arizse rnainly in cases where the zets invelved are uncountahly
infinite. [Recall that a set & 15 (at most) countable if there iz an
injection 8—Z, and countably infinite if there is 8 hijectian S—=Z.
Wa may bhe careless and say "eountable’ sormetimes to mean "st
most countable’ and zornetime: to mean ‘countably infinite” |

Let's consider how some of these problems arise frorm tha guestions
we have been studving. The prokblemn of "salving” a palynomial f
requires understanding the relationship between the costficients and
the roots. Fallowing Galois one can translate this inte studying the
structure of the fiald extension KCF where k 15 the ficld generated
by the coefficients and F 15 the field generated pver k by the roots,
ia swhere F 1z a splitting field for £ In partuculsr the existence of
splitting fields i1z fundamentally important Recall thet for
polynormials over 0 it was easy to produce splitting fields since there
is an inclusion @CC, where € iz "algebraically closed”.

Definition: A field F iz "algebraically closed” iff every poiynornial of
positive degree with coefficients in F haz & root in F, equivalently iff
every polynomial of positive degree over F factors completely into
linear facters in FlX], agquivaiently iff the anly irreducikle
polynomials over F are of degree ane, iff there are no proper
anlpebraic extenszion fields of F.



An algebraically closzed extension of a field k contains
splitting fields of any pelynomial in k|X]

Eg if [ i5 any {-polynornial of pozitive degree n, since € iz
algebralcally clozsed, there sxizt complex numbers nurmbers oy, on
such that, in the ring C[X], { facters as #X) = Eﬂ_j=l,....,n {}i-mJJ =
elM-e i M) . (M=owpd A splitting field for f is thuz given hy the
subfleld F = Qlocq,... aplc . Mote that thiz 12 not an explicit
‘eonztruction” since no wey 13 given of actually finding the niambers
w1,. . ,«n, 2nd that we know nothing about the field F, neither its
dimension ouver [, nor {zince we do not know their real and
imaginary parts) even do we sven know how to explicitly multiply
glements such as «1a? it ln that sensze, our "abstract”
censtruction (forming the quotient of the polvnomial ring GIX] by a
maxirmnal ideal generated by an irreducikle factor g of f, and
continuing}, iz in fact rmore concrete. e one can point to at least
one explicit root of f, namely X+(g), in the first extension field
OIX])/(g), and one carn alta write dawn explicitly all the slarnents of
this field and its addition and multiplication tables. By iterating this
procedure ane can give o carmplete description of the whole splitting
fizld. Let's review the constructiion.

Lemma: Let k be any field and { any positive degree polynemial
aver k. Then there i1z & field K contaiming k, in which f has: a ropt. Lf
f iz irreducible, there 1z 8 unigque yrunimal such beld, up to k-
rarmorphisrn

Proof: Let g be any irreducible factor of £ in k[Z], so that (gICkl¥] 1=
a maximal ideal, and conzider the field K = k[X]/(g). Sines krilg) = D,
the natural map k—+klX|/{g} 15 injective. Hence we can replace the
image of k in K = k[XE/(g) by k itealf, so that K then containg ko L
we denote by |h] the catet of h, since h—[h] iz 2 hornomorphism we
have [0] = [g(X)] = gl(X]) in K. so the coset [X] = X+{p), is & root of g in
K, hence alsa & roct of £, Note that since £ is o multipls of g, f
belongz: to the maximal ideal (g), and hence the natural map
k[X]—=LkIx]/(g). sends { to zera The uniguenszx ic an exercize (whose
ingredients we have seern meny tirmes before]. QED.

Exercise #79) Frove that if { iz an irreducible polvnomial over a
field k, then =vary fisld extenzion of k in which [ has a root conteins

an ispmearphic copyr of the field kIXI/{D, [which is thus the unique
‘minitnal” field extension in which { ha: & root]



Exercise #80) Describe explicitly the splitting field F for X3-2 over
1 e prove that the elements of F can be written uniguely in the
form a*ba*cmz*dﬁfem ﬁ+f::t.2ﬁ, where a b,c.d.ef, are in 0, and whers
@«d=2, and B2 = -ap -=< (in particuler prove dimg{F} = 6), and give
tha rule for multiplication of two general elements of F:
'[u.*l:m'i:c-cz*dﬁ*emf.'l*f-:t.aﬁ}{a'*h'm*c'¢2+d'ﬁ+e'c¢|}'f'c-cEfj} =7

I'We already know the Galois group of this field 15 isomorphic ta 33,
and now we know the fisld it:slf, up to izomorphism

The fact that € iz algebraically closed rneans that C ix a super
splitting field, one so Jarge that every palynomial over any subheld
sphts in it. Moreowver the uniqueness of sphtting fields implies €
contains an isamorphic copy of everv abstract splitting field GCF of
iy §-polynarmial. The proof you recall iz by the extension theorsm.
if QCF 15 anv himite algebraic extension of 0 (such as a splitting field)
the inclusion meap G CC can be extended to a §) embedding FC
whose nnage i3 O- isormorphic ta F. Thus for most purposes, wWe can
restrict attention to QS when studwving splitting fields of 0-
polynornials or any other finite algebraic extensions of Q.

We might ask whether the word “finite” is necessary in the previous
remeark, or whether in fact T gontains an isomorphic copy also of
every infinite algebraic extensian of 4.

An algebraically ciosed extsansion of a fisld k containz nat
laast avery countably generated algebraic sxtanszion of k,
{up to izomorphizsm).

Suppose that 0T, .. =Y ) = Fis & countably generated
nlgebraic field extenzion of Q; since F = UFj where Fj = Iﬂ{ml,....,mj},
we can sonstruct a @ embedding of F— €, simply by extending the
€-homomorphism to each finite extensian Q{x1, . oj) in turn, for
avary j. although it would take an infinitely "lang time” to make
thiz mntirc extension if we think in terms of doing "one extension p#r
minute’, it i3 plausible to say that this extension is well defined since
if any particular slement « of F is given then it lies in one of the
finite subextensions Ol 1,....,mj]l, and thus our iterative procedure
does give a finite progess which defmes the homomerphizsm at the
elernent «. Hence the srnbedding iz defined at every «. This solves
the problemn since every algebraic fisld extension of Q is countebly
gererated 1n fact every such field is countable. Dut suppose thet k



iz an uncauntably infinite field such as C{X) (the guotient field of the
polvnomial ring C[X]), and k<k(Z) = F is an slgebraic extentian
penerated by ar uncountable zet 3 of algebraic elermnents aver k: if
kC L where L is algebraically closed, would it be possible to extend
the inclusion rnap kCL to s k-embedding of F—L? How would we
proceed if the elerments of 5 are too nurmersus to list in 8 sequence?

31: Does an algebraically closed sxtension of a field k
contnin every algebrmic sxtension of k (up to isomerphism),
sven uncountably generated ones?

In the uncountable casze, this is thes sart of questian dealt with by
Zorn's Lemma, ie how to extend a constructien which mekey senze
for finitely manv or countably many objects, to a situation
involving uncountably meany obhjects. Zorn's Lermnme say: that the
sarme argurnent by which we define a homomorphizsm on

O e g R PO 1, extending it step by step from the subfields

Qe q, _..,cx‘j}, can be generalized to the case where there are
uncauntabkly infinitely meany o's.

Exercise #81) Prove that every algebraic bield extension of &
cauntable fisld 1 mgpmin counteble. [Hint: Prowve first that if kK iz &

countable field, then the set of palynomials aver k is a countakble st ]

Remark: As in the text above, thiz implies that every algebraic
extension of O iz isomorphic to a subfield of €, without using Zorn's
Lemma. le any algebraically closed extension of m countable field k
canteins an izomerphic copy of avery algebhraic sxtension of k|

Exercize #82) Exhibit an uncountably infinite nurnber of elernernkts
algebraic over the field C(X) (and which are not in C{X) of course)

Let’'s retyrn to the existence problermn by proving the following:
diven a seguence {fj}1  w of non constant pelynomials
cover a fisld k, thears iz an extenzion of k in which =svery f_j
hasz s Toot.

We know how to construct s fisld extension kCF in which a single
non censtant polynomial f has 8 roat. By iterating thiz construction
we can construct a figld extension KCF in which every one of the



non constant polynomials in a finite collection By, fm. fj has a root.
To see that the same argument still warks: for an infinite sequence
1f1,.....Em....} is onlvy & matter of inductive logic.

Lemma: If k 15 a field and {f1,.. . ,frn, ...} i3 & sequence of non
canstant polynormials in k[X], there is a field extension kCE such that
every pelynomial £) in the sequence hes a roet in E

Proof: We first construct kCE1, a field where {] has a rost and then
E41CE?, a field where {2 alzo has a root, and o on!

kCE1CEzC . CERC ... Since there is a procedure for constructing
Ems1 from Ep and fne1 for all n, most people would agrees that this
sequence af fields kCEJCEzC  CERC . 1s well defined. Since the

sequence iz well defined, the union of the sequence is also well
defined, and this uniorn E = LJEJ' 1z & f1eld (see exercize B3 below} in
which svery fj has a root. QED.

Remark: If k is countahkle, then k[X1/{g) 12 also countable for anv g
in k[X], {for non constant g it is isomorphic to a finite cartezian
product af copies of k, and in general 1t 15 the 1mmeage of a surj=ction
frorn the countable set klX, as proved in ex #81) Hence the
censtruction in the Lemme can be done zq thet aach Ej is countable,
and thus {since a countable union of countahble sets is countebie) E is
alzo countable.

Qz: If 3 is an arkitrary set of non constant k-polynomials,
iz there an extension kCF in which every pelynomial in 8
haz & root?

Exercise #»83) Frove that if E1y<Ez< ... SEn< ... , It A INCreasing
sequence of fields, then their unian E = UEj is also a field. Also, if R
15 8 ring and ljTlzo . Clpt TR is an increasing sequence of ideals
in B, prove the union I = UIjis an ideal in R

Definition: If k is & field, an “slgebraic closure” F, of k iz an
algebraic field extension kCF, where F 15 algebraicelly closed.

Every countable field has a {countable) algebraic closure.
Theorern: If k iz a countable hald, then k s contained in some
cauntahle algebraically clated field.



proof (E. Artin): By the assertion of the hint in ex. #81, the set 5
of polynormals of positive degree ogver k 15 countable. Hence we have
Froved there 1s & countakle field extension kCE4 1n which every non
canstant polynomial in k[X] has s root. Now repeat the construction
ke get m caunkable field E1SE2 such that every non constant
polvnemial in E1{X] has a rogt in Ez. Continue to constrict a
zequence of countable fields kCE{ CECE3C  CERCER+1C .. zuch
thet every non constant polvynomial in Ep[X] has a root in Epe1, for
Bll . Ther let L = UEn ke the union of all theze fields. If { [t & non

constant polynomial in L[X] then f has only s finite nurnber of
coefficients, each of which belongs to one of the Fields Ej. Herce if En

1z the largest of these E;, { rtzelf belongy to Eg[X]. Congsoguently, by
oupr congtruction, f has a root in Eq+1, and hepce in L. Thus L is

algebrajcally closed. ZSince L iz 8 countable union of countable fields,
L iz countakle. QED,

Exercise #84) If k<L is a field extension where L iz algebraically
closed, and if FCL iz the subzet of all elements of L which are
alpebralic over k, then F it an algebraic closure af k.

Exarcize w85) If k iz & countable Field, then k hes a countakle
aigebralc closure kC k, and BNy two algebraic closures of k are k-
izomorphic. |As a result of this uniguenesz theorern, "the" algebraic
closure of k 13 sometimes dencted by k]

Exercise #856) (i) Prove that there are an infinite nurnber af
irreducible polynomials over any field, [Hint You might immitate
Euclid's progf that there are an infinite nurnber of prime imbtegers ]
{ii) Dedurce fram (i) that = finite field iz never wlgabreicm]ly clased.

Q3: Does svery field {(even an uncountable one), have an
algehraic closure?

Remark: The preof of the previous theorem shows that if Q2 has
the answer “yes’, then U3 haes the answer “"ves™ slso.

To see how bto generalize somne of these results to the uncountakle
cese, Jet's take another look at the construction of a field containing
n roct of ceach of two nan constant polynarnials. We know haw to de



this by iterating the quaotient construction, but let’s laok at it
sliphtly differently. Suppose we use X for the veariable in f and Y for
the variable in g Then HX} and giY] are nen constant elements of
the polynornial ring klX, Y] in two variakles. We claum there must
be a maximal 1deal M in k[¥,¥] containing keth fi¥) and g{Y). To see
thiz, et kCF be a field extension in which koth f, g have roots, say
flee) = 0, glp) = 0 for «, p in F, and consider the evaluation map
k[¥]=F taking a pelynomial h{X) to bix). We know from the
quotient construction akove that the mage of this map 1s the
subfield F{ = kle)CF and that the kernel is the maximal ideal in
k| X] generated by the minimal k polynomial of o, which must he
one of the irreducible factars af KK} in k[X]. Then let p1n F be a root
of g{7) and consider the evaluation mep F1[Y]—=F taking hiY?} ta hig).
The imege of this map is the subbield F2 = F1(p) = kici(p) =

kiee ,pJCF. Now consider the meap k[X,Y] = kXY= Fz taking hi{x.Y)
to his, p). Since k[X]=F1 is surjective, so is RKIXIY]I2F1[Y] And since
F1[Y]—F2 iz surjective, 5o iz the composition kX T1=F2 = ki« p)
This cormpesition is just the svaluation map taking hiX, Y} to hix,pl.
Since ki, p) iz a field, the kernel of this surjection is 2 maximaeal
ideal Wlc k[}{f‘:"], where M = thozse pnl},rnclmiﬂls hf_}{,'f:' which Equﬂ.l
=erao when we substitute ¥ = =, ¥ = p. Sines ) = 0 = gfﬁ}, both
f(¥) and gy} mra contained in M as claimed.

Conversely, if M iz any ideal in k(X Y] containing both ((X) and g{Y),
then F = k[X,Y)/M iz a field and the natursl map kl¥,¥] = F sends
hoth f, g to zero. If we write [X] and |Y] for the cozets X+, Y+M,
then this means that (X} = [#€X)) = 10] = [g{YI] = g{l¥]). Hence [¥] 13
mroot of fin F and [Y] is & root of g in F. Hence another woy to
construct fields in which polynomials have roots is to be able to
produce maximal ideals containing thoze polynomials.

