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8000 fall 2006  day one 
Introduction. 
We will begin with the study of commutative groups, i.e. modules over the integers 
Z.  We will prove that all fin gen abelian groups are products of cyclic groups.  In 
particular we will classify all finite abelian groups.   Then we will observe that the 
same proof works for modules with an action by any Euclidean or principal ideal 
domain, and generalize these results to classify f.g. modules over such rings, in 
particular over the polynomial ring k[X] where k is a field.  This will allow us to 
deduce the usual classification theorems for linear operators on a finite 
dimensional vector space, since a pair (V,T) where T is a linear operator on the k 
space V, is merely a k[X] module structure on V.  We recall some familiar 
definitions. 
 
A group is a set G with a binary operation GxG--->G which satisfies: 
(i) associativity,  a(bc) = (ab)c, for all a,b,c, in G; 
(ii) existence of identity:  there is an element e: ea = ae = a for all a in G. 
(iii) existence of inverses: for every a in G, there is a b : ab = ba = e. 
 
A subgroup of G is a subset H  !  G which is a group with the same operation.  H 
has the same identity as G, and the inverse for any element in H is its inverse in G. 
 
A group G is commutative, or abelian, if also (iv) ab = ba for every a,b, in G. 
 
Remarks: We will study mostly commutative groups in the first part of the course, 
and we will usually write them additively instead of multiplicatively, thus we write 
the identity as 0.  Two advantages of commutative groups are the following: if G 
(commutative) has elements a,b, such that na = 0 = mb, where n,m are positive 
integers, and if p = lcm(n,m), then G has an element c such that pc = 0.  Also the 
subset of elements a of G such that na = 0 for some integer n>0, i.e. the set of 
elements of "finite order", is a subgroup of G.  Thus it is easier to understand the 
"orders" of the elements of a commutative group.  Also it is easier to construct the 
"coproduct", sometimes called the "direct sum", of a family of commutative 
groups. 
 
All groups are assumed commutative until we say otherwise. 
Important Examples: i) the set Z of integers is a group for addition;  ii)  if n is an 
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integer, the multiples of n form a subgroup nZ  !  Z;  iii) the rationals form a 
subgroup of the reals for addition Q  !   R; iv) the positive rationals form a 
multiplicative subgroup of the positive reals Q+  !  R+;  v) S1 = the complex 
numbers of length one, form a multiplicative subgroup of the non zero complex 
numbers, called the circle group. 
 
It is efficient to use a subset of the elements of a group to represent all others, and 
the number of elements so needed helps measure the size of the group. 
A subset S  !  G generates G if there is no subgroup containing S except G, 
equivalently if every non zero element of F can be written as a finite linear 
combination n1a1 + ...+nkak, where all ai are in S and the ni are integers.  If G is 
written multiplicatively it means all elements except e can be written as a finite 
product ∏ aini.  ��Examples: {1} or {-1}  generates Z.  The empty set generates the 
trivial group {0}.  The interval (0,d) generates (R,+) if d > 0.  The positive primes 
generate Q+. ��G is finitely generated, fin gen, or f.g.,  if G has a finite set of 
generators. G is cyclic if one generator suffices. Z is cyclic.  Q+ and S1 are not 
finitely generated. 
 
We proceed to the classification of fin gen abelian groups.  The relevant concepts 
are products, quotients, isomorphisms, and linear maps. 
 
Fundamental constructions (on abelian groups) 
I) Products:   Given an indexed family of (abelian) groups {Gi}I, form the 
cartesian product set ∏IGi of functions from the index set I to the union of the 
groups Gi where the vaue of each function at i lies in Gi. Define the operation 
pointwise on functions, i,.e. multiply or add the values of the functions.  If I = 
{1,...n}, the elements are ordered n tuples of elements, one from each Gi, added 
componentwise, like vectors.  The identity is the function whose value at each i is 
the identity of Gi. 
 
II) Coproducts: This is similar to the construction as above, except the functions 
must have the value 0 except possibly at a finite number of indices.  Hence it is the 
same if the index set I is finite.  It is denoted by an upside down product or a 
summation sign, ∑I Gi.  The coproduct of a family of (abelian) groups is a 
subgroup of the product. 
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If all groups Gi are equal to the integers Z, we call their coproduct a "free abelian 
group" on the set I, i.e. a group of form ∑I Zi.  We also write  Zn for the product 
(or sum) of n copies of Z.  The set of standard basis vectors {ei = (0,...,0,1,0,....0) 
where there are n entries and the 1 is in the ith place, for i =1,....,n}, generates Zn.  
Other product groups are Rn, S1x R, and S1x S1= the torus group. 
 
III) Quotients: If H  !   G is a subgroup, the quotient group G/ H is the set of 
equivalence classes of elements of G for the relation x !  y iff x-y belongs to H.  
Write [x] for the equivalence class of x and add by setting [x]+[y] =[x+y], after 
checking this is independent of choice of representative elements of the classes. 
 
A fundamental quotient group is Z/(nZ), the additive group of integers "mod n".  
�When we define isomorphism, we will see that the circle group is isomorphic to a 
quotient group S1 !  R/Z; and S1xS1 !  (R/Z)x(R/Z) !  (RxR)/(ZxZ).  The 
interchange of quotients and products is more subtle than it may appear, and will 
play a crucial role in the proof of the fundamental theorem we are seeking.  The 
fact that renders the interchange easy here is that each factor group in the 
denominator is a subgroup of the corresponding factor in the numerator.  When 
this is not the case the problem is more difficult. 
 