Here is a sketch of the construction. For each non constant
polynomial | in k[X], we need to introduce a rogt of that polynomial.
Hence for each f choose & symbol ¥f to represant the root of £ we
will adjoin In erder to rmake the symbol ¥f & root of f, first we
simply adjoin Xf to k, and then we force Xf to be a root of £, To do
thig, first sieaply ad)join Xf as 8 new variable, and then farca [(X§) to
equal gere by modding out the relation f{Xf) To do this all at once,
we firzt form the huge polynomial ring k| Xf,..] in the mfinite



collaction of variables { ¢}, one variable for amch non copstant
polynarnial f in k[X]. Then we need to mod out by all the relations
FEXE), and we also need to obtain a field. Hence we need to mod aut
by a maxirnal ideal containing all the relations HXf). We need Zorn's
Lernma to prave that such a maximal ideal exists. [End of sketch ]

Q4: Given a proper ideal ISR in a commutative ring, does
thers sxizt a maxima] (proper) ideal MCR with ICMCR?

Again thiz 15 not obwious, but Zorn's Lermma shows that the
argurnent showing the unien of an increasing sequence of idesls is
an ideal, lrmplies the existence of ideals which are maximal among
the family of nll the ideals in a ring.

Theorem: If Qg has answer "yes", then Q7 and Q3 al:o have answer
"wes'. le if everv proper idesl in every ring iz contained in a
meximal ideal, then every field has an algebraic closure.

Froof:

Digression: Palynomial rings can ke defined with any numbhber of
varables, sven infinitely meny, as foilows:

Definition: If 3 iz 8 set of distinct "letters”, & "rnonomial” in those
tetters it & product of non negative powers of a finite subset of those
letrers, 1. an expression of form X4Vl Xntn, with X1,...%n in 3 and
all rj non negative integers. The order of the letters in a monomisl
1z unimpertant. We identifv the trivial menomial having all rj =0
with the elernent 1 in k. [ S 12 any zat of letters such that 3nk is
arnpty, then the polyrnarnial ring E[Sf is by definition the set of ail
finite k-linear combinations of all monomials in the letters in 3.
Multiphcation of twe monoemials 13, &8s usual, done by adding
exponents of the same letters. Eg (NEYZHXTYIWE) = X3I¥I12WE Two
polvnomials are equal iff they involve the sarne monomials with the
same coefficientz Thus distinet monornials are by definition linearly
independent. Thit emys that our construction yields a doamem klE] in
which the elements of 5 are "independent tranzcendentals” over k.
End af digrassion.

We have seen that the Theorem follows fram the next Lemma,
Lemma: If k iz anvy field, and 3 iz any collection af polynornials of
pozitive degres in k[X], and if we azzume proper idemls are alweays:



contained in maximal anes, then there iz a2 field extension kSF in
which avary polynornial in & has & root.

proaf: Choose B set {also called 3) of letters Xf (more precizely, a set
of independent transcendentals over k). one for each pelynorial £ in
g, and farm the palyonomial ring k[5] {in possibly uncountakly
infinitely many varniables) whozse variables are the letters Xf.

Clairmn: The ideal I generated by all the polynorrusls fi4f) (where
each f is written with its own variable ¥f) is a proper ideal

proof: If not, then 1 hies in the idesl, which would mean 1 can ke
written as a finite linesr combination of the ganarators f{X{f) with
coefficients from k[3], ie. 1 = ZgifilXi), finite sum, where all g are in
klZ] antd where X| = the letter associated to fi. Since a polynomial is
a finite expression the finite surn Zgifi{#j) will involve altogether
anly a finite number of the variables, and hence belongs to a subring
af k|5] of the form k[¥1,. . Mpn] for tame n. Then the eguation 1 =
Leifif=i) wauld held 11 that polynormial ring. Howewver, since every |
n 3 has positive degree, we know there iz a field extenzion kCE in
which each of the finitely meany polvnemials F{Xj) in that sum has
B rect, zay o iz raat in E of §;. Then the evaluation map

k[7q, ... Xl = E subsututing o, for ¥ tekesz each £i{3¥]) to zero, bhut
takes 1 to 1. Hence the right side of the equation 1 = Lgifi(¥j) goes to
zero under the eveluation map while the left goes to 1, &
contradiction. QED for the claim.

Azsuming the answer to Oq is yves, there is 8 maximal idesl M m k(3]
which contains 1, and we can form F = E[31/ /M, a field axtanaion of &
such thet the natural map k[J]—=F taking h to [h] = keI, zends
every one of the polynemials fi#f) to zero in F. That mean: as usual
that [Xf]l = Xf+M iz s root of fFin F. La F is a field in which sll the
polynomigls in 5 have s root. QED for the Lammna.

It again follows that we can construct a ssguence of fields k=
EQCE1CE2CERS . CERTER+1< ... such that every non constant
polynornial in En(¥| has a root in Ep+1, for all n:d Then L = UE, is
alpebraically clesed and containz k, and the set k of slements of L
which are algebraic avar k, farrm an alpebraic clozure of k.

QED. for the theorem.

Remark: Unigqueneszs: (up to izomerphism) of the algebraic closure
Just constructed would follow from an effirmative answer to Q1.
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§2) Zorn's Lemmea repliss "ves  to guestions Qi - Q4 above
Let's learn the statermnent of Zorn’s Lemrna and see how to use it to
zettle guestions Q1-0Q4 raised sbove. Zorn's Lemra gives a criterion
for a collection of subsets to contain a rnaximal subset. Of course
the urmien of a collection of subsets is & subset conteining all of thern,
henee maximal if an adrissible member af the collection, but Zatrn
iz urunily applied to collectionsz in which the uron of everything in
the collection 15 not itself in the collection. For example take the
collection of all idesls in a ring. The union of even two ideals i3
usually not an ideal. But we have seen the union of an Increasing
sequence of ideals is an ideal Zorn says essentially if vou have a
collection T of subzets of a piven set, and if for every “increasing’
farnily of setz in 2, © contains their union, then © contams maximal
subsets. More generally the Lernma is stated for "partially ordered
sets” which iz sort of an abstract version of & collection of subsets
Since it is difficult to stay awake until the end of the dehaitions, we
begin with a hopefully intelligible staternent of the Lemma,

Zorn's Lernma: A non empty partially ordered set in which totally
ordered subszets have upper bounds, cantains meximal elements

Definition, A partially ordered set 1s a set F plus a binary relation
which might only be defined for some pairs of elemants of 5, 1.8, 1t 13
given by m subset P € 5=5, and we say x £ v for x,y in 5 iff the pair
(x,v) belongs toa P We regquire that of x ¢ v and v £ 2 then

¥ ¢+ =, and that {(x ¢ v and v ¢ ®) iff {x = v). We write {x < v} iff

(x ¢+ v and x # y). Elernents x, v are called “comparakile” if either

¥ Lyar vl ox.

Definition: A “linearly ordered” ar "totally ordered” set 3 iz a
partially ordered set such thet far every x, v in 2, either x £ ¥, or
Vi X,

Definition: An upper bound” for a subset TCS of a partially
prdered set iz an alament b of § such that forevery x in T, x ¢ b, A
"lemst upper bound” (sometimes written lub. or lub) for T is an
upper baund b for T such that if ¢ ¢ b then ¢ iz nat an upper bound
for T.

Definition: A partially ordered set § is “inductively ordersd” iff
every tatmlly ordered subset of 5 has an upper bound in 3, and 5 1=
“strictly inductively ordered” iff every totally ordersd suhset of 3
has a least upper bound in 5.
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Definition: A "maximeal element” of a partially ordered set 5 iz an
element b of § such that thera it no element v of 2 with b < y. For
example if b is not cornparakle with any other element of 3 then b
15 rmaximeal.

with this lanpuage we can state:
Zorn's Lemmme: Every non empty inductively ordered set containz
maxirnel elerments,

Maw let's assurne Zorn’s leroma and use it to deduce the answer to
guestien {11!

Theorem: If k is & field and k<L 1z an algebraically closed
extension, then L contains svery algebraic extension of k. up to
1s0rnor phism.

Froof: if kCF iz any algebraic axtension of kK, we went to embed L
intg L ouver k. We just consider the set of all partial embeddings and
use Zorn to find a mexirnal one. [e let 3 = the zet of all pairs (E,p)
whare KCECF and ¢ E— L iz an embedding over k. Since kCL at least
3 contains the pair (k.<), sa 8 iz not empty. Moreover, 5 is partuslly
ardered by the relation that savs (E1.p1) ¢ (E2,¢2) provided E1<E2,
and p2 extends 1. Now if TCS is a totally erdered subcellection of
theze pairs, we claim 5 contains an upper bound for T. Namely |st E
be the union of the subfields En oeeurring in T, and lat ¢ he the
union of the correspending embeddings ge, (1. there iz & unigque k-
embedding ¢ E— L which «xtends all the ¢, and in fact the graph of
§ iz the union of the graphz of the vl Then it is easy to s=e that
(E,p) iz an upper bound for T, in fact & least upper bound.

Thus by Zern there is some maxirmal elament (Eqp) of 3. We claim E
= F, and thersfore o is the desired k-embedding of F inte L. For if E
is not equal to F and x is any element of F not in E, we can extend
the rrnap ¢ E—~L to yoE(x)— L, by our usual extension theorem for
finite axtensions, since x iz algebraic pver k, hance also over E, so
Eix) is finite over E. This zave (E,p) < (E(x), Y), hence (E ¢) iz not
meximal in 3 after all, s cantradiction. QED.

WNow we could snswar g, but it will be uncountakly bhetter if vou do
T AT AN BEXEICILE,

Exercise #87) (i) Prove, sssurning Zarn, that 1f I1CR 15 a propar
ideml in ® cornrmutative ring, then I is contained in sorne rnaximal
ideal MCR. [Hint: Obwviously vou must produce & maximasal elsmant



in the tet 3 of ideals of R which cantamn 1]

{ii) Prave every vector space ¥ ovar a field k has e basiz. [Hint: Use
Zarn to prove there exist maximal! elernents in the set 5 of all
independent substs of V' Then preve such a maximal independent
set spans V|

Challsnge problern: If ICk[X1.. .. Xpl iz & proper ideal, and M231is a
maximsal ideal contaming [, we know F = kK1, . ¥nl/M is a field
extension of k in which all polynornialz of | have & commmon z2ers,

but iz there an algebraic such extension?
. Exmrcizm WBH) Sclue the challenge problem if 1 = 2, 1 = (X, Y],

§3) Hilbert's meathods in the study of polynomial rings,
(arguments which deo not uss Zorn's Lemmaj

In the lete nineteenth century, David Hilbert grappled with the
proplerm of constructing finite generatars for certain sets of
polynornials associnted to graup actiohs on polynomials rings, (e
sets of polvnomials with wvalues which are sszentially constant an
arbits of the action, the ta - called “invariants” of the action] At
that tirme, the explizit computational methads in use were
overwhelmed by the megnitude of the caleulations which arose,
threatening a halt in progress in the subject. Hilbert responded with
new 1denas, which were desigred ta ignore the question of
"constructibibty”, end fogus instead on the guestion af mere
existence of solutions. This approach was very reluctantly accepted
by some of Hilbert's contemporaries, and sne was said to have called
it "not meathematics but theclogy'. Hilbert later made zome atternpt
ta denl with these criticisms, but his powerful nen constructive
methads rnay well heve bean respansible for ushering in & whole
new erm of abstract approaches to mathematics, in which existence
theorems are proved by methods which do not allow any calculation
or muven estimation of the the nature of the solution which are
clairmed to “exizt”. Like it ar not, this was progress, when progress
by the old appreaches seemed impossibkle.

The abstract approach to algebra which resulted was developed by
Frmil Artin, Ermnma Nosther, and BL. Van der Waerden and others in
the early 20th century, and now forms the core material at the
bese of this course and other similar courses on "abstract algebra’.
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The original title "Madern Algebra’ of Van der Waerden's book
scknowledged the naw flaver of the methods wt taught. Today most
of these books are titled sirnply "Algebre” as we have sesn, but ]
regret the loss of even an awareness by most pecple thet advanced
algebra too once had a more cormputational side, which is now being
rediscovered and explored with the aid of computers. In my opinion,
the term "abstract algshra’ rmight be appropriate not se much for
topics which are far fram averyday experience, but for those
argurnents in algebra which da not involve computation, I urge vou
to learn such methods for their value, but to always try to sae how
explicit computational rmethods can be introducad wherever possible,
in order ta deml with concrete questions, and to find exphicit anzwers.
As an example, the apparently abstract proof of the following
theorem of Hilbert, which prouvss the existence of a finita basis for
an ideal in a pelynomiesl ring, but zeems to give no way to construct
a finite basis, turns aut when anaelyzed approprietely to contain the
germ of the ides of how to rnake sense cut of & division algorithm
far palynomials in several variables. The point is that it leads to a
definition of a particularly good tvpe af eal basis, a "Groebnier”

ka3t Thit it discuszed after the proof of the theorem below.

Thearem (Hilbert): If k is & field, then every ideal in k[X1.. .. Xnl
hes e finite number of generators,

Corcllary: Every non empty collection of ideals (not just
inductively ordered ones) in k[X1,...Xn| contains mazirnal elements,
in particular if [ is a proper ideal of k[, . Xgnl the collection of all
proper ideals containing [ has rmaximal elernents  Thus | s
centained in some rmaxirmnmal ideal

proof of corollary: 1f 5 it & non empty collection of wdeals in which
none are maxirmal, then there iz an ideal 11 10 3 which s not
rmaximaeal in 5. Thus there is en ideal 12 in 3 different from I and
with [§Cl2z. Again there is snother ideal I3 in 2 diffarant from these
with [1C[2CI3. Continuing we produce a sequenace of diztinct deals
inS, Y<olz<lg....... But thiz l=ad: to a contradiction, using the
theorem above, since the unlen I = '.JI_-‘F iz mlza ap ideal, and 1z thus
finitely generated. Then some one of the ideals ln muast contain all
the generators [why?], whence [y slse containsg I, and thus Irn=In
for all mrn, 8 contradiction to the choice of the ideal: as all different.
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QED.
Let's rarpind surseluvez of the key cancept of ideal generators.

Definition: If SCR iz & subset, the idenal (3) "penerated by™ 3 13 the
intersection of all these ideals of B which contain 3. Since R 1z an
weal contaiming 5, (5] is an ideal in R but need nat he s proper ideal.
Thus (3) is the smallest (not nec. proper) ideal in R containing 5.

Remark: It is eazy to check that (3) = the set of all (finite) R-linear
cornbinations of elerments of 3, but if 3 15 empty we have to include
also 0, ie (@) = (0). Thus for & non empty, a typical element of (5)
has form Zxia; with xj in R and aj in 5.

Definition: A ring R 1z "noetherian” ff every 1deal 18 fnrtaly
generated..

Exercize #H9) Prove the agquivalance of the fallowing three
propertices aboulb & ring R

{1) R is noetherian, ie. every ideal is finitely generated.

{11} Every non empty collection T of ideals of B has maxirnal
elerments, {ie. ideals not contained in other ideals of T).

{ii1) Every mncreasing sequence of ideals of B “stabilizes”, e if
[{CIlzCIsC ... is an infinite sequence of 1deals of R with le lj+1 for
every | then far sorne nowe have Iy = In+j for all j20.

[Hint: Reread the proof of the previous corellary, and prove (i)
impliez {1} implies (i) implies (i) ]

proof of the theorem: Since klX1,...Xn] 2 k[X1,. Xo-1l[Xnl, and
since the only idaals in k are (0) and (1), it suffices by induction to
prove the follsawing one variable version:

Hilbert's PBasiz Thworam: If K 15 & neetherian ring then the
pelvnomiel ring RI¥] is also noetherian,

Progf: Let [CR[X] ba any RIX] - ideal, wWe must produce a finite
number af polynamials i [ such that all the rest can be written asz
R - limear combinations of theze, Since we can only uze the fact
thet ideals in R are finitely penerated, we niust cook up an ideal n

E from our wdeal i R[X].
Tha first trick iz to lpok at the "leading coefficients” of elemnents of

1 That iz, let JCR be the set of leading coefficients (the coefficients
of the non =erc terrms of highest degree) of all polynomials in L
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Clairn: JCR 15 an R - ides]

proof of claim: Since 0 is in I, O iz in J alzo. If a i3 leading
coefficient of an element { of degree n i I, and b the leading
coefficient of an =lement g of degree m » n, then a is al=o leading
coefficient of the elernent fxfM™ N in |, Thus a-k keloeng to J if non
zero, since it is then lsading coefficient of the elernent f=~g in I. If a-b
= 0, it still belongs to J az noted abave. If r is any element of R, and
re =0, then ra is leading coefficient of the polynormiel rf in [, hance
ra belongs to J. QED.

Now by hypothesis, J is finitely generated as R - wdeal, so there 1z n
finite set of elements a.k, ..¢ which gernerate J over B, By
definition of J there are finitealy many corresponding elerments
f.g,...haf | and having &b, ...¢ sz leading coefficients, and we can ask
the following:

Question: Do the elements f,g,.. h generate [ over R[XK]?

Whaen [ encountered thiz proof on an exam myvself as a student [
could only rermermnber the “first trick” above, and so [ tried te prove
the answer to this gquestion was yes, unsuccessfully as we shall see.

Let F ke any elernent of | and try to write it as an RIX] linear
combination of the elements f.g... .. 3Sinces you can st least get the
leading coefficient of F from f,g,. .1 vou should be able to subtract
and reduce the degree of F, hopefully finishing by induction. But
loak what happens. First assume the degree of F it greater than n =
rnaxirnum of the deprees of the polynomials {,g. . h, and thet A is
the leading coefficient of F. If we multiply by apprepriate non
negative powers of ¥, we can boost up the degrees of the
polynomials f,g._h, to get polynomials f.g....h' in fg,.. h}CI which
nll have the zame degree as F, and which still have the same leading
coefficients ab, ¢ as before. Since sk, .., gensrate the idesl J of all
leading coefficients, we can write A = ocatphs ¥, for some o p,08
in B. Then (cFepp's. +¥g’) belongs to (f,e....hiCI, haz the sarae
lending coefficient as F, and thus F - («f'+gg's . .+¥g7 it a polynomial
in I of lower degree than the degres of F. If we could continue
subtracting aff elernentsz of (g, L) until we get the zerc pelyrarmnial,
we would have proved that F belongs to (f g,...hl.

Unfortunately we can only continue this slgerithm as long as the
degree of the polynomial remains larger than n (= rnax of degrees of
all f,g,.. h). For instance if degree of F - {cct'+pa's  +¥g') ¢« M, we
would have to stop efter the first step. What do we da now?
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Obwiously we just need some more polynomials of degress lesz than
i, which we can use to lower the degree even further. Use the
second trick: Let Jq CR ke the set of all coefficients of polynomials
in | having degres exactly equal to d, plus 0.

Claimm: Jd i3 an 1denl of R,

proof of clairn: 1f u,v, are leading coefficients af palyoornials ¢, of
degree d, then u-v iz either zero or the leading coefficient of the
polvnomial ¢+, which also hes degree d. IE r iz any element of R,
then ru is either zerc or the leading coeffoient of ry, alse of degree d,
QED.

Now for each Qtden-1, there iz a finite et a4d.kbd.. . .cd of elernents of
Jd which generate J4q over R, and a correrponding binite set

f4.gd.. .hd of polvnomials in Jd. with l=ading coefficients ad, g, ...cd.
Clairn: The ideal ! = {fg . h, fp-1.gn-1...-ha-1,....f0,80,.-...h0OJ.
proof of claim: We have alrandy zeen that if F is any elernant of I,
we can find an elsmeant G of (fg . h} such that F-& belongs ta [ and
has degree less than n. If F-3 = 0, then F belang: to (f,g,.. ). If F-G
has degree d where 0: d < n, there is an R-linear cornbination Gg of
the polynomials {f4,gd,....hd} such that F~@-34 haz still lower degree
Continuing, we obtain a pelynomial G+zG84 in the ideal

(fg,..h fn-1.En-1...bo=1,... Jfo.g0,....hol such that F - (@264 = D
QED for Cleirn and for Hilbsart's theorem.

Rermnark: If you lock at it again you will see that our proof of
Hilkert's theorem resembled a division process where the arbitrary
alarment F 1n the ideal [, was "divided by™ the generatars

{fg . ..h fn-1.gn-1...ho-1... f0.80.... gl ie rnultiples of these
generators were subtracted frorn F until we got zero [remember
“divisien” by something is subtraction of s multipte of that
sormething]. Moreowver we choze the generaterz za this division
process would succeed when the only multipliers we used were
monemials; 1e. we only needed to multiply by meobornials in the
proof ahove in order to “koost up” the degress of the generators
appropriately The reasan it all worked, 1s that we constructed
generators with the special property that the "initia]l forms” of the
generators were sufficient to generste the "initial forms” of the
elernents of [, Lt is canceivable that there are generators for the
ideal which da neot have thiz proparty, and which cannot be shown
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to be genéarators by following thiz same division process. This is
what happens in a pelynomaial ring of several wariables such ms
k[=,¥] if we are careless with the ordering of the variables or of the
gerarators. For example we could try to divide gy2d-x by

fuv+l, wE-1} and get kyo-x = wizy+l) +0{vZ€-1) + {-x-y), where -z-y
appears to be the remainder’, since it cannct be divided by either
#yrl pr 3.!2—1. Hawaver in the other prder swa gat :q;z-x = x{yz-l]l
+0{x v+ 1) +0, with remainder zera. ln the second caze we have
proved that xvz-x belongs to the weal (xy+l, yz—i}, but not in the

first case. The problem here is that the "initial forms” xy and vZ of
the generators do not generate the initial form (-» or -v according
to ordering) of the element -x-y of the ideal. An ideal basiz whose
initial forms da generate all initisl forrms is now called & "Groehner
basis” for the ideal, and it can be proved that the remainder on
divizion 13 independent of the ordering of the divisors, and meore
impertant, the remeamnder is zero iff the elemnent being divided doss
belong to the ideal generated by the divisprs. Thus there iz a
division algorithren of sorts to determine if & palynominl of several
variables belonpgs to the ideal geaerated by a given Groebner basis
More ower, there 1z an algarithm te transforem any ideal baziz into a
Grosbner bazix For the zame ideal. Thusz it is computationally
passible to determine whether g given polynomial in k[X1.. .Hnl
belongs to the iden] generated hy a given finite set of generstors. In
particular it 12 pazzible ta decide whether 1 balongs to the ideal, and
hence whether Lhe ideal is 8 proper ideal.

The book Ldﬂ.ﬂl&._}.’_ﬁnﬂ_lﬁ_a.uﬂ_ﬁlm:nﬁ ﬁn.mim_duﬂmn_m

D tg ebhra, by
Cox, L1tt1=, and CI- Ehea dlscusses {nt ar adu&nced undergradunte
level) Groebner beses, division algorithms, and the use of computer
algebra programs to make explicit calculations in polvnomaal rings of
several wvariakles. It is fascinating to me that the bazir turned up 1n
aur proef (which iz substantially Hilbert's own proof} is a Groebner
baziz, and thus exactly tha sort nesded to make explhecit divizion
calculations in rnings such as k[X,¥Y], and yvet apparently little
attention was paid to such guestionz until the mid 1960's when
Hironeksa, and then Buchherger introduced theze idenas
independently. The ideaz in thiz proof thus had lain around for 50
or B0 wvears apparently without their commputational usefulness keing
neoticed Take heed, all aspirants to mathernatical research




1

Exercise #90) (i) If R is 6 noetharian ring, then any gquotisnt ring
E/l where ICR is any ideal iz also nostherian,

{il) If R is a nastherian ring and fR— 3 iz a surjective ring
hornornorphisyn, then S is alta ngetherian.

54} Unigue Factorization in Z[¥)

We have already uzed Eizanstein’'s criterion, without proof, to
produce irreducible pelynomials over 4. We will fill the gap in our
logic by proving that result now. The eszential point iz Sauss’ theory
of the content of a polynomial, and of prirutive polynormials. These
concepts allow wus to compare factorization in Q[X] with that in Z{Xl,
ond to deduce that an integral polynomial which iz irreducible in
ZIXi remains irredusible in Q[X], The contrapesitive statement that
an integral polynarnial which i= reducible in Ql¥) is also reducible in
2(¥] allows us to abtain {unigque) factorization of polynomials in 20X,
and more generally also in k[H1, .., Xnl.

Theorern (Gauszs): If P is a ufd, then RIX] 1£ & ufd alza

Thiz i3 the maost general statement we shall prove, in the next
section, but we zhall proceed to the proof in steages, first proving that
Z{x] is m wid. This proof contains all the essenteal ideas. It is simple
it principle, but the detail: ars tedicus ta do completely W will
Bttetnpt to rnake the rmain tdess clear, and we will also try to
present sxsentially all the detrils. First of all, think back owver your
awn experience, factoring things like x2+5x+6 = (x+2){x+3). Notice
that when the coefficients of the original polynomial are integers,
then the coefficient:z of the factors sere alzo integers. Ta be =ure, you
can factar x2-2 = (x-21/2)(x+21/2) with irretional numkbers. But if
an integral poynomial factars with raticna numbers, then it already
factors with integers. Thiz it ane of the first results we shall prove
using Gauss wdes of "content”.

Yery briefly then, to lactor an integral pelynarnisl f over Z[X], for
exarnpls f = Bx&-A0x+36, Just remowve the god of the coefficients (this
iz the "content™), here f = B(2Z+5x+6}, then factor separately the
content and the remainmg polvnarmial £ = (20T x+21{x+3), and thaze
are the irreducible factors of f aver Zlx|. Note there are four
irraducible factors here since 2, 3 are not units, but primes in 2[=z].
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The most important concept i3 the following one:
Definition: The "content” of a palynomie] { in 1K) iz the ged of the
coefficients of £ If =0, the content iz 0. We dencte content(f) = cf

Thuz of is a well defined non negative integar whick s 2era iff f =0

Definition: A polynomial §in Z[X] i3 “primitive” iff cf =1, iff the
coetficients of { have no cornmon prirmme integral factar.

Lerntna. Let g h, be non zera polyvnormials in FE].

(i) c in 27 is the content of Fiff f = ¢cg where g is primitive.

(i) If c,d mre in Z*¥, g.h in Z[X] are primitive, and cg = dh, then c=d
and g=h.

(iii}) Every non zero fain Z[X] ha:z an unigque associated primitive
aodynernial fo such that f = c{fn). [Or if £=0, take fn=11]

(iwd If £20 inn ZIX], and F = cg where ¢ is in Z* and g iz primitive,
then c = cf and ¢ = in.

proof; Exercise. QED.

The mein property of the content is thet it is multiplicative. We
prave thiz in the following steps.

Lemma: [f g.h are primitive in Z[X] and f = gh, then f is primitive
proof: If p iz any prime integer, it suffices to prove that zome
coefficient of f is not divisible by p  Since this is true for both g and
h, among the coefficientz of g which are net divisible by p there it &
highest one say ap, and sirnilarly s highest one among the coefficient
ef h not divizible by p, zay by Then the coefficient ¢ af ¥T*% in f iz &
sum of terrns of which one is arbe and the others are of form ayxb]
where k+l = rvz. Hanoe except when k 2 r. 1 5 35, we must have k > r
or | * . In these cazes, sither p divide: ap or b and thus their
preduct. Hance p divides every term but one in the coefficient c of
A¥F*5 and herce p does naot divide c. QED.

[Digression: Anather wvery nice procf of thiz lemmme is possikle using
two naturel auxilimry results. We give it sy well

Lamamea: If R iz 8 domain, so i1s B(X].
procf: The key point iz that although the coefficients of a product
nr= 1n general a sum of products af various coefficients of the
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factors, both the fughest coefficient and the lowest coefficients of fg
are a simple product. We can use either one for this argpument. Eg.
the highest coefficient of fg is the product of the highest cosfficient of
f and the hiphest coefficient of g If f £ are both noan zers, then their
highest coetfficients are both non zero, hence their product iz non
zerc. Swnce fp thus has non zero highest coefficient, it is non =zero as
well. QED.

Lemma: The construction of polynomial rings is & functor from
rings to rings. [n particular, if f: B— 2 iz a ring map, then there iz a
unigque induced ring map % R[X]— S[X] such that f*{Eai}{i:l = Ef{ai}}fi.
proof: Thit iz easy. QED.

Lemma: if g h are primitive in Z[X] and f = gh, then f is primitive,
sacond proof. Again it suffices to show no prime inteper p divides
every coefficient of f, ie that the reduced polynomial [f] is nat zero
in the ring Zp[X]. The hypothesisc says neither (gl nor (bl is zero in
IPII{]. Moreower, by the pravious twa lemrmasg, sinces IP iz a darnain,
50 15 ZplX], bence [f] = [gllh] =[0]. QED.

Rernark: This second proof is really the same asz the first proof,
since in the first proof the coefficient ¢ of X¥Y** which we zshawed
was not divisible by p, becsmes precisely the highest nofi vanishing
coefficient of the reduced polynermial mod p. End of Digression.]

Lerama: [f fgh are in Z[X] and [ = gh, then <f = I:::E}(l:h:l

proct: In the notation introduced above wa have g = cplpp), and h =
chihgl, whance f = gh = cgchignhol., where gohg s primitive  Thus
by the properties given above for content, of = Cgth. QELD.