Each product (Z/n1Z)x(Z/n2Z)x....x(Z/nkZ) is a finite abelian group.  Our goal is 
to show these products give essentially all finite abelian groups.  To make this 
precise, we must define when we will say two groups are essentially the same. 
 
A map of groups f:G-->H (abelian or not) is a homomorphism, or a map, if for all 
a,b, in G, f(ab) = f(a)f(b), or if f(a+b) = f(a) + f(b).  It follows that f(0) = 0 , and f(-
x) = -f(x), or that f(1) = 1 and f(x-1) = [f(x)]-1.  The set of homomorphisms from G 
to H is denoted Hom(G,H).  When G,H are abelian it is also an abelian group 
under pointwise addition, [but it is not even a group if H is not abelian.] 
 
Examples of homomorphisms:  The inclusion of a subgroup H !  G is a 
homomorphism;  The map G--->G/ H taking an element x to the class [x]  is a 
homomorphism;  The ith projection ∏IGi--->Gi taking a function to its value at i, 
or taking a vector to its ith component, is a homomorphism.  The injection  
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Gi--->∑I Zi taking an element x of Gi to the function having value x at i and value 
0 elsewhere, is a homomorphism.  [This puts x in the ith component of a vector 
and 0's elsewhere.]  The map R--->S1 taking t to e^(2πit) is a homomorphism. 
 
Important invariants of a homomorphism 
To understand a homomorphism we focus on what goes to 0, and what things get 
"hit" by it. If f:G-->H is a homomorphism of groups (abelian or not), the subset 
kerf = {x in G : f(x) = 0} = the kernel of f, is a subgroup of G.  The subset Im(f) = 
{y in H: y = f(x) for some x in G} = the image of f, is a subgroup of H. 
The quotient H/Im(f), defined for abelian groups only, is the cokernel of f. 
 
An isomorphism is a homomorphism with an inverse homomorphism.  A 
homomorphism f:G-->H , is an isomorphism if and only if there is a 
homomorphism g:H--->G such that fog = id(H), and gof = id(G). 
 
How to recognize an isomorphism:  A homomorphism f:G-->H is an 
isomorphism if and only if it is bijective, if and only if kerf = {0} and Im(f)= H. 
 
How to define homomorphisms:  �0 
0) For any G, Hom(Z,G) !  G, by sending f to f(1). 
 
1) To define a homomorphism to a product G--->∏IGi, define one G--->Gi into 
each Gi.  I.e. Hom(G, ∏IGi) !  ∏IHom(G,Gi), by taking f:G---> ∏IGi to the 
family of compositions πiof, where πi is the projection ∏IGi --->Gi. 
 
2) To define a homomorphism out of a coproduct ∑I Gi--->H, define one out of 
each summand  Gi--->H, i.e. Hom(∑IGi,H) !  ∏IHom(Gi,H) by taking  
f:∑I Gi--->H to the family of compositions foßi, where ßi is the injection  
Gi--->∑IGi. 
 
3) To define a map from Zn--->Zm, by 0) and 2), define n maps Z--->Zm, i.e. 
choose a matrix of n column vectors from Zm, where the ith column is the image 
under the map of the ith standard basis vector ei = (0,...,0,1,0,...,0).   
I.e. Hom(Zn, Zm) !  Matmxn(Z). 
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4) To define a map G/H--->K, define a homomorphism f:G---K such that f(H) = 
{0}, i.e. Hom(G/H,K) !  Hom((G,H), (K,{0})) (maps of pairs), by taking  
f:G/H--->K, to the composition foπ:G--->K, where π:G--->G/H is the projection. 
 
5) If f:G--->H is surjective, the map G/kerf--->H in 4) is an isomorphism. 
 
Examples:  The map R--->S1 sending t to e^(2πit) induces an isomorphism  
R/Z--->S1, by 5) above.  The maps Z--->(Z/ riZ), induce a map  
Zn--->(Z/r1Z)x...x(Z/rnZ) and an isomorphism  
Zn/[(r1Z)x...x(rnZ)]--->(Z/r1Z)x...x(Z/rnZ).   
 If P is the index set of positive prime integers, the map ∑P Zp--->Q+ taking 
{rp} to the (essentially finite) product ∏P p(rp) is an isomorphism by the 
fundamental theorem of arithmetic, so Q+ is (isomorphic to) a free abelian group. 
 
Our first big theorem is the following. 
Theorem:  If G is a finitely generated abelian group, there exist integers n, m≥ 0, 
and a sequence of integers r1,...,rm ≥ 2, such that G !  Zn x (Z/r1Z)x...x(Z/rmZ).  
These r's can be chosen so that  r1| r2|...,| rm-1| rm, i.e. each one divides the next; if 
so, then all the integers are uniquely determined by the isomorphism class of G.   
 
We call n the rank of G and the integers  r1,...,rm the invariant factors.  G is 
determined by (n, r1,...,rm).  If n = m = 0, there are no r’s and G = {0}. 
 
Exercises: If Tor(G) = {x in G: for some n>0, nx = 0}, Tor(G) is a subgroup of G, 
called the torsion subgroup.  [This is not a subgroup if G is not abelian.] 
 
Cor: If G !  Zn x (Z/r1Z)x...x(Z/rmZ), then Tor(G) !  (Z/r1Z)x...x(Z/rmZ), and 
G/Tor(G) !   Zn .  Tor(G) is a uniquely defined subgroup of G, and the free part is 
a uniquely defined quotient group. Since Zn is a subgroup of the right hand 
product, such an isomorphism picks out a subgroup of G isomorphic to Zn, but this 
subgroup, and the isomorphism of G with the product, is not uniquely determined. 
  
Proposition: If G is a fin gen abelian group, with m generators, there is a 
homomorphism f:Zn--->Zm , with n ≤ m, such that G !  coker(f) =  Zm/f(Zn). 
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proof: The surjectivity Zm-->G is easy, and the surjection of Zn onto the kernel of 
Zm-->G follows by an inductive proof that the kernel is finitely generated. 
 
Note that although the denominator may be isomorphic to Zm, there is no reason 
for each factor to be a subgroup of just one factor of Z in the numerator.  Hence 
there is no obvious way to write the quotient of products of Z, as a product of 
quotients of Z, as we did earlier.  Still it can be done, as we show next.  The key 
point is that this is true when the matrix of f is diagonal, and a matrix of integers 
can always be diagonalized without changing the isomorphism class of the 
cokernel. 
 
Proposition: If A is the matrix of  f:Zn--->Zm , and if B is a matrix obtained by 
elementary row and column operations from A, then the cokernels Zn/A(Zm) !  
Zn/B(Zm), are isomorphic. 
proof: B is a composition of A with isomorphisms of domain and target. 
 
Proposition: Every matrix A of integers can be reduced by elementary row and 
column operations, to a diagonal matrix B. 
proof: This is essentially the usual Gauss elimination process.  It relies on the fact 
that two integers have a gcd which is a linear combination of the two integers, and 
which can be obtained by repeated divison, or subtraction.  
 
Corollary: The existence part of the theorem is true (subject to proving the 3 
previous propositions. 
 
Proof of existence and uniqueness of the cyclic decomposition. 
Theorem:  If G is any finitely generated abelian group, then G is isomorphic to a 
product of a finite number of cyclic groups, with the number of factors equal to the 
minimum number of generators, and such that the orders of successive finite 
factors divide each other. 
 Moreover, given generators and explicit generating relations among them for 
G, we can actually calculate the decomposition, by diagonalizing a matrix of 
integers whose columns are the coefficient vectors for the relations. 
 
Proof: We want to split G as a product of cyclic subgroups, so it is useful to 
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understand when this sort of splitting is easy. 
 
Basic splitting lemma 1:  If  f:H--->Z--->0 is any surjective homomorphism onto 
Z, then H is isomorphic to kerf x Z. 
[Define a right inverse for f, and use that to define the splitting.]  
 
Lemma 2:  Any subgroup of Z^m is finitely generated and in fact free on at most 
m generators. 
proof: induction on m.  true for m = 1, since a subgroup H of Z is generated by an 
element of H of smallest absolute value.  If true for k-1, consider the projection  
q:Z^k--->Z, where q(c1,....,cm) = c1, where kerq = Z^(k-1).  Then q(H) is a 
subgroup of Z hence generated by one generator,  thus is either {0} or isomorphic 
to Z. 
 If q(H) is {0} then H lies in Z^(k-1) and we are done by induction.  If q(H) 
is isomorphic to Z then we get a surjection  q:H--->Z--->0.  Hence by the basic 
splitting lemma, H is isomorphic to kerq x Z.  Since kerq is a subgroup of Z^(k-1), 
we are again done by induction.  qed. 
 
Lemma 3:  G is isomorphic to the cokernel of a matrix of integers. 
proof: Let x1,...,xm be generators for G, and define the map p:Z^m--->G by 
p(c1,....,cm) = c1x1+....+cmxm.  p is surjective and H = kerp has some finite set of 
generators, say y1 = [a11,....,am1],......, yn = [a1n,.....,amn].  Then define a map 
f:Z^n--->Z^m by sending  ei to yi for i = 1,...,n.  This map has m by n matrix [f] 
whose columns are the vectors yj.  Cokerf =  Z^m/Im(f) which by choice of f, 
equals Z^m/ker(p), which by the fundamental isomorphism theorem, is isomorphic 
to G.  qed. 
 
Lemma 4: Every integer matrix f can be brought to diagonal form, by a sequence 
of elementary invertible row and column operations, i.e. multiplying rows and 
columns by 1 or -1, interchanging two rows or two columns, and adding an integer 
multiple of one row to another row, or adding an integer multiple of one column to 
another column. 
proof:  It suffices to see how to transform a row of two entries [a b] into one of 
form [d e], where d divides a and e.  By Euclid's algorithm, repeatedly subtracting 
multiples of one entry from the other, we reach a pair [d e], where d = gcd(a,b) also 
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divides e.  Transform the first row and column until the upper left entry divides all 
others.  If an entry is not divisible by the upper left entry, Euclid makes the new 
upper left entry a factor of the original one. Hence applying Euclid no more times 
than the number of prime factors of  the original upper left entry, we reach a matrix 
where the upper left entry divides all other entries in first row and column.  Then 
we make all those zero.  [Thus it is prudent to put an integer there which has small 
gcd with some other entry.] By induction we can diagonalize the rest of the matrix 
the same way. qed.  
 
Lemma 5: Any diagonal matrix of integers can be further transformed until all 
entries on the diagonal successively divide each other. 
proof: If the matrix is diagonal, add all columns to the first column, and 
rediagonalize, obtaining an upper left entry which is divides all original diagonal 
entries.  Then proceed by induction to re diagonalize the remaining smaller matrix, 
until eventually one has a diagonal matrix where all diagonal entries divide each 
other successively.  qed. 
 