Lemmmnea:1f a, b, ¢, d arein £*, and g, h are primitive {in Z[X]), and
it (a/b)p = (efd)h, than /b = ofd, and g = h,

proof. Nultiplying by bd, we conclude that adg = beh, whence the
properties above of content imply ad = be, hence a/b = ¢/d  Dividing
through by /b = ¢/d, then g =h. QED,

Remark: If {f is non zere in D[¥], there exist ab in Z* and &
prirmitive g in Z[X] such that f = (a/b)g, since wa may take b az &
positive comrnon multiple of the denominators of the coefficients of
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f, and a = content{bf), where bf iz in Z[X] By the previous lemmmm,
a/b and g are unigue.

Definition: For any non zers f in Q[X| the content ir the unigque
positive element cf of @ such thet f = cf(fp) where ) iz primitive in
Z[X]. The unigue such {0 is calted the "primitive form” of f.

Muitiplicatissity holds also for rational contents.
Lemma: For eny g h in Q[X], if f=gh then cf = cglh.
proci: The proof iz the same az for integral contentz. QED.

[t follows that the "primitive form” is alsp rnultiplicetive;

Lemmma: For any g h in 91X, (gh)lg = {(goXhpo).

proct: The lernmas irmply that [(phip iz the ungue primitive
polvnomial P such that gh 1s a pasitive rational multiple of P But
gh = cglgdichih)) = cgehlignho), where cg, ch are positive and
rational and (gohg) is primitive. QED.

Now we can go through the proaf that F[X] iz a ufd, by replacing
every polynormial by its prirmitive form whenavaear possible. The
point is that the primitive palynarialz have the same divisibility
properties in Q[X] as i Z[X], ellowing us to bring unigque
factorization down from G(X] to ZIX]. {We ernphasize that primitive
polynomials are always elements of Z[X], and the only constant
prirmitive polynarmials are 1, -1) Maore precizely.

Lemma: If f is primitive, then f is reducible in ZIX] iff [ is reducikle
in B[X]. In fact if F = gh, with g.h non units in Q¥ then also f =
teoithpl, where g, hp ars tha prienitive forrms of gk

proof: If f iz reducible in Z[X], f = gh, then both g.h have degree :1
zsince { is primitive, hence g.h are non units in €1X] and f is reducible
in D[X]. 1f f = gh, with g.h non units in B[X], by multiplicativity of
primitive foerrnz we have f = fg = (ggi{hp}. %o f 13 reducible in Z[X).
QED.

Eemark: The previcus lemmaea fails in one direction for nan
primitive palynamials; eg. 3X¥+3 is reducible in ZI1X] but not in QO[]
[t =tall holdz 1 the other direction, as the rext lamma shows,
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Lemma: [f f in FIX] ix reducible ivy QIX] f is sz redusible in Z[X]
and can be factored into factorz of degree » 1 11 Z1X|

proof; If f = gh, with f in Z[¥] and g, h of degree @ 1 in QI¥], then
cflfg) = f = gh = cpchigoho). Thus epeh = of it an nteger, and f =
cfignhpl iz a factorization of { aver Z[X] with degress g0, ho 2 1. |
QED.

The previous result allows us to prove Eizenstein's criterion.
Eizenstein critarion: Iff = ag + a1 + 52}{2 + L+ anXN, whers

all aj are in ¥, and if there exists & prirne® integer p such that plej for
mll 1 ¢ n, but p does net divide ay, and if pz daes fmat divide af, then f
152 wwrreducible in QX].

proct; If not, then f = gh, where g, h are in Z[X] of degree 2z 1. Thus
f=(ag +a1d+ .+ apXh) = pgh =

by * B1X + .+ beXUen + o1 X v+ X5, where rrs - n = degree{f],
and reduce ell polynormnials in ZglX]. By hypothens, ] = [an]¥?,
where lag] 2 [0] in Zp. Then we have [gllh] = [f] =lap]¥?, end since
the only prime factor of this elerment 15 X, then by unigueness of
prime fectorizetion in IP[H], ¥ 1z the only prime factor that can
occur in lgl, [h]. Hence we must have [gl = [bpelXT {h] = [ce/XEwhere
r+z = n. Swee s @ 1, [bpl = [eg] = 0] But then p divides bath by
and cf, hence pz divide: mp, contrary to hypathesis. QED.

Rernark: Note that since £ iz a domain, deg{fg) = deglf) + deglgl. =o
conztantz in £ can have only constant factors, hence prime integers
in £ are alse irreducikble in Z[X].

Now we cap prove existence of factorization into irreducibiles in #[3].
Lemma: Evary nan z2erd, non unit element of Z1E5] can be factored
into irreducibhle slaments,

praaf; Let [ be non =zera, non unit i F[X). If fis in 7, then the
previcus remark shows the prime factorization: 1n £ gives =
factorizetion into irreducibles in ZI1X|. If deg(f}2 1, factor it as f =
cilip). Then fQ = TTgj. with gj irreducible in Q[X|. By the previocus
lemmmas, then g = TT{giJp, where the (giig are primitive forms of the
gi. Then each (gil0 15 & nen zero rational multiple of gi, hence still
irreducible in Q[¥] and alse primitive, hence irreducible in Z[¥], by
our lemma ahove. Factoring of = My into prirmes in £ gives us the
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factorization of f = T Migdp into irreducibles in Z2[X]. QED,

Rermark: Existence of irreducible factorizetions ix not really the
hard part of the theory in this case, since we already know Z[X] is s
. noetherian domain. and it can be proved easily that factorization
inte irreducibles is always possible i any neetherian doarmain. The
unifueness however is not always true in a neetharian demain. The
proot just piven of existence of foctorizations in I[X] will alse werk
in R[¥] where R 15 & non noetherian wid.

‘We need one more technical property of primitive polynomials
Lernma: If { in 2[X¥] is privrutive, and g is in Z[X], then fg in ZI¥] i
flg in QX

proof: If flg in Z[X] then g = fh, for h in ZIXICQ[X], heoce flg i QK]
and if flg in Q[X], then g = fh, for h in Ql¥). Then =g = cich = ch, 5@
¢h = ¢ 15 an integer. Then h = ¢k {hQ) iz in Z[X], 5o [ divides g in
Z[X). QED.

Remark: Agesin one direction fails for non primitive polynornials,
since 3X+3 divides X+1 in Q%) but not in Z[X].

The next praperty is the key to proving ungueness of factorization.
Lemmae: If f.g.h are in Z[X], £ is irreducible, and flgh, then flg or flh.
proaf: First note that an integer ¢ divides a polynormial F in Z[X] iff
c divides all the coefficients of F. iff cleF. Hence if { 15 irreducible in
Z[¥] and an integer, f=p is primne in 2. Then if p divides gh, p divides
cgh = ¢gCh, S0 p divides either cg or th by the corresponding lemnimns
itn . Hence f=p dividez mither g or . That settlaz this case.

If deg(f) : 1, then f irreducible implies f iz primitive, hence f iz also
irreducible in Q[X) and divides gh also in €{X] Since the present
larnrma holds in the Euclidean dornain QX f divides either g or hin
Q[¥). Zince f is primitive, then f divides either g or b also in ZIX]
QED.

Lemmn: Factorication intgo irreducibles is vnique in Z[X], up to order
of factorsz and =ign.

procfisame proof s in Z): If TTgi = TTh; where all gi, hj are
irreducible in Z[X], then g1 divides the left side, hence mslso the right,
=0 by the previsus lermme gl divides some hj which we may
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renumber as b Since hi is irreducikle, and the only units in Z[X]
are =1, then h1 = xp1. Hence we may cancel g1 frorn hoth sides
leaving (p2i(.  Jigm) = 2ih2){ Jthm) Continuing with g2, we
eventually cancel all tarrms. [e there are the same numbkar of g's
and h's and after renumbering the indices, for everv 1, gi = ¢ hj.

If you want the proof to appear maore rigarous, use induction on the
nurnber n of factors gi. If there is only one gi there can be only ans
hy since gj 13 iwrreducikble. Thiz prowves the result for n=1. Aszurning
the theorem for n-1 factors g, we are done after we cancel g1 frarm
both zides as above, since then by induction n-1 = m-1, hence n=m
and the factors g2, . .8n must sgree with the factors +hy, . bhn up to
order and multiplication by unitz, QED.

§5) Proaf that if R iz any ufd, then R[X] iz a ufd alse.

Thiz proaf it exmctly anelogous to the previous cne for Z[X], except
that we must define the god in an arbitrary ufd. It can be done,
but the fact that there may be many units prevents us from
defining & unigque ged. Hence the ged, the content, and the primitive
form of & polvnornial, will only be defined up to multiplication by
units. Mothing in the proof will be affected essentislly by this since
avery statermnent iz meraly that some element { divide: some other
slernant g. Multiplying either f or g, or beth, by units does not affect
the divisibility of g by {. Hence we can just go back and copy the
whols proof. "We only sketch the highlights and recall the definitions
of the main concepts. wWe also make a few rernarks sbout how ta
take advantage ¢f the nestherian property when it iz present.
Remember all gur rings are cormrputative.

The rnost important subset of a ring R is the group B* of "units™.
Definition: An elerment x of & ring 13 & unit iff 1t haz &
multiplicative inuvares v in B e iff there is an «lement v in B such
that 3w = 1.

Oefinition: & non 2ere element x of a domain R is called irregucible
iff % i not m unit and whenever x = vz, with v,z in K, then either v
or z is & unit. Egquivalently, x iz irreducible iff x is not a unit and
wher ¥ = w2, then either x divides v or x divides =
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Reamark: An element x20 is irreducible in B iff the ideal {(x})c R is
not contained in any other (proper) principal ideal, i iff (x) is
meximsal armong (proper) principal ideals.

Defipition: & hon zero element x of a dormein B i: prime iff x iz not
a unit and whenever xlyz, with w2 in R, then either xly or x|z
Fauvalently x iz prime off R/(x) is & darnain.

It iz obvious (from the last zentence In the definition of an
irreducible element) that {in a domain! every prime element 12
irreducikble

Definition: & unigque fectorization domaign, or ufd for thert, is a

darmain in which every non-zero, non-unit slement can be
expressed as a (finite) product of irreducible elements in & way
which is unigue except for arder of elements and rultiplication by
units, Le if TT[ pp = Ty qj. where all p's and all g's are irreducible,
then there rmust be a bijection between the index sets ogl1=J, such
that tor every i in 1. if j = ofi), then pi = uiq, for sorme unit uj.

Lermma: If B is 8 domain in which every non-zere, non-unit
elernant can be expressed as & product of irreducible elernents, then
R iz 8 ufd iff every irreducible =lement is prirne.

procf; A mement's thought, or a review of the praof of uniqueness
af factorizatian in Z, or in 2[¥], will show theat if irreducible
elernents satizfy the definition just given of prime elernents, then
factorizatian into irreducibles iz unigque up to order and units

Cenwversely. irreducibles are prime in any ufd, since if 2 18
irreducible and divides be, then we can write ax = be, for some x.
Simece ¥ has a factorization into irreducibles x=TIpj we get allp; =be,
and since b,o alss have such factorizations b=Tgj, ¢ = Trk, we get
allpj =MqgjTirk. Jince all factors are irreducible, by uniquenass a
must be a unit times ane of the irreducible factors gj, or rk. Thus a
dividez aither b or c. QED.

We pause for @ result that wnplies that existence of factorization
into irreducibles iz very often true.
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Definition: In a ring R, two elements a,b are called "azzociates” if g

= wuh for sorme unit o in RY.

Remark: In a domaeain B, two elements a.b are associates iff they
generate the sarme principal ideal.

proof: If {a) = (b}, then a = bx for some x, and b = ay for some v,
Herce a = bx = avx = al, so yx = 1, and both =, are units. The

sanverse 15 even more trivial, QED,

Lammna: If R is any noetherian domein, then every non 2etro, non
unit can be expressed as 8 product of irreducibles.

proof: Suppose not, end that x iz 8 non 2ers, non unit slement of R
which does not factor inte irreducibles. Then x t5 not irreducible, zo
¥ factors inte x = aiby, with neither factor a anit. If both aj, b1
factor inta irreducible: then o does x, hence at least one of thermn
dees not, and hence that one, say b can ke fectored inko bwo new
non unit facters b1 = a2k2, such that at least one of these new
factors does not itself factor inte irreducikbles. Fuppose b2 does not.
Then egain we have bz = aib3, and we can continue, .. wWe obtain
an infinite sequence of elements ap, bp, wherenoajnor bi iz a unit.
Since for everv n, bp-1 = apbpn, we see that b divides by-1 for
every B, but the guotient apn is not & unit  Thus the wdeals (bn) are
mll distinet. This vields an increasing sequence af distinct ideals

fhey © (hz] © ... = (b Co , in contradiction to the assumption
that the ring is noetherian. QED.

Corollary: & noetherian domain iz s ufd 1ff every irreducible
element iz prime.

We already “know” that a domain in which the division algorithm
holds (see below for a definition of the relevant division algerithrn) s
both a pid and a ufd. We show now that in fact every pid 13 a ubd.

Thearam:: lf R 1z any pid, then R 15 8 ufd.

procf: Certainly every pid iz noetherian, so we Just need to show
every irreducible elemearnt in & pid is prirne. If & is irreducible, we
must show (x} 15 & prime idesl ie that R/(x) iz a domain. We have
already chserved that ¥ irraducible means (x) is maximal arnong
principal proper ideals. Since all ideals are principal, {x} iz maximal,
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hernce RA%) 12 & field and thu: m deamain. QED.

Dafinitian: A& domain is celled a Euclidean domain if the division
algerithrn held: in the following forrm: to each non =ero element a of
E there iz aszociated a non negative integer dia), such that

(1) for a,b non zereo it R, we have dia):diak),

(1) for &b non zero in R, there exist t,r in R such that a = bt +r,
and either r=0 or dir) < dib). [Note: uniqueness of t,r, is not reguired ]

Carollary: For any damain R, Euclidean « P = UFD,

proof:. To prove that & Euclidean domain iz & pid, imiteats the proof

thet k[X] is a pid. le. given any idenl |, conzider the slement s of |

with d{a) as small as poszible, Then for sany bk in I, divide kb by a ta

get b = sa + r, with either r=0 or dir) ¢ dla). Since r = h-za belongs
ta l, dia) ¢ dir), 0 we must have r=0. QED.

Ramark: If B = k[X Y2 WI//AXY-2W), then R iz &8 nostherian
darnain, hence factorization into irreducibles iz always possible in B
Howewver [X][YT = |[Z][W] in R, seems to give two distinct
factarizationz of the same element mto irreducibles, suggesting R 15 a
noetherian domain which ig not a ufd. On the other hand it zteems
klHK1,...%n....] Einhmtcly rnany variables), is a non noetherian ufd.