Lemma 6: If an m by n matrix is diagonal, and if n ≥ m, with diagonal entries 
a1,...,am, then its cokernel is isomorphic to Z/a1 x ....x Z/am.  If m > n, then the 
diagonal entries are a1,...,an, and if we set an+1,...,am = 0, then again the cokernel 
is isomorphic to Z/a1 x ....x Z/am. 
exercise: 
 
Note: Lemmas 1-6 prove the theorem.  Since our diagonalizing process reduces the 
number of generators, if we start from a minimal set, the process must give that 
same number of factor groups.  If the diagonal matrix is A, then some diagonal 
entries ai have |ai| = 1 if and only if the generating set was not minimal, and some 
columns of A are zero if and only if the set of relations was not minimal. 
 
 
Uniqueness of invariant factors. 
Theorem: If G is a finitely generated abelian group, there is a unique sequence of 
integers r, s, n1,...,ns, with r,s ≥ 0, all ni ≥ 2, such that for all i = 1,.,..,s, ni|ni+1, and 
G isomorphic to Zr x Z/n1 x ...x Z/ns. r is the rank of G and if s > 0, {ni} are the 
invariant factors. 
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Thus the isomorphism classes of finitely generated abelian groups correspond one 
to one with such sequences of non negative integers.  I.e. although each 
isomorphism class contains many different looking groups, it contains exactly one 
of this form. 
 
First we separate the finite factors from the infinite ones by defining TorG = 
elements of finite order in G.  If G ≈ Zr x Z/n1 x ...x Z/ns, then TorG ≈  
Z/n1 x ...x Z/ns, and G/TorG ≈ Zr. 
 
Lemma: Zr ≈ Zt implies r = t. 
Exercise.  Thus rank is well defined. 
 
To recover the invariant factors ni from G intrinsically, we will exploit the fact that 
cyclic factors of different orders give rise to elements of different orders.  We will 
do this somewhat indirectly, using the fact that the map pt:G--->G multiplication 
by pt, has kernel equal to the elements of order dividing pt.  We will focus in fact 
on the images of these maps.  The prime factorization of every ni and hence ni 
itself, is entirely determined by the images of these maps as follows.  This clean 
approach appears in van der Waerden.  The technique will re - appear later as a 
procedure for constructing Jordan forms of matrices from kernels of powers of 
operators. 
 
Lemma:  If H ≈ Z/n1 x ...x Z/ns, p is a prime integer, and r ≥ 1, then pr-1H/prH is 
a group of order pk where k is the number of factors ni which are divisible by pr.  
If  
ni|ni+1, for all i, these must be the last k factors. 
 
This proof is a straightforward application of the standard isomorphism theorems, 
so we review those.  The first one is the primary one, the others being applications 
of it.  As usual all groups are abelian. 
1)  If f:G--->H is a homomorphism, there is a unique induced homomorphism 
g:G/kerf--->H which is injective, and such that  
G--->G/H--->H equals f.  If f is surjective, g is an isomorphism. 
proof:  we seek to define  g([x]) = f(x), since that will be the only map that could 
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make the composition equal to f.  For this to be well defined, it is sufficient that 
whenever [x] = [y], that g take the same value on [x] and [y].  But g([x]) = f(x), 
and g([y]) = f(y), so it suffices that [x] = [y] implies f(x) = f(y).  But [x] = [y] 
implies that x-y is in kerf so f(x-y) = 0 = f(x) - f(y), hence f(x) = f(y). 
 Now that g is well defined, it is a homomorphism by definition, and to check 
injectivity we ask whether g([x]) = 0 implies [x] = [0].  But g([x]) = f(x) so g([x]) = 
0 implies x is in kerf, hence [x] = [0].  If f was surjective, trivially so is g, hence g 
is an isomorphism. 
 
2)  If K is a subgroup of H and H a subgroup of G, we claim G/H ≈ (G/K)/(H/K). 
proof:  Just define a map from G---->G/K sending x to [x] as usual, and compose 
with the similar map to (G/K)/(H/K).  Since H/K consists of elements [x] of G/K 
where x is in H, the kernel of G-->G/H--->(G/K)/(H/K), is those elements x of G 
belonging to H.  By part 1) above we have our result. 
 
3)  If H,K are subgroups of G, not necessarily nested, then (H+K)/K ≈ 
H/(HmeetK),  where "meet" means "intersect".   
proof:  same as before, define a map  from  H--->H+K sending x to x, and 
compose with H+K--->(H+K)/K.  The kernel is then HmeetK. so we have an 
injection from H/(HmeetK)--->(H+K)/K.  But we claim it is also surjective, since 
if x+y belongs to H+K, with x in H and y in K, then [x+y] = [x] mod K, so x maps 
to [x] = [x+y], and hence H---(H+K)/K was surjective, hence induces an 
isomorphism  H/(HmeetK)--->(H+K)/K. 
 
Now we examine some cyclic groups, maps between them, and quotients. 
1)  let m be any integer, then we multiply on a product G = G1x...x Gs by 
multiplying separately on each factor, hence we have mG = mG1x...x mGs where 
mH denotes the image of the map “multiplication by m”. 
 
2)  If p is a prime number which does not divide n, then  
pt:(Z/nZ)--->(Z/nZ) has kernel zero, hence is surjective. 
proof: In the ring Z/nZ, pt is a unit. 
 
3) If t ≤ r , then {pt-1(Z/prZ)}/{pt(Z/prZ)} ≈ Z/pZ. 
proof: since multiplication of equivalence classes is done by multiplying their 
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representatives, we have 
 
{pt-1(Z/prZ)} ≈ {pt-1Z}/prZ), hence 
  
{pt-1(Z/prZ)}/{pt(Z/prZ)} ≈ {pt-1Z/prZ} /{ptZ/prZ}. 
 
Now since t-1< t ≤ r, the group pr Z is a subgroup of pt Z, which in turn is a 
subgroup of pt-1Z.  Hence the second isomorphism theorem above gives  
{pt-1Z/prZ} /{pt Z/pr Z} ≈ {pt-1Z/pt Z}.  
 
Now define a map Z--->pt-1Z, by multiplication by pt-1 and compose to get  
Z--->pt-1Z/ptZ.  The kernel is those numbers which when multiplied by pt-1, turn 
out to be multiples of pt, i.e. the kernel is all multiples of p.  So we have by the 
first isomorphism theorem, that Z/pZ--->pt-1Z/ptZ, is an isomorphism.  QED. 
 
4)  If t ≥ r , then pt:(Z/pr Z)--->(Z/pr Z) has kernel equal to all of  
(Z/pr Z), hence the image pt(Z/pr Z) is zero.  
 
Cor:  If t > r , then {pt-1(Z/pr Z)}/{pt(Z/pr Z)} = {0}. 
 
5)  If H ≈ Z/n1 x ...x Z/ns, p is a prime integer, and r ≥ 1, then pr-1H/pr H is a 
group of order pk where k is the number of factors ni which are divisible by pr. 
proof:  This follows from combining the results above with a hw problem. 
 
I.e. factor each ni = pri mi where p does not divide mi.  Then we have H ≈  
Z/n1 x ...x Z/ns  ≈ Z/m1 x ...x Z/ms x Z/pr1 x ...x Z/prs. 
 

Then pt-1G/pt G can be computed separately on each factor, and gives zero 
for each factor of form Z/mi, and gives zero also for each factor Z/pri where t > ri, 
and gives one copy of Z/pZ for each factor Z/pri where t ≤  ri.  This proves the first 
part of the lemma.  I.e. we get k factors of Z/pZ if exactly k of the ni are divisible 
by pt.  The part about the factors being the last k factors under our divisibility 
condition is easy. 
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 This completes the uniqueness, hence the full proof of the decomposition 
theorem for finitely generated abelian groups.  Next we look at a few rings R more 
general than Z, where we can imitate these theorems for abelian groups admitting a 
multiplication action by R. 
 
 
Appendix: Artin’s short, unconstructive proof of existence of the cyclic 
decomposition for finitely generated abelian groups. 
Theorem:  If G is a finitely generated abelian group, then G is isomorphic to a 
product of cyclic groups, where the number of factors equals the minimal number 
of generators for G.  In fact we may arrange that the orders of successive finite 
cyclic factors divide each other. 
 
proof:  We leave the case of one generator to the reader.  If there is a finite 
generating set for G satisfying no relations, then G is generated by a linearly 
independent set and hence is isomorphic to a product of copies of Z, done.  So 
assume relations exist. 
 
 Then among all finite generating sets for G choose one:  {y1,x2,...,xn} 
satisfying a relation a1y1+a2x2+....+anxn, with a non zero coefficient of smallest 
absolute value, which we may assume is a1. 
 
 Divide every ai with i > 1 by a1, i.e. write ai = qi a1 + ri, where ri has 
smaller absolute value than a1.  Since the minimal generating system {x1, x2,..., 
xn} where x1 = y1 +q2 x2 - ....+qn xn, satisfies the relation a1 x1+r2 x2+....+rn xn, 
it follows that all ri = 0, for i > 1, i.e. a1 divides every ai with i > 1.  In particular 
|a1| is the annihilator of x1, i.e. a1 x1 = 0,  but no integer of smaller absolute value 
than a1 annihilates x1. 
 
 If  c1 x1+c2 x2+....+cn xn (*) is any relation among the new generating set, 
and if we divide c1 by a1, hence c1 = q a1+r, with |r| < |a1|, then subtracting  
q a1 x1 = 0 from the relation (*), gives the relation rx1+c2 x2+....+cn xn = 0, with 
|r| < |a1|, whence r = 0, i.e. a1 divides c1. 
 
 Now define a map  G---> <x1> = the subgroup of G generated by x1, by 
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sending the element x = c1 x1+c2 x2+....+cn xn to f(x) = c1 x1.  Although this 
expression is not unique, the map is well defined since we have just shown that if x 
= c1 x1+c2 x2+....+cn xn = 0, then a1 divides c1, and hence f(x) = c1 x1 = 0. 
 
Lemma:  If H is a subgroup of G, and f:G--->H is a map such that f(x) = x for all x 
in H, then the map G---> H x ker(f), defined by the maps f, and f-id, is an 
isomorphism which is inverse to the map H x kerf---> G defined by the inclusions.. 
 
 The lemma applied to the subgroup <x1> in G and the map f:G---> <x1> 
defined above, shows that G is isomorphic to <x1> x ker(f) = (Z/a1) x ker(f).   
Since ker(f) is generated by x2,...,xn, and x1,...,xn is a minimal generating set for 
G, thus x2,...,xn is a minimal generating set for kerf, so  by induction kerf is a 
direct product of n-1 cyclic subgroups.  Hence we have our decomposition of G. 
 