Now we return to the proof of Gauss theorern. The main point 12 to
clarify the concept of god. The defimition is the same as before.
Dafinitian: In any domein R, d is a ged of a,b iff dla, dlb and
whenever cla and ¢lb, then cld. 1e. d iz a commeon divisor and the
erily ather common divisors are its factors. A ged is not unigue, but
is determined up to multiplication by units in R

Lemmmna: In any Euclidean domuain R, cis n god of &, b iff there exist
elements x, v of R such that = = xa+by, and if among all such e, dic)
iz minirmal. Such an element ¢ can be calculated by Euclid's
mlgorithm. In any pid R, c is a god of ab iff the ideals (¢} = {a.b) are
equal. In any ufd, let a = TTpiTi, b = TTpi%i ke prime factorizations of
a, b, where we allow some rj, s to be 0 (in order to use the same set
of primes in both praducts). Then ¢ = TTpMITrisil is a god of ok,
and all ped's arise this wasy

proof. Exercise. QEL.
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Dafinition: 1f B iz & ufd and f is in R[X], the cantent ¢f of f iz any
ged of the coefficients of F. [f f = 0 then of = 0. Thut ¢f 1z not

unigquely defined, but any bwo valuss of of hawve ratin in R¥.

Definition: |{ K is & ufd, a polynornial f in RIX] is "primitive’ iff cf =
1, {ia iff 1 is m god of the coefficients), iff every cf 12 & urt.

Lernmua: If f iz in RIX], of iz a content of f, c iz in R, then o -uecf for
sorne unit u, iff { = cg where g 15 primitive.

proaf: This follows frorm the fact that c is a god of a set of elerments
of B iff ¢ 15 5 common factor and after it is factored out, it leawvesz
the numbkbers relatively prirmne. GQED.

Car: If .0 are in & and g,h, are primitive and cg = dh, then ¢ = ud,
g = u lh, for seme unit win R*<R.

proof: Both ¢, d are contents of f, hence equal up to unit multiples.
QED.

Cor: For any non zero element | of RIX] there are sssociated
primitive forms D, determined up to unit multipls by the egquation f

= (g}

Lemma: If f = gh in R[X] with contents cf,cg.ch, then ef = uggeh, ie.
the content i multiplicﬂtive up to it Similﬁfly fo = u'lguh[].
proof: &x hafars QED,

Let F be the guotient field of R, F = gf(R). Then we can define as

before, of in F for any { in FIX], vnigue up o unit rnultiples 1n B,
mnd all the prapertises hold as far content of polynomials in R[]

"wW'e pet lernrmaz analogous to those above:

Lamma: [f { iz prirrutive, f iz reducible in RIX] iff reducikble in F[X].
proof: If £ = gh, f in RIZ}, gh in F[X], then { = f0 = cgehiggbnl,
whenee of =l=ucpth, 30 cgch = u-1 bBelangs to B, Thus | =
{u'ig[]]l'h[]:l iz a tactorization in R[(X]. QED.

Just ms for Z[¥], the previcous lemma gives factarizatian of elements
af RIX] inte irreducibles, and the next lernmas give unigqueness.
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Lernma: If F is primitive, g iz in RIX], then flg in RIX] iff flg in F[x].
proof: Suppose flg in F[¥] so that g = fh with h in F[X]. Then cpg =
ucfch for u,efin R¥, soch = ch'J-I:f'i iz in R Hence soizs h £ chhi.
The other dirsction is easier. QED.

Lernma: If iz irreducible in R[X] then [ iz prime.

proof: Assume degree(f} : 1, then f iz primitive. 1f flgh in R[X] then
in FI¥I the same holds whence f divides either g or h in FIX|. Then f
divridas one of thern also in R[X). 1F degree(f) = O, and f divides gh
then f divides cgch. and f is irreducible in R. Then { i prume in B, so
f divides eyther cy or ch, hence { divides sither g or h. QED.

Wa see that the irreducible elements of R[X] are exactly the prime
elerments, and consist of precisely the primes of R plus the
irreducible primitive polynomials of R[¥], the latter being the
prirnitive forms of irreducible polynamials of FIX].

Corcllary: If k is & field then k[X1,.. . Xgl is a ufd.

Fxarcize w91) {i) Prove R = kIX. 7.2,/ (XY-ZW), 15 a ncetherian
darnain, [hence factorization inte irreducibles i= always possible].
{ii) Prove [¥] 15 & non unit, and irreducikble in R.

(iii) Prove [Z] 15 not & multiple of [X] in R

(iw] Deduce that [¥] iz net prime in R, henes R iz not s ufd.

Exercise #92) Prove kX1,  ¥p...] (polynomuel ring in infimtely
rnany variables), is 8 non nostherian ufd.

Exarciza #95) Prove kiX1,....Xn} iz not & pid it n22. [Thus there are
many ufd's that are not pd's ]

Definition: & proper wdeal [CR it "prume’ iff whenever xy is in 1, for
x.v, in R, then either x or v iz in [, ff R/] iz & dornain. In particular
{0} is pritne iff R 15 & domsin,

Definition: Let R be a domain. A prime ideal [2(0} in R has "height
one" iff (0} is the only prirne ideal strictly contained in 1. A prime
ideal 1C R has "height r' iff there iz a sequence of r-1 distinct prime
jdeals [1CIzC  Cly-1 properly contained in [, whera 1 has height



30

one, but there is ne such sequence of r distinct prime ideals properly
conteined 1in .

Exercize #94) Let B be a uid.

(i) Prove that svery irreducible element o in R generates a
principal height one prime ideal (=}CR.

{ii} Prove thet every height one prime desl ICR is principal and
generated by an irreducible elerment « in K.

Remark: If R is a northerian domain in which every height one
prime ideal 15 principal, then R iz & ofd, but my proof of this uses
two big thearems we dan't have yet, primary decormnposition, and
Krull's principal ideal theairerrmn.

Exercize #9535} {i) In & Euclidean domain R, prove c 1z & god of ab
iff there exist elements x,y of R such that ¢ = xatby, and if among
all zuch ¢, dfe) is minimeal. {ii) Prove sush an element ¢ can ba
calculated by Euclid's algornithm.

Exercise w98) Prove In a pid R, ¢ iz & god of a,b iff the ideals () =
{m, ) are equal.

Exerciza w37) n a ufd B, let a=TTpiTi, b=TIpi*i be prime
factorizetions of &b, where we allow some rj . 35 te be 0 (n prder to
use the sarne set af prirmes in both products). Prove ¢ =ﬂpimin{ria5i:‘
iz m god of ab, and all ged's arise thiz way,

56) A Diophantine Puzzle

We give an application of ring thasretic methods to study a classical
problem: which prirnes p in Z are sums of two squares? Trial and
errov suggests that the answer is p = 2 = 12+12, and these p which
are congruent ta 1{rmod 4}, such az 3 = 1242&, 13 = ZZe3E, 17 =
11442, 25 = 82422, 37 = 62+12 41 = 52442, 53 = 2272

Azzumne the elementary fact from number theory thet x€+1 has
roots in Zp for pracisely such p. Can we make a link between these
two problerms? | e can we prove somehow that pis a sum of twa

syuares iff ¥<+1 has roots mod p? Consider the following argument:
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MNotize that (f p- ai+bd then using comnplex nurmbers we get p =
(atbil{a-bi}, =0 p is no longer prime in the ring Z[i]. Conwvers=ly, if p
= {a+hi){c+di} in Z[i] then taking abeolute values on both sides and
SqUAaring, we get pf = (aZ+p€)eledZ), and by uniqueness of prirne
factorization in £, there are anly two prime factors on the right,

both equal to p, hence p = mlsbZ Thus a prirne p in I iz no langer
primnme in Z)1) iff p is a sum of two sguares.

Naw introduce Zpli] as follows: Jince Z[il/ip) & Zpli] = Ip|x|-"r|:xz‘”.
then p is & surn af two tqueres Hf p not prime in Z1i] iff Zgli] is not
a domain iff X2+1 iz not prirme in Zp[X} iff ¥Z+1 has reats rnod p iff
P =eoar pw lirncd 4). Ok? MNow consider:

Fu=zls: 1f we use thess 1deasz to analyee the ggquatian K2+572 = F.
we teem to get that p = a2+5bZ for soma ab iff p is not prime in

Z[ /-8] iff Zpl /-5 not & domain iff X2+5 not prime in Zp[X] iff XZe5
has roots raed B But what ebout p = 37 Then X = 1 iz a root of

%245 {rmed 3), but obuvisusly X2+5Y2 = 3 has no integral salution.
wWhet gives?

While you think about it, we prove the elementary fact from
numker theorv uzed above

Theorem: The polvnomial x€+1 has roots in &g it p = 2 or

p = 1lirnod 4}

proof: Existencs of raots: Far any prime p, Lp ix a field, 20 there are
exactly twa rocts of Ki-1in Zp, namely 1, -1, Thus for every other
non zere element x of Ip, x arnd x~ 1 are diztingt Hence in the
product of sll non zero elernents af Zp, these pairs cancel, o the

whole product equals {1){-1) (xx~" 1M {yy~ 1) = -1, On the othar
hand if p *2, 2 is invertible rnod p, and thus for all 2=0, we have
w+tx=({1+1}u= 0. Hence for all x=0, x=-x, and the product of all nen
zero elements of Zp has form {-1) = Tixid-ni) = (~10WP- 1/ 2 2,
where v = k. Finally («1¥P 12 = 1 iff (p-1W/2 iz even, iff p-1 is
divisible by 4, iff p=1{imeod4). Thus ¥eé+1 has & root in Initp
=1{mod4} Since 1€+1 = 0 mod 2, we have proved one direction.
Cornwversely if there iz a solution « of %€+1 = 0 rnod p, then ez -1
(med p). Jince Zp* iz a group of arder p-1, any element raized to
the power p-1 equals 1 |by LaGranges theorem last fall], 0 1 = b1
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= e 2)P-102 - (-1){p-1¥2 (mod p). Thus we must have sither 1 =
-1, hence p = 2, or else (p-1)/2 must be even, whence p = 1{mod 4).

QED.

How let’s examine the false argurnent given above rmare clazaly. The
essential point 1z ta be careful about distinguithing between the
properies "prirme” and Tirreducible”’, which are not always the same.

Thesrern: The equetion :--:Ef'g.lIz = p, has solutions 2w in £ Jf p = 2 or
P& lirnad 4).

pracf; Notice that if p = ac+be, then using complex numbers we get
p = tat+bil{a-bi), so p is ne longer irreducible in the ring 21l
Conversely, if p = (arbideodi) in Z1i] then taking absolute values on
both sides and squaring, we get p = (aZ+kZMcd+dé), and by
unigueness af prirne factorizetion in Z, there are only two prime
factors on the right, hoth equal to p, henee p = a€+bZ€. Thus & prims
pin Z is no langer irreducike in Z[i] iff p is & sum of two sguares,

Now recall Zglid = Zglil = (sthi, for a,bin Zp, where iiz notin 2
but i¢ = -1 in Zpt, and conzider the following argurnent:

Jince Lpli] = IF[H]H}{2+1}, snd ZplX] is a ufd, it follovrs that Zpli] is
net & domain, iff X2+1 is not prime in ZplX), iff X2+1 is reducible in
ZXl, iff X2+1 has roots med p.

Stnce on the other hand IF{iI  Fli)fip), then Ip[i] iz not a dornmain iff
p 13 nat prirne in Z[i]. Thus XZ2+1 has roots med p iff p is not prime
i Z[if, while (from akovel p iz a sum of two sguares iff p iz reducible

in Z[i]. Thus we have not guite succeedad in sguating the two
problems. e to eguate the problern of p being & sum of two squeares
with thet of X2+1 having roots rmod p, we must equate the property
af p baing prirne in Z[i] with that of p being irreducible. This means
we could finizsh if wa anly knew F[li] iz 82 ufd! More iz true, Z[1] is
actually a Euclidear dornain {zee Ex. 97 balow), Aszurming this
result, we have proved that thote prirmes p which are surng of Lwao
squares are precisely p s 2, and p & 1lirmodd). QED.

Remark: (i) One direction of the proof above iz actually much
easisr by direct methods than by our approach. Wamely if alehl =
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p. then neither s nor b can be divisible by p lif & i3, then b is tag,
then the left side iz divisible by pe, cantradiction], so if we reduce
rmod p, we have [a]Z+[B]Z = [0], wath both [al[b] # [0]. Dividing by
[b]Z, thus [a/bl2+[1] = [0] in Zp, sa XZ+1 has sclution X = [a/Blin Zp.
{1i} Sinece the anealogous argument gave an incerrect result for the
=M AT=158 K25 YE = B, presurrahly I[\I/-—E] 15 not a ufd.

Exercise #98) Define & size function § on Z[i] by &{a+hi} = aZ+hZ
(1) Frove &law) = B{eibliw), and &lz)r]1 for e=x0 in Z[l.

(i} Given two numbkers in Zlil, = = atbi, and w & ¢+di, if 270, prove
there axist numbers g = e+fi , and r = 3 +ti, in Z[i], such that

w = 29 + F, and Blr) ¢ B(z). MMore precisely, we have c+di =
{arbid{etfi} + (s+0i), and s2+t2 ¢ aZrh,

[Hint: If 2 = a+hi is 11 Z[j], then 172 is in 0O[i], so define g in Z[i] to ke
an slemnent of Z[il whose coordinates are those integer:s which are as
close as possible to the coordinates of wi{l/z), For exampls, if wil/z)
= (14)/3 + i B/7, thenqg=5 +1i]

Exarcise #899) (i) Prave that in 2[i], the prirne elements {the
"Gauzzian prumez’}, are precizely those primes p in £ such that
p=3{meodd], plus those alermernte a+hi such that aZ+ehZ = q where g 13
primme in £ (whence q=2 or g=1{mod4)), plus associates.

{11) For any ring map EFR— 3, prove that if [2F iz any prime deal
then ("1{I)CR is & prime ideal.

{iii] For the map Z— Z[i], and any prime ideal JCEI, prove thars iz
either one or two prime ideals [C Z[i] such that £~1() = J.

Exercise #100; (i) For which priraes p ¢ 19, are the equations
NE+2YZ = p, and X242 = 0 {modp) either both solvahle or hoth nat
zolveble?

{ii) For which primes p ¢ 19, are the equetions X2+3Y2 = p, and
¥Z+3 5 O (modp) either both solvakle or both not solvahble?

{iif) For which primes p<19, are the sguations ¥2+3Y2 = p, and
X2+5 = O (rmodpl, esither both solvable or both not solvekle?

(1w)] Prove that 2 is irreducible but not prime in I[H. [Thus I[\/—_E]
iz ancther example of a noetherian domain but not & ufd ]

(v) For which primes pt19, are the equations ¥2+3Y2 = Zp, and
HE+s £ {madp), eithar hoth splvable or both nat salvable?
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(vi) Which of the ring= Z[ /-2], 1 /-3], if any, is a ufd?