 To get the successive divisibility condition, note that if c2 y2+....+cn yn = 0 
is any relation among a minimal set of generators of kerf, then since a1x1 = 0, we 
see that a1 x1 + c2 y2+....+cn yn = 0, is a relation among a minimal set of 
generators of G in which the minimal coefficient a1 occurs.  Thus by a previous 
argument (in the 3rd paragraph), a1 divides all the coefficients ci with i > 1. Hence 
the decomposition of kerf will involve only cyclic factors whose order is divisible 
by a1.  Since by induction they also divide each other successively, we are done.  
QED. 
 
Note: This argument shows the theorem is true, but gives no clear way to find a 
decomposition for a specific group which is presented by generators and relations.  
Thus our matrix reduction technique is preferable in concrete examples.   
 Observe Artin's proof also used  Euclid's algorithm, to get contradictions to 
minimality of some integers.  If these integers were not minimal at first, Euclid’s 
algorithm could be used to reduce their size, eventually obtaining minimal such 
integers.  That would have been equivalent to the row and column operations we 
have described.  Thus the matrix proof is a concrete version of Artin's.   
 Perhaps Artin took a classical matrix proof, and rendered it shorter by 
removing the matrices, in accord with his philosophy that matrices should only be 
used when a specific computation is needed. 
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8000 Day Two:  Brief course on commutative rings 
Rings and Ideals 
 The classification of finitely generated abelian groups was in two steps. 
 1) Using the action of the ring of integers on an abelian group we presented the 
given group as the cokernel of a matrix of integers.   
2) Then we diagonalized the presentation matrix using the fact that the gcd of two 
integers is a linear combination of those two integers. 
 
 We can use this method to classify more general abelian groups, not 
necessarily finitely generated as groups, but finitely generated in terms of the 
action of some other ring.  To extend the proof we will need a ring in which any 
two elements have a gcd which is a linear combination of those elements.  Such a 
ring is called a principal ideal domain.  Of course our understanding of such more 
general groups will be no better than our understanding of the corresponding ring 
and its ideals. 
 
 To present the generalized argument we must pause to develop the concepts 
of rings, ideals, and abelian groups with an action by a ring R, i.e. "R - modules". 
 
Review of basic definitions and properties of rings and ideals 
 
Rings: A ring is an abelian group under addition which also has another 
associative operation called multiplication, which distributes over addition, and 
which has an identity element called 1 ≠ 0.  If multiplication is commutative, the 
ring is called commutative.  We assume our rings are commutative unless 
explicitly stated otherwise. 
 A unit in a ring is an element which has a multiplicative inverse.  It is 
extremely important to determine which elements of a ring are units. 
 
Examples: Polynomials in one or more variables with integer or rational 
coefficients, Z[X], Z[X,Y],...,Q[X], Q,[X1,...,Xn] are commutative rings.  Square 
matrices larger than 1x1, with entries in a ring, such as 2x2 integer matrices, form 
a non commutative ring.  
 
Ring maps: A (unitary) ring map, or homomorphism, is a function between two 
rings f:R-->S that preserves addition, multiplication, and takes 1 to 1.  Thus a 
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(unitary) homomorphism takes units to units.  A ring map is an isomorphism iff it 
has a 2 sided inverse homomorphism.  We assume all our ring maps are unitary 
and all our rings are commutative. 
 
Polynomials:  If R is a (commutative) ring, define the (commutative) ring of 
polynomials R[X] over R, to consist of all formal linear combinations of non 
negative powers of X, e.g.  R[X] = {a0 + a1X + a2X^2+....+anX^n, where the ai 
are in R} and as usual X î X ĵ = X^(i+j).  A polynomial is monic if the leading 
coefficient an = 1. 
 
Examples: If R is a ring, there is a unique ring map Z-->R.  If f:R-->S is a map of 
rings, and c is any element of S, there is a unique ring map R[X]-->S extending f 
and sending X to c.  It is called "evaluation at c" if f:R-->R is the identity map.  If 
R is a ring, there is a ring map from the rationals Q-->R if and only if the unique 
ring map Z-->R is injective and every non zero element of Z becomes a unit in R.  
If R is a ring the map R[X][Y]-->R[X,Y] which is the natural injection of R[X] 
and takes Y to Y, is an isomorphism. 
  
Ideals: An ideal I of a ring R is a subgroup that is also closed under multiplication 
by R.  (In a non commutative ring we must distinguish left, right and two sided 
ideals, according to which side we multiply on by R.) 
 The kernel of a ring homomorphism f:R-->S is the ideal of elements x in R 
s.t. f(x) =  0.    
 An ideal is proper (different from R) if and only if it does not contain any 
units, iff it does not contain 1.   
 If I is a proper ideal of R, (two sided if R is not commutative) the quotient 
group R/I has a natural ring structure, such that R--->R/I is a ring map with 
kernel I. 
 A ring homomorphisms R/I-->S is equivalent to a ring homomorphism R --
>S that sends every element of I to zero, i.e. every ring map f:R-->S with I in the 
kernel of f, factors uniquely as R-->R/I-->S.  
 Two elements a,b of a ring are associates if a = ub, where u is a unit.  An 
element u is a unit if and only if u is associate to 1.  If a divides b, then every 
associate of a divides every associate of b.  
 An ideal I is generated by a subset of elements {xi} of I, iff each non zero 
element of I is an R linear combination of some finite subset of the {xi}, iff I is 
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the smallest ideal of R containing the set {xi}.  If the same finite subset of 
elements {xi} can be used to generate every element of I, then I is finitely 
generated.  An ideal is principal if it has one generator. 
 A ring is called noetherian if every ideal is finitely generated, and  
 principal if every non zero ideal is principal.   
  