It turns out that Z[ /-3) is "wvery closa” ta a ufd, but that Z[ /-3] i= not
guite so close. In A senze the axperirnentation done m exercise 89
mbove supgests that Z[ /-3] is a ufd "sxcept for something to do with

the prime 2", ie. the solvebility of the two equations X2+3Y2 = p,
nnd H2+3 = 0 (madp) is apparently the same for all primes except 2.

The equations WZ+5¥e = p, and Hi+5 2 0 {modp) on the other hand
are only both sclvable or both not, for about half the primes, Hence
In some sense I[\/’——E] is only 'helfway to being & ufd". It turns gut
that there i3 & reason to look at the rineg “0( /-3)" ={a.+h'[1+\;"—_3}r’2, ab
in 2} instead of ZI_/~3], and that O{ /~3) is a ufd. This ring O[/-3) it &
ufd which iz very cloze to I[ﬁ, only slightly larger, and in that
sense I[H it "close to heing & ufd". le. The subring of G{E
consisting of those elements a+h{1*ﬁa"2 with b even |, is exactly
I[\/-_S-]. Mow it turns cut that one can deduce that if Xé+3 u (
(rnodp) has & solution in Zp, then p has a factorzation in ﬂfﬁ, ard

then ME+3YE - 4p haz a solution, because you have to allow tha
possibility of & denominetor of 2, which gets squared and then has to
be multiplied cut. However, sven thaugh O /-3] is a "unigue
fartorization domain”, gqur problern iz zolved by the fadure of stnict
unigueness af factarization. e recall that factorizetion, even in &
ufd, iz resally not unigue, hut only unique up to order and
rnultiplication by units. Mow that means that every factarization
vields more factorizationz by multiplying one factor by a unit u, and
the other factor by ul. How in D(ﬁ, there mre sxactly =iz units:
=1, and = (lzﬁfz. These are just the three cube roots of 1, and
the three cube roots of -1, It turns out thet if vou find &
factorization of p over wa./-_S]l, then by multiplying by a judicious
cheice of theze units yvou can find a facterization into elernents

a+h(1 *ﬁfE in which the coefficients b are svean. S0 there 12 slzo a

fmctorieation of p in Z[/-3], end hence a sclution in T of X2+3¥2 = p,

There iz na such netural medification of Z[ /-5] to losk at, oan the

ather hand. The distinction is that (1 /-3)/2 satizfies a monic
polyrnormal over £ but II*EHE does not, so one 15 stuck working
with I[H. To analvze i, Kummer figured out haw ta measure
exactly how far O /-73} is [rom being & ufd, by creating an
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equivalsnce relation on ideals in a ring, zuch that all the principal
ideals form one equivalence clazz. The equivalsnce classes even turp
out to form e group, under muluiplication of ideals, calied the 'class
graup”. Mow for rings of integers in & number field, such as the ones
we have been losking st ahove, it turng out that being a ufd is
saguivelent to being a pid Hence the size of the class group, which
mensures how far the ring is from being & pid, also measures

exactly how far the ring is from being a ufd. Moreover in the case
of 2[ /-5] the ¢lass group iz 2, so this ring 1t sort of halfway to being
a ufd, i.e there are exactly two equivalence classes of ideals, the
principal anes_and one other class. Finally, prime [acterization is
pozzible in I[/-_ﬁl on the level of idesls, ie svery ideal is a product of
(rot necessarily principal) prime ideals, and these properties of E[V/’-_Erl
turrm out to be enough to analyze fully the equation KZ+5Y2 = p, The
results say that X2+2Y¥< = p has a solution in Z iff p = 1 or 3, (rned
A), that X€+3Y2 2 p has a solution in Z iff p = 1 {mod &), and that
¥2+9Y< = p has & zolution in Z iff p w 1 (meod 4) and p » =1 (mod =
ISee M. Artin, Algebra, and 1. Niven, [ntred. to Number Theary |

§7) Back to Qalois theory: normal and separakls sxtensions
We have praved that a solvable palynormial hes a salvable Galois
graup, but we have not studiad the converse question. lf a
polynarmial has a solvable group, it the polynornial actually solvable?
Thit 1z true, at least in characteristic zero, dus alto to Galois: [f &
palynorniel over © has a solvable Galois group, then the roots of the
pelynormial can be expressed in terrnsz of redicals. 3a altheugh we
know rnost palynomisls aof degree 2 5 are not =olvable by radicals,
and all those of degres 14 are solvable, results known before Salos,
this precis= rezult tells us exactly which polynomisls in avery degree
are tolvable, and thus goes far bevond anything known before,

Thiz conwverse direction of the result is deeper than the octher, since
it heginz with information on & relatively simple chject, the group,
and gives back information about a rmore complex object, the field.
= recall that manvy different fiszlds have the same group, o1t it nol
5o clear that knowledge of the graoup should yield any precise
inforrnation on the field it camea from.

In order to prove the converse of Galois’ theararn, we will first prove
the farmneous Fundamental Theorer of Galoiz Theory. This theorem
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tells us that yau can go back from the group ta the field in at least s
relative way. [e f vou know both the field and its group, then
frorn the subgroups of the group vou can sornetimes recover all the
intermediate subfields of the field. Of course the group containz httle
intormation about non normal or non separakble fields, becausze then
the ficld does not cantein enough distinet rootz, and the group 1z
after mll isornorphic to a permutation group of sorme raats.  Hence
we must assume the field is normal and separable (ie "Galois").

For Galeiz extensianz the fundarnental theorern saws there 1z &
perfect correspondence between subgproups and subfields. A usebal
technical result, the “theorem of the primitive elernent”, wiil make
the proof easier. We will alse use the corcllary of dorn's Lemnma
thaet every field can be ermbedded 1n an algekraically closed field,
juzk to maeke some arguments more convernient. This 13 net exzentisa]l
but saves us the trouble of stopping repeatedly to enlarge our field
bv adding roots of any pelynomials we rmight be warkmg with, Our
aarlier proof of Galaiz’ thepremn that salvable pealynamials have
salvable proups was aonly given far the field €@, but it holds for
general fields. The converse direction we are airning for now nesds
sotne restriction, eg. to fields characteristic zero, but again we will
only prove it owver 0.

Terminoclogy: A finite [dirmenzional) field extension kKCL iz called
"Galois” iff it i3 bath normal and s=parable. The slgebraic closure of a

field k iz an extension k which is both algsbraic over k and
algebraically cloted. It exizts and is unigque up to k isomorphismn.

Theoremn (Fundamental Theeram eof Galois Theory, "FTGT')
(1) If kCL iz & Galoiz extension, with Galoiz group G, then the
correspondence assigning to a subproup HC G the subfield p(H) = FEL
of elernents which are laft fixed beyy all elernments of H, defines a2 1-1
correspondence between the set of all subgroups H of G and the =t of
all subfields F of L which contain k.

{2) Under thixc carrespondence, the extension FCL ix aorrrnal for
syery subsroup H, and has Galois group H = GR(L).

(3) With the same notation, H is a normal subgroup of G iff kCF is a
normel extensien, and then G/H = Gp{F),

Let uz review the concepts of normal and separable. Qur original
definition af norrmal was this
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Definition: A finite (hence algabrais) field extension k<L is called
‘normmal’ provided for every inclusion LCF in a larger field, severy k-
hormemerphism ¢ L— F maps L isomorphically onto itself.

There 1t mpnather version of this definition of normality which may
be easter to rernermber, in terms of the notion of "conjugacy™.
Definition: [n any field extension kCF, let bwo intermediate fields
kCLCF, kCKCF be given We zay K, L are "conjugate” {in F) iff they
are k-izomorphic. [To be conjugate, it is not encugh for two
extenzigns of k to be k-isomorphic, they must alzo be contained i a
cornrnon extension of k.

Theorem: & finite field axtansion k€L iz normal iff any of the
following equivalent properties hold:

(i) In any further extension KCLCF, L iz conjugate only to itself,

(ii) In the extension LCk, L iz conjugate anly to itself,

(ill) In any further extension kCLCF, every k-autornorphism of F
restricts to m k-automorphism of L,

{iv) L iz the splitting Feld over k of & pulynamisl in k[X],

{v) For everv element « of L, 1ts minirmual k-palynarnial splits inte
linemr factors in L.

{vi) There iz m further normal (finite) extension, ie. kCLCF, with
kECTF normal, and with L conjugate only to itzelf in F.

precl: "normal” = (i) If kcLl iz normsl and kSL&F is a further
extension, L cannot be conjugate to another subfield KCF since that
would imply the exizstence of a k isomorphizm from L to K. Since
KzL that contradicts the definition of norimal.

(i) = (ii): This is trivial.

(i) = (i) A k-eutomorphism of F restricts te & k-hamomorphism
fL—+F. Let L1 be the image of L in F. Since L is finitely generated
ower K, say by o, .on, then L1 1z also finittely penerated over k, by
flenq),. . flaen). Let K be the subfield of F generated owver k by the
union of these generators, ie K = kieq, o, flocg),  flen)). Since L
is finite dirnensional aver k, all &1, ..« are algebraic, hence so are
all fleeq),.  fleepm). Thus K is algebraic over k and thus by our
extension theorems, there is m k-embedding of K inte k . Under this
ambedding the images of L, L1 are conjugate. We may replacs the
imnages af L, L1 in k by L, L1 thenselves. Therefore by (i), these

irnages in k are equal. Thus L, L1 were already equal in F, hence
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the restriction of the automeorphizsm of F was indeed an
autornaorphisrn of L.

{iti) = () First embed L into k bv our extension theocrem Suppose
ot iz an slernent of L whose minimaeal polynomisal ¢ does not split inte
linnear factors 1n L. 1t does spht in k, and let p be & root of tp 1N K
which does not lie in L. Then gur urual extension argument shows
we can embed kie) isomorphically onto kip) in k , sending « to p.
We can extend thiz to a k-embedding of L onto & subfield L1 of k., If
we enlarpe the set {ec=o 1} to a cat of penaratars for L over k, say
{oe1, .ond, let (B4, Prm! be the largsr sat cantmining alf rootz of the
minimal polvnomials of the w's. If F = kip1,..,pya) then kCLCF, and
we can extend the map L=k ta an embedding F— k. By cur usual
theory of extending srmbeddings we know every pj goss to sarne #j,
so that the rmap F— k is an automorphism of F. However since this
meap restrictes to an izomorphism L—+ L1, and since g iz in L1 hut not
in L, this vielates property fiii),

(v) = (iv): Let L = ks, . o) and let {B1, .., Bpn) apain be the
larger set contaming all roots of the minirmal palvnomialzs of the «'s.
Then by (v) all the p's are in L. Hence L = kipy,. 8] also. Thus if f
1z the preoduct af the minimal polvnomials of the «'s, the roots of f
are precisely the set {p1, . pynt of p's. Thus L is the splitting field of .
(iv] = "normal™: Let k€ LCF be an nclusion in & larger field, and
pL=F be a k- homomorphism. [f L= kip1, .. prm) where {p1,. Bt is
the set of roots of the k-polynomial £, our usual extension theory
shows each Bi rrust map to some Bj Thusz ¢ maps L isomorphically
onto 1bself.

{ii) = (vi): [f we enlarge L to & finite normal extension kCLCF, and
than embed FCK, since L is conjugete only to itself in k. Fis alsc
conjugate only ta itself in L.

{wi) =+ {ii}): Siven the finite normal extension k<F. with kcL<F,
ermnbed FC E, arnd conzider any k-homomerphizm L — E Extend ¢ to
a k-homomorphism g F— k. Since k<F is mormal, we must have
@{F)=F. Thu: p{L)1C¢(F) = F. and hence any conjugste (L) of Lin k
1z actually in F. Sinee L is conjugate only to icsaif in F, L ix
conjugate only to wzelf i k. QED.
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Naw we recall the concept of "zeparable” fisld axtension, (The
terminclopy is due to Van der Waerden)

Definition: & "separable” k~paolvnomial iz one whose roots are all
distinet, in any splitting field.

Remark: Jince all splitting fields are k-isomorphic it does not
matier which one we use, and since k contains a splitting field, we
can sirmply say [ is separabie iff its roots are distinct in k.

Definition. An element of an extension of k is separable cuer k iff
ttz munimal k-polvnomial 12 zeparable. A field extension kCL is
zeparable iff avery glement of L 1z zeparable over k.

Definition: [f L=kix].. . ,cn) iz 6 finite extension of k, the " saparable
degree” af L over k, |Lk]s, is the number of k-hornamorphisrms
pl— kK, from L into an algabraic closure of k.

Although the terminalogy iz new, the next result is the same as one
proved last quarter, but it iz woerth reviewing the idess

Lemma: Assume L = kieq, . otn) is o finite extension of k. Then the
degree of L over k equals the separable degree iff all the ganerators
{1, %yt Are separable over k. If any «, 15 not s=parabls ousr k|
the separaple degree 1s lez: than the degras

procf. Let us compute the separable degres. by computing the
number of k-homomorphisms g L—k, We can obtain every such
homormorphism ¢ in zteges, by starting with the identity map

L= LkQk, extending it to a map ki«x1)—Ek, then extanding it further
to 8 map kie),«2)—k, atc  until we get 8 map ki1, .=n) = L=k
iMoreover, if there are nj way: to mxtend the identity map k—+k<C k.
to & map of klexq1)— k.. and nz wayz ta extend further to s map
kict.mz)—+k, then for each choice of an image of «1 there are n2
chaices for the image of ®z. Hence there are altogether ninz wavs
to define g on i,%2, hence nin? extensions of k—+k to kw1, «2)—+ k.
Reazaning in this way, the number of k-homomorphisms of L=k
equalz the product of the nurmber of possible extensions at sach
stage. From our usual extension theory, we know the number of
possible extensions to ko)) is just the number of distinct roots in k
of the minimal polynernial ¢ of &1 over k. This number equals the
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degree of g over k if g iz separable, and atherwise 1z less than that
depree. IMoreowver the degree of g over k eguals the degree of the
field extension lk{e 1)kl Hence the number of extensions to k{m1} i3
at most the degree lk{mj)k], eand equals that degres {ff «1 1=
separable aver k. Similarly, the number of further extensions to
k{c 1, e02]) is Ak ozt the depree of the field extension

|kl g, 2l ki q]]l, and mguals that degree (ff 22 13 separakle over
k(1) Im partucular, since the rninmal polynomial of «2 over kloc])
1z 1 factar of the munimal polynarmiael over k, if «2 15 separable over
k.1t iz alsa separable over kis1). Consequently the number of
extensions from kskCLl to ki, x2)=L is at most the product of
these degrees, [k{x 1)k [kie1, 2T kie1)] = (ki1 wz)Ekl, (by
multiplicativity of degrees of field extensions), and equals that
product provided both =],07 are separable over k. It ] s not
separakble aver k, the number of such hormornorphismes is lezz than
the degree |kis g ,a2)k] Continuing, we get that the nurnber of k-
hermernar phusins from Lok, eguals the degree [Lk] if svery «, is
separable over k, but ix less jf o) is not zepareble overk. Jimce we
can recrder the generators, any o ¢an ke teken as «1. Thus the
separable degree equals the degree iff all the o are separable over k.
QED.

Cor: A finite field extension kCL=kix]1, .,on) i5 teparable over k iff
every penerator «j is separable over k.

proof: Since all «; belong to L, if L is separakle then all «, are
separakle. Coverzely, if sll «{ are separable over k, then the
saparable degree of L ovsr k eguals the degree. |f some element p of
L 1z not separable gver k, then we could wuze b az a generator, 1e L=
K(p, o1, .mn), and the result just proved then would show that the
seprable degree of L 15 less than the degree. Thiz contradiction shows
that there i1z no such element B, QED.

The following corollary containg sorme very ussful inegqualities.

Cor: If k<L is any finite extension, then #Gk(L) ¢ [Lkls ¢ [Lk]
Equality holds in the first inequality iff L iz nermal aver k, and
equality holds in the second one iff L is separable avar k. Thus
equality holds in both, ie #Gk(L) = |L k], iff kCL iz "Geleis".

proof: The lermma and the previousz corallary show that |Lk]z = [Lk]
iff k2L is separable. On the other hand, since #(Gk({L)) is th=
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number of k-automorphistnz L— k, and [Lkls is the number of k-
homormarphisms L— k, it follows that *# GLIL) = [Lklg iff every such

homomorphism is en eutornarphism of L, 1e. iff kCL i% normal.
LQED.

Remarks: Recall that if k has charecteristic zere, then every
alpabraic extension of k is separable, This used the derivative
criterion for multiple roots. le. if f is the minimal palynomial of an
elernent over k, then f iz irreducible, hence cannot divide & non zero
polynormial af lower degree. If f iz non constant, and irreducible over
k of characteristic zero, then the derivative of f is nem zero, o f is
separable. Mare generally, a field i3 called "perfect" if every
algebralt extansion is separable, We will see later that not only are
fields of characteristic zere perfect, but all finite fields are perfect
too. The simplest non perfect field is k=Z3(X), the field of fractiont of
the palynomisl ring Zz[Xl. An exarnple of a non seperable extension
15 the splitting field L of T2-X. The polvnormial T2-X is irreducible
over k since it is quadratic and has no root in k. If we write ¢ far &
root of f in L, then TZ2-22 = T2-2a+x = (T-x)2 since charac(k) =
cheracil) = 2. Hence both rootz in L of the irreducible polynomial f
are equal to o«

Exercise #101) Let k be any field of prims characteristic p.

(i) Prove that if ais in k, and if r = pt with tz1, then X-a =
(X-eiT, for sorme &« 1N an extension of k.

(i1} If f i= mn irreducible polynomial over k, and if f has a multiple
raat in some splitting feld, show that the only terms in f which can
have non zers coeffictents are thaose of form X% where p divides s.
Deduce that #(X) = g{HlN) whers r = p!, for sorne t 2 1, where g{X) is
irreducible and hes no repeatsd rogts.

(iii) If f is irreducikble over k, prove that all roots of § have the same
hultiplicity.

(iv) If K = k{M), the field of fractions of the polvnomial ring k[(X],
prave KT} = TP-X is wrreducible over K, and thsat f is not separable.
Conclude that L = K[TI/(f} is m non separable extenzion of K,

Lemma: & finite field extension kCL iz Galois iff L is the splitting
field of & separable polynomial f over k
proof: If kL is @alois, then it is separable, o we ¢ap write L =
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kley, ..oopl, where every « iz separable over k. Thus each minimal
polynornial £] of «j aver k iz separakle. Now suppose two
polynomials {i, fj have m root say o in cornrnon. Then the minimal
polvnornial for « divides both fj and fj. Since all these polynomials
are irreducible. and monic, they are all equal. Thus §i = {j and
hence we may sliminate one of them. Continuing in this way we
have a caollection of distinet irraducible pelynormisls {fj}, the minirnal
polynomials of some of the generators o j, where two distinct 5 do
not have common roots, and we let f= TTfJ be the product of these
polynernials Then f is separable and L is the splitting field of f,
Coversely, if [ iz the splitting hield of {, & separable k polynomial,
then L is generated by the rootz of . Since sach root o satisfies f, s
minirnal palynomial, the minimal pelynomial of « is & facter of £,
and hence is also separable. Thus every root of f i separable aver k,
and L 1z generated by a collection of elernents separabls over k. By
argurments given above, the separahble degres of L over k thus equals
the degree, so the extension is separable. Since L is & splitting field
aver k it is also norrmal, hence Galots. QED.

$8) The "Fundamental theorem of Galois Theory"

WNow we are ready bto begin the arguments leading to the FTGT. We
ara btrying to prove a 1-1 correspandsnce between intermediate
fields of & Galoiz extension and subgroups of the Galois group. The
next corellary proves the easier direction, that every intermediate
tield is the fixed field of some subgroup of the Galois group.

Lernma: If kCL 1z & finite Galoiz extension, and « i= an elament of L
such that pla) = =« for 8]l ¢ in Gr(L). then « iz in k. le the zubfield
of L left fixed by GR{L) iz exactly k.

proof: (We prove the contrapositive staternsnt, that if < is not in k
then zome k-autormorphism of L does pot fix ) [f & iz net in k
then the minimal polynomial of « hes degree at least 2, and the
extension i3 separable, o there are ather root: different from «. By
pur =xtenzion principle for homomeorphisms, we can define a
hornornorphisim pL— k that sends @ to sorme other root of ite
mimmal pelynemial, henee plodzax  Since k€L is normal, (L) = L
and hence ¢ 1z an elerment of Se{L). QED.
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Cor: Given kCL a Galois extenzion, and an intermediate field kCFSL,

the suhbfield of elements of L left fixed by the subgroup GF{LICGE(L) 15
exactly F.

proof: Note here GR(L} is the group of k-homomeoerphisms of L fixing
F. 3Bince these also fix kCF, this is a subgroup of GR(l). Moreover, if

L is the splitting field of a separable k-polynomial f, then f is also an

F polynornial, and L iz still its sphtting field. Thus FCL is Galais, with
Galois group GF(L), and this iz the result just proved above. QED.

Mew consider the follawing fundamental correspondencs

g hsubgroups H of Gr{LM = {sukfields F with k€ FCL}, where ¢{H) €L i=
the subset of elernents of L left fixed by every slernent of H, ie. & is

in @(H) iff o{a) = o for every o in H Since HCGE(L), every element

of H fizes k, o kcplHICL.

Terminciogy: The subfield @(H)CL it called the “fixed field” of H.

Car: For any Galois extension kCL, the fundamental correspondence
¢ {subgroups H of Gk(L)}— {subfields F with kCFCL} iz surjective.
Thus #{subfields F with kCFCL} ¢ #{subgroups of GE{L)}, and in
particular the number of subfields F between k and L iz finite.
proof: Let F be any field with kCFCL. We have just praved that F
is the fixed field of the subgroup GERILYCGE(L). e @{GR{L) = F.
Herice ¢ iz surjective. Since there are only s finite number of
subgroups of & hinite group (G is fimte since #{3@) = [Lk]), the domain
of the function ¢ iz finite, whence the wmapge is alsa finite QED.

Mow we can prave s very useful technical result, the so called
“theorem of the primitive element”.

Theorem: Every finite separabie axtension k€L is “simple”, ie. there
ex1sts an element « in L such that L = k{a).

Proof when k iz infinits:

Step (i) If kCL is finite and zeparakle. k is infinite, then there are
enly finikely many fields ketween k and L.

proof; If we enlarge kCL to a normal field =sxtension kS ¥, where
kCLCK, by adjowning to L all the roots of the rninimal polynomials of
some finite set of k-generators for L, then k€K iz a finite Galois
sxtenszion, (because the new generators have the sarme rainirnal
polvnomials as did the generators of kCL). Hence there are ornly
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finitely many subfieldz hetween k apnd K by the Cor. abowve. Since
kCLCK, there are only a finite number of subfield: between k and L.
QED (i),

Step {il) If k<Ll is finite and separable, k iz infinite, and o,p are in
L, then there exizt 3 2 K in k such that k{c+xp) = kix+upl. =
procof: Jince there are infinitely many elements of k to choose from
and only & finite numbker of sublields, sormne two elements A give
the same subfield QED (i1

Ftep [i11) If KCL 15 finite and saparable, k is infinite and «.# are in

L, then there iz sorme 3 n k such that kle+np) = kix, pl.

proof; If we choose a1 in k as above, since F = k{oc+xp) =

kla+up) € kix,p), we have {wrap) - [(ac+pp) = {a-wlp in F, and since
(a-p)20 is in kCF, dividing by it proves p is in F. Then «=(a+1p)-ap
iz in F too. Hence k{o,p) Ckio*apizF, 20 they are equal QED (iii).

Seap (iv) 1f k<L is finite and separable, and k is an infinite field,
then L = ki{¥) for sorne ¥ in L.

proof: Use inducticn en the proof above ie

kCkie, pm-2,ap-1,%0) = ko], sxp-Zlep-i.5n) =
kledg, . opm-2H¥pn-1)7 kloy, on-Fan-2,5m-1) =

kioy, . an-2M¥n-21= ... =k{ecg,¥2) = kiv1) = ki)

QED (iv) {whan k iz infinite),

Froof when k iy finite: By the corcllary of the next Lemrma, in &
finite firld L, the rnultiphicetive group L* of units ic & cyclic group.
If k 15 finite and kSl i= & fipite extension, then L iz A finite field, so
the group of units of L 1z gen=rated as o multiplicative group by one
lement ¥. Since every z0 element of L iz 8 power of ¥, L = ki(y) =
the smallest subfield of L containing ¥. Thus svery finite sxtensioin
of & finite field ir & simple extension, even without the hypothesis of
zeparability. e shall see below however that separakility iz
mutpmatically true in this case as well] QED for Thm.

Chgreszion on finite fialds:

Dealing with a hinite field k is easy, onice we observe that k* 1z 8
finite abehsn group, and hence every elernent satisfies an equetion
of forrn XM = 1, where n = #(k*), by Cauchy's theorem. Thus
ezsentially a finite field just consists of 2ers pluz sorne roots of unity,
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Combining this with the fact that in a field, an equation like this

cannot have rmore than n solutions, will almest prove k¥ 15 eylic,
The key concept i1z that aof “anmihilater’ or "sxpanent” of a group.
Definition: If 3 is any finite {(multiplicative) group, the "annihilator”
af 3 2 ann(B), or exp{d) = "exponent” of 3, is the least positive
integer m osUeh that x™=1 for every elermnent x of &

[For a finite additive group G, ann(G) is the least pozithive integer m
such that mx = x+ __+x {(rn terrms) = D for all elernents x in G]

wWe will uze some simnple obhservations about orders az follows:
Exercise #102) If G iz a finite group, prove:

(i} then snni(E) = lem. {ord(x), all » in G}, and anni{3) divides #(E).
(ii) If % iz 11 G and ard(x) = ab, then ord{x®] = b In particular,
every factor of the order of an alamment i= alzo the order of some
element.

If G i3 finite and abelimn, prove:

{iii) If x,v are elementrs of g with relatively prime orders a,b, the
product ¥y has order ab.

(iv) If xi,...xn are elements of g with pairwizse relatively prime
orders a;, the product ¥ = TIxj hes arder & = TTa;.

{v) Find an example of two elements x,y in a finite abelian group
such that ordixw) = lemlord(x), ord{v}).

Exercizse #103) Let {ngl be a collaction of non zere integers, and
{pil the zet of prirnes dividing at lesst ane of the ny. Then m =
TTpiTi = leming !} iff. far each i, there iz st least one ng divigible by
pilil but ne np divisible by a higher power of py.

Lemmua: If G is a finite ghelian group, and m = annl(3), then there is
mr =lernent ¥ af G with ordfx) - m.

progf. wWe knaw from Ex. 9101}, above that m = lcm’ of the ordars
of ail elernents of G, Frorm Ex=. 91(i), 92, we alsg know if rn = TT ps7i.
then for each 1, pifi divides the order of some element v of 3. Then
by Ex_ 91(ii), for each i there iz an alermant %] of arder pifi. Then by
Ex 91(iv), the product x = Tk has order m = TTp;¥i. QED.
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Remark: The previous Lernma iz {alse for non abslian groups, since
Far instance the icosahedral group | = A5 has elernentz of arders 2,

3,5, but none of orders 6, 10, 158, or 30.

Corplimry: If k is a firite field, the muitiplicative proup k* is cyclic.
proef: By the lamme we know there is an element x of order m,
where rn = ann(k*), and that every elernent v of k* satisfias tha
equations Yf-1=0 Since k is & field this equabion has at rnast m
roots, herice #(k*) s m. On the other hand {(x) € (k*), where (x} iz
the cyclic subgroup generated by the element 1. Since #{x) = m,

k* = {x) iz cyclic. QED.

Rernark: As pointed out shove, the previous Corollary completes the
praaf of the thearem of the primitive element. WNow we continue
with the proof of the FTGET.

“We glrendy know that for a Salois extension k€L, when G)(L) acts
onn L, the reots of an irreducible k polynomial form an orbit of the
action. lndeed this is just another way of stating our usual
extension theorv for homomorphisms. The following lernrna iz a
kind of converse, 1. any orbit of a G action forms the set of roots of
an irreducible polynornial sver tha fixed fisld The metheod used ta
construct the polvnomial is apparently very ald, but the point af
view in the Proposttion, beginning with a group of sutemorphisms, is
usually attributed to E Artinm,

Propuosition (E. Artin): Let GC Aut(L) be any finite group acting an
a field L, and let FCL he the fived field of 3. Then FCL is a (finite}
Caloix extensicn, with Galols group SE({l) = G

Lemma: With the same assumptions as sbove, if p iz any element
in L, and {o1,..,om}C6 iz 8 maximal collection of elements of ©
taking different values an #, then HX) = T (X-gj{p)} is a separakle,
irreducible palynomial with coefficients in F, degres(f) ¢ «{3), and
fip) = 0.

proof of lemmae: We know there s a subgroup H of & lsaving p
fixed, and for amch o in G, the left coset oH consists of those
elemnents of G which zend g to o{p). We choose one T j fromn each of
thoze cosets, Since g1 in H fikes p, we Know (M-A) iz & factor of this
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polynorraal, hence fip)=0. The poalynermial iz separable since by
definition of the a j, all the roots n'J{ﬁ]I are diztinet. HNeote that to
mpply anv o in G to the coefficients of thiz polynomial, we can
tirnply apply o to the coefficients of the factors of this product, then
multiply out. Simce any such o anly permute: the factors of che
product, it leaves the pelynomial unchanged, and hence every o in
G leawves all the coefhcient: unchangad By definition of F = the fixed
fieid of G, the coefficients of [ are in F. To see the polyrnornial £ is
irreducible, we recall that the roots of the minimeal F-polynomial of
B forrm a G orbit, by aur earlier extension theorv. Jince the roots of
f are precisely the G arbit of B, this polynornial f 1z the minimal
polynormaal of p, henee irreducible. Since the number of factars

(X-a jipd) in f is at most the nurmber of elarnents af G, deg(f) ¢ wiE}.