Domains:  A zero divisor is a non zero element x such that xy = 0 for some non 
zero element y.   Every associate of a zero divisor is also a zero divisor. A ring R 
is a domain, or integral domain, or entire, if it has no zero divisors, i.e. if xy = 0 
implies at least one of x or y = 0.    
 A proper ideal I is prime iff when ab belongs to I, then at least one of a or b 
is in I, equivalently iff R/I is a domain.  A non zero, non unit element x is prime iff 
the principal ideal Rx = (x), is proper and prime, i.e. iff x divides ab only when x 
divides at least one of a or b. 
 In a domain, two elements are associates if and only if they divide each 
other, if and only if they generate the same principal ideal.  
 A principal domain is called a pid (principal ideal domain). 
 
Fields: R is a field if every non zero element is a unit.  A unit is never a zero 
divisor so a field is always a domain.   
 A proper ideal I is maximal iff it is not contained in another proper ideal.  A 
ring is a field iff the only proper ideal is {0}.  An ideal I is maximal iff R/I is a 
field.  It follows that in any ring a maximal ideal is prime.    
 
Euclidean domains: A domain R is Euclidean, if there is a "size" function | |:R-
{0}--->Z≥0 = {non negative integers}, such that for any b ≠ 0, and any a, there 
exist q,r such that a = qb + r, and either r = 0, or |r| < |b|.  I.e. if b does not divide 
a, at least the remainder r is smaller than b.  A Euclidean domain is a pid, since it 
follows that an ideal is always generated by any one of its elements of smallest 
size. 
 A Euclidean domain R is strongly Euclidean, if for all a,b, |a| ≤ |ab|, and if 
equality holds precisely when b is a unit. 
 
GCD's: A greatest common divisor, or gcd, of two elements x,y, (or any finite 
number of elements) in a domain, is an element z such that z divides both x and y, 
and if the common factors of x and y are precisely the factors of z.  An associate 
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of a gcd of x,y, is also a gcd of x,y.  I suppose 0 is the gcd of (0,0) or we could 
require x,y are not both 0.  Gcd's need not always exist. 
 
Unique factorization: An element x of a domain is irreducible if x is not zero and 
not a unit, and whenever x = bc, then either b or c is a unit.  A prime element of a 
domain is irreducible, but not always vice versa. 
 A domain is factorial, or a unique factorization domain, or a u.f.d., if every 
non zero, non unit, can be expressed as a product of irreducible elements, and if 
whenever x = ∏bi, = ∏cj, with all bi, cj irreducible, then there is the same number 
of b's and c's, and possibly after renumbering, each bi is associate to the 
corresponding ci.   
 Two elements of a ufd are relatively prime iff 1 is a gcd. 
 
Fraction field: If R is a domain, its field of fractions is the ring ff(R) = {a/b: a,b, 
are in R, b ≠ 0, and a/b = c/d if and only if ad = bc}.  This is a field containing R, 
(actually it contains the isomorphic copy {a/1: a in R} of R), and is contained in 
every other field containing R.  Hence a ring is a domain if and only if it is 
contained in some field. 
 
Integral elements: If a ring F contains a domain R, we say an element x of F is 
integral over R, if x satisfies a monic polynomial with coefficients in R.  A domain 
R is integrally closed, or integrally closed in its field of fractions, or normal, if the 
only elements x in ff(R) which are integral over R are elements of R itself.   
 
Relations among these properties: 
 We will prove for domains, that strongly Euclidean implies Euclidean implies 
principal implies u.f.d. implies normal.  None of these implications can be 
reversed.  
 
Exercises:  The following are like statements about integers and proved exactly 
the same way. 
 
Pushups and free throws: 
 
1) If P is a proper ideal, then R/P is a domain iff P is prime, and R/P is a field iff P 
is maximal.  (E.g. (0) is maximal in a field.)  Hence maximal ideals are prime. 
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2) A prime element of a domain is also irreducible.  In a ufd, an element is prime if 
and only if it is irreducible. 
 
3) An element x of a domain R, is irreducible iff (x) is maximal among all principal 
ideals of R, (but not necessarily maximal among all ideals). 
 
4) Every Euclidean domain is a p.i.d.  (Prove an ideal is generated by any 
"smallest" element.) 
 
5) In a strongly Euclidean domain, every non zero non unit can be factored into a 
product of one or more irreducibles.  (Induct on size.) 
 
6) If k is a field, k[X] is strongly Euclidean where |f| = deg(f). 
 
7) In a pid, a gcd of x,y is any generator of the ideal (x,y), hence in a pid, any gcd 
of x,y is a linear combination of x,y.  Hence in a pid, x,y are rel. prime iff the ideal 
(x,y) = (1) = R, iff one can solve ax+by = 1, for a,b. 
 
8) R is a domain iff the polynomial ring R[X] is a domain. 
 
9)  If {Ij} is any linearly ordered indexed set of proper ideals in a ring R, i.e. if for 
any two ideals Ij and Ik, one is contained in the other, then their union is a proper 
ideal. 
 
10) In a ufd, if x,y are relatively prime, and x divides ay, then x divides a.  (Use 
7.) 
 
11) Any two elements x,y of a ufd, have a gcd given as follows.  If the prime 
factorization of x is ∏ piri, and that of y is ∏ pisi, then the gcd of x,y is the 
product ∏ pimin(ri,si). 
 