LED.

Proof of Prop: It follows from the definition of F thet 3 = SF{L), and
it follows From the lermnma that every elerment B oaf L 15 algebraic and
separakle gver F, with minimal pelyrneornial of dagreas ¢ #(G].

Step {i) We claim the extension FCL iz finite.

lf net, and FSL it an infinite extension, then there would be
interrnediate extensions FCKCL with the degree of FCK finite but
arbitrarily large [e we could just keep adjoining elements,

FOF{a ) CFlo ] ezl CFlety], .., en)C ..., with o) not in

Flog. .« j-1), for every j. Then since each o has degree 2 2 over
the previous field, and degree of axtenzions is rmultiplicative, the
degree of Fla 1, ... mn) over F iz » 20 Put by the theorem of the
primitive alarnent, every subextension of L which is finite over k is
actunlly simple, and the previous lermnmma imphes that every simpls
subextenszion has degree at most #{3), so avery haite subextensicn
has degree : #(3]. This contradiction proves thet FCL is a finite
extension, and that [LF] ¢ #{3)

Sten (ii); We clairmm the extension FCL iz Galaz.

For this, we have anly to apply the useful inegualities proved abowve,
invoelving the sepuarable degree, | e. recall that for a finite extenzmen
#(G) « [LFi, always holds, with equslity iff the sxtension iz Galois.
Jince we have just proved in step (i) that [LF| ¢ #{E). we are done.
QEL.
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How wa can complete the proof that the fundamental Galos
correspondence is one to one:

If xCL is a Galois extension, consider the inverss correspondencs
{isubfields F with kcFc Ll = {subgroups of Gx(L)} defined by
GxlLIZ¥(F) = the subgroup of elements of G fixing every element of F.
Thig 1s just the Golots group of L over F, ¥{F) = GF(L), but we may
alta call it the "inveariant subgroup for F°.

A just rernarked, we know for kCFCL, that pl(¥(F)) = o{Gg(L)) = F.
The next lernrna will complete the proof that ¥ iz inverse to g, by
showing that ¥{p{HN = H.

Cor: For any (fimite) Galoiz extersion k<L, 1ot HCG be any subgroup
of the Saleiz group 4 = Gx(L), and @(H) = FCL be the fixed tield. Then
YlplHM = GRiL) = H.

proaf; Thiz follows from the previous proposition of E. Artin. QED,

Ta complete the proof of the fundamentsl theorern of Galois theory,
we need to check part {3) about normal subgroups H of G
corresponding to normal subestansions of k. Let kCL be a Galos
extension and let F an interrnediate field XCFCL such that kCF is
normal Then the restriction of every k-autornorphism of L to F) 18
a k-automorphism of F, and by our extension theory every k-
automorphism of F extends to & k-sutomorphism of L. Hence the
restriction map GEi(L)— GE(F) iz surjective, with kernel = the
subgroup censmsting of those k-automorphisims of L which leave F
fized, i.e. the kernel iz precisely v(F) = GF{L). Fince the kernel of &
group homomorphism i3 normal, we see that indeed Y(F)C3k(L) iz a
normeael subgroup whenever kCFCL and k€F 15 a normal field
extension. Meoreover, by the fundamental hormomerphism theorem
far groups, we have Gr(F) & GR{L)/¥(F).

Canversely, suppate HCGR(F) (¢ & norrnal subgroup and let Fegp{HICL
be the fixed field Then by Artin's proposition, H = Gp(L), whence
#(H) = [LFl. We claim kCF is & norrnal sxtension. If o F—k is any
k-hornoemor phistm, we know it extends to a k-heormomorphlsm

a L=k, which maps L inte L since kCL 15 normeal. e o 17 an
elerrient of Ge(l). "We roust show o(F) 2 F. If #(F)CL iz the irnage of
F under . then the sukgroup gHa~1 conjugate to H leaves o(F)
fixed. Thus cHo™ 1 1z 8 subgroup of the invarisnt subgroup for o{F)
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= ¥{g(F)) = x(FiL). le, since o is @ k-homomarphism, hence a k-
vector space map and injective, the k-vectar dirmensions [Fk] and
lr(F1 k] are equal, hence alzo the degrees [L.F| = [L.o(F)] are equsal,
and thus the dalois groups GrIL) and Ga(FiiL) have the same order.

Hince #(GF(L)) = w{H) = #(gHa"1) and oHo -1 © Gg(F){L}, it follows
then thet aHo~1 - Gg{F}EL}. Finally since H 15 normal, we spe that H

= tHa™ 1, za that GF(L) = Bg(F){L) are the sarne subgroup of EefL)
Sirmce the correspondence betwearn subgroups and subfields is 1-1, we

rriust hawve of{F) s F, Thus kCF iz a normal extension.
QED for FTQAT.

Remark: Let kCL be a finikte norrmal extension, which 15 not
separable, let G=Gk(L} be the Galoiz graup, and let FCL be the fixed
field of G. It follows from the theory abave that kCFCL, whers FCL
iz Galois, the inclusion kCF is proper, and aen =lernent of ¥ is
separable over k iff it belongs to k.

Moreouver, G = GFL), and #{G) = [Lkls = [LF] ¢ [Lk] Hence there is
s 1-1 cerrespondence hetween subgroups of G and subfislds of L
containing F, hence the Galois group GkiL) contains ne infarmation at
all on the structure of the subextension RSF. In particular, the
result praved above, that @((K))=K for any kCkCL [ie. that the
fixed field of the inveriant group of K is K againl, fails if the
extension kCL 15 not separable [since k itzelf is then not the fixed
field af any subproup of Gg(L)].

w 104) (i) Prove that if kCL 15 any finite dimensianal field extension,
nat nacessarily either normal or separaeble, then # (@) divides (Lk]s,
and {Lk]s: divides [L k|

{ii) If kCLCF is any peir of finite dimensional field extensions, prove
IFklg = [FLIalL:kle.

w105) (i) For the polynomial X3-2, over Q, compute the splitting
fisld, the Galois group, all subgroups, all subfields, and the
correspondence between thern asserted in the FTGT.

(i) Do the same for the polynomial ¥%-2. [You may assume from
last quarter that this group is & D4, the dihedreal group on 4
elerments. There are 8 proper intermediate fieldsi)
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§9} Qaloiz theory for finite fislds

The finite field case offers a nice essv farmily of examples of Galois
theory. Indeed all finite extenszions of finite fields are Galois, and all
the Galois groups are cyclic. The FTGT holds, so an extension of
degree nn has exactly one intermediate fisld for each factor of n. For
each prime p and each netural number n, there is exactly one freld

of order pf, the unique extension of Zp of degree n.

A) & finite held F of characteristic p, has exactly p elements,
where n = |F: Ip].

proof: If F is any finite field of characteristic p, then F contains the
prime field, ie LpCF and thus F is a vector space aver Zp, of
dirmension n. zay. Then we claimn F has exactly p!! elements. Let
@i, ,%pn he a basis for F owver IF" Then each elerment ¥ of F has a
urigque expression &5 a linear cormnbination x = Lgjxj, whers the
coefficients & Are in IF" That zay: the rmap F —P{IF}" taking ® to
the sequence of caefficiernts (a1, ,cpnt 1z & bljection. In fact it 15 a
vectar space isermarphisrn, but we don't need this now. Since Zp has

p elerments, the Cartesian product {7 p}ﬂ haz pt* elements, and thus
za does F. QED.

B) If kTF 15 an inclusion of finite fields, of characteristic p, and if
#{k} = q = p% then #(F) = gt = p%F, for somne st > 0.

proof: The sarme argurnent as abowve shows F i3 n vector tpace over
k, so ®#(F) = g* for £ = [Fkl, and q = p% where = = [k:Zpl. Hence #(F)
= qt = [ps}t = Pst OED.

Cor: A field of arder p™ cannat contain a beld of order p# unless s
divides n. Faor axmrnple s field of arder pP cannot contain a field of

arder pn'l unless n =2,

G) If F ix & firute field with o = p? elements, then F is the splitting
field cver Ip of the separable polynomin] f{X) = XH-X. In particular,

F is Galois over Zyp,.
proct: Note that f{X) is separable since the derivative iz f(3) =

g~ 1l-1= - 1 {since g = p!, so f has no roots in common with £
MNext, every elernent v of F* satizfies g,r':['i = 1, =0 every =lernent x of
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F, including x=0, satisfies ¥9-¥ = 0 Thus not only is F generated
over p by the roots of f{X), F consists entirely of the roots of O
QED.

D} If kCF is any incluston of finite fields, F is Galois over k.

proof: If p = cheraclk! = cherac(F), then ZpCkCF, and ZpCF i3
Galaiz, 30 as uzual KCF it alsa Galoiz, since F iz the splitting field of
A9-X mise over k, where sgain q = #(F). QED.

E) If k is & finite field, and kCL any sigebraic extenzsion, even infinite
dirmmenzianal, then kCL 1z seperable. e k 15 "perfect’.

proof: If o« in L is any elerment, the extension kCki«) is finite, hence
Galoiz by part D, so all elements of kia), including «, are separahle
aver k. QED.

F) If p is any prime integer and n any positive integer, there is
exactly one field of erder pl, up to izamarphisro.
preof: Consider F = the splitting field over Zp of the equation K9-x,

where g = pit. Then F iz the "smallest” field extenzion of 2y
containing the roots of this equation. Jince the eguation has been
seen to be separable, it has exactly q = pf roots.

Clairmn: These roots: actually form & field, and hence F conrists of
precisely those g elements.

proot: SJince q is a power of p, we get frotn the binarial theorem
that (ark)q = a9 + b9, hence if a9 = &, and B9 = b, then (a:b)q -
aih. 30 the =um or difference of tvo roots of XM9-X, 15 alsa & root.
Even eazier, (ab)9 = a9 b9 = ab, and if b = 0, {a/hi9 = a¥9/hY = alb,
s0 the product and guotient of two rogtz are roots. Since also 19 = 1,
the roots form a fisld. F is unigue, up to Zp - isomerphizm, by the
unigquan=sz of spiitting fields. QED.

Remark: This resclt implies thet any two finite fields with the
rame number of elements are isomorphic. This i3 an astonishing
fact, Le. the forpgetful functor from finite fields ta sets lozes almost no
information. By contrast, there is a bijection hetween the
underlving sets of B and € but no isarmeorphism, since one 13
algebraically closed and the other 1z not,
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3) The interrmeadiate fields of the extension ZpCLl, where #{L) = p¥,

are precizely those F of arder p*® where s divides n.

proof: We already knew from part B) these are the only possible
intermediate helds, and we now clairm such intermediate fields exist
for all s dividing n. le. if 5 divides n, consider the splitting field F of

the polynomial XT-¥, where r = p% Then F consists of all rooty in fp
of this polynomisl, and L consists af all roots of X9-X, where g = pli.
Claim. FCL, i e, anv root of ¥¥-¥ iz alzo a roat of X9-3.

proof of clairn: If n = st, then g = p? = pft = (p¥)t = (pfh . {p®) = ¢t
Azzurme al’ = a; then a9 = a':r----r:'J with t factors of r 1o the
exponent. Thus if f{x)=xT, then a9 = {f{a) {where the exponent now
rmeans cormpesition of functions r timesl = £ 1{ffa)) = - 1{ar) =
fr-1(a) = fr2{f(a)) = ¥"2{a) = . . = fla) = aF = a QED.

H)} The Galois group of an sxtenszion k<L of degree n, of finite fields, is
isomorphic to 2n, and 15 generated by the "Frobenius”
mutpmorphism g x—xlb, where r = *{kl.

prock: Jince r is & power of p, the binomdial theorerm apain tetls us
that (x2w)F = &7 = v¥, and (xe)V = xVy?, (e/vIF = x¥/yF s usual, if
yz [, =0 that the Frobeniuz ¢ iz an auternarghism of L. Moreover
since k consists of the rast: of XT-X, g is the identity on k. Thus ¢
belongs to the group Gr(L), which has order t. To see that G is cyelic,
with ¢ as penerator, it zuffices to show that the powers

1, . tpz,....,r.pn'i, are all distinct. For this it iz eneough that theze
powers act differently on some one element af L. We uze the fact

that L.* is & oyclic group, with a generator 2, and we cantider the
elements x, @{x}, pZ(x),...0 1{x}. If #(k) = r = p%, then #{L} = g =
pit = pRomnd the order of the element x 1 #{L*) = g-1. Thus x4 =
¥, but for all u with 1 ¢ u < q, we have x4 = x. Jince pMx)} = “x

raised to the power rJ ", the slements %, pix), &ix),. .. 1{x)
abowve, are all distinct QED,

Remarks i) When no base held 1z given, tha tarm "Frobenius
automorphism” refers to theat far the basse fisld IF" e tg the

automorphism ¢: x—xP. The Frobenius automorphism used in part
G, is the sth Fower of this one.
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ii) Given any extension kCL of degree n, of finite fields, part H) and
the FTET wnply there iz & 1-1 correspondence betweaen intermediate
fields and subgroups of g, ie factors of the integer pn, This
correspondence, hence the FTGT for finite fields, can be spen directly
by an argument slightly extending the one given abave for part G).

1) The Frobenius sutemeorphism ¢ x—xP of & finite field F of
characteriztic p, 13 bijective, yet has derivative idantically zars.

proof: The derivative of ¢ iz pxP~1, which equsls zero for all x in F.
et win) = @iv) iff xP = 9P iff 0 = xF-yP = {x-v)P iff (x-v) = D iff x=-y.
Thus g 1z 1n)ective, and since F is finite g iz also bijective. QED.

w106) Let k be any finite held.

(£ IF f iz any irreducible polynomial in k[X] of degrae n, prave the
Gealoizx group of {15 = &0

{ii) Prove, for every positive integer 1, there exists an irreducible

polynomial f in k[X] of degree n.