12) All ufd's are normal.  [Imitate the proof of the "rational root" theorem.] 
 
 Now we recall Zorn's lemma:  In any partially ordered set S, a "chain" or 
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"linearly ordered subset" {xi}I, is a subset such that any two elements xi, xj are 
comparable, i.e. either xi ≤ xj or xj ≤ xi. 
 Zorn's lemma says: If S is non empty, and each chain in S has an upper 
bound in S, then S contains some "maximal" elements, i.e. elements which admit 
no strictly larger comparable element. 
 
 We assume Zorn's lemma, which follows from the axiom of choice.  [A 
proof is in the appendix to Lang, Algebra.] 
Corollary:  Every ring (with identity) contains maximal ideals. 
proof:  We have already checked that the union of a linearly ordered collection of 
proper ideals is a proper ideal, and thus an upper bound for the collection.  We are 
finished by Zorn.  QED. 
 
Trickier stuff: 
Rings which have unique factorization. 
We assume all our rings are domains. 
 As in the exercise above, existence of factorization is easily proved in any 
strongly Euclidean domain by induction on size, but it also follows more 
abstractly, in any noetherian domain, as follows. 
Definition:  A partially ordered set satisfies the ascending chain condition, or 
ACC, if all strictly increasing sequences of elements are finite in length. 
 
The next result is basic. 
Lemma: The set of ideals in a ring R satisfies the ACC for the inclusion relation 
iff every ideal is finitely generated, i.e. iff R is noetherian. 
proof:  If some ideal I is not finitely generated, let a1 be any element of I.  Then 
(a1) does not equal I, so there is some element in I - (a1), say a2. Then (a1,a2) is 
strictly larger than (a1) but not equal to I, so we have a chain of two ideals (a1) 
contained in (a1,a2).  Then we can choose another element a3 of I - (a1,a2) and 
then we have a strictly increasing chain of three ideals: (a1) in (a1,a2) in 
(a1,a2,a3).  Continuing, we obtain after an infinite amount of time, or even a finite 
amount of time, if we work faster and faster, an infinite sequence of strictly 
increasing ideals, which contradicts the ACC. 
 Conversely, and here is the trickier part, if ACC does hold, we must show 
no infinite weakly increasing sequence of ideals, I1, I2, I3,......, can be strictly 
increasing.   The trick is to take the union I of all the ideals.  As above, this union 
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is itself an ideal, hence finitely generated, say by x1,...,xn.  But then all the xi are 
contained in some one of the ideals in the chain, say IN.  Then the remainder of 
the ideals in the sequence contain all the generators of the full union I, hence all 
the rest of the ideals are all equal to I and to IN.  So the infinite sequence of ideals 
is not strictly increasing.  QED. 
 
Exercise: In a noetherian ring R, any collection of ideals contains one which is 
maximal for that collection.  In particular, by considering the set of all proper 
ideals, we get a new proof of the existence of maximal ideals of R, without using 
Zorn. 
 
Lemma:  In any noetherian domain R, e.g. any p.i.d., every non zero non unit can 
be expressed as a finite product of irreducible elements. 
proof:  Let x be any non zero non unit.  First we claim x has an irreducible factor.  
If x is irreducible we are done.  If not then x decomposes as a1b1, where neither 
a nor b is a unit, nor has an irreducible factor.  Hence we have b1 = a2b2, where 
again neither a2 nor b2 is a unit, nor has an irreducible factor.  Continuing we 
obtain an infinite strictly increasing sequence of principal ideals (x) in (b1) in (b2) 
....., which contradicts the noetherian hypothesis. 
 Now we claim x actually factors into irreducibles.  If x is irreducible we are 
done.  If not, then x = a1b1 where a1 is irreducible.  If b1 is irreducible, we are 
done, and if not and a2 is an irreducible factor of b1, then we have x = a1a2b2.  If 
b2 is ireducible we are done, and if not we can continue.  Since the sequence of 
principal ideals (x), (a1), (a2),...is strictly increasing it must be finite, and hence 
we eventually have an irreducible factorization of x.  QED. 
 
Note: First, the two stage argument is essential, to keep control of the 
contradiction; i.e. a contradiction cannot be obtained by assuming only that x = 
ab, where a and b are not both irreducible.  Second, unlike the case of a strongly 
Euclidean domain, there is no estimate here for the number of steps needed for the 
factorization. 
 
Corollary:  In any pid, every non zero, non unit, factors into a finite product of 
irreducibles. 
 
So much for existence of irreducible factorizations.  For uniqueness, we assume 
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the factors are not just irreducible, but prime. 
Lemma: In a domain R, let x = ∏xi = ∏yj where all xi and yj are prime elements.  
Then we claim there is the same number of x's as y's, and after renumbering, 
each xi is associate to the corresponding yi. 
proof:  Since x1 divides the left side hence also the right, by definition of prime 
element (and induction), x1 must divide some factor yj on the right.  But since all 
prime elements of a domain are irreducible, then x1 is associate to yj.  
renumbering the y's we may assume yj is y1 = ux1, where u is a unit.  Then after 
canceling x1 on both sides, and replacing y2 by its associate uy2, we are done by 
induction on the number of factors occurring on the left. QED. 
 
Lemma:  In a pid R, every irreducible element is also prime. 
proof:  If x is irreducible, then the ideal (x) is maximal among all principal ideals.  
But since R is a pid, then (x) is a maximal ideal, hence also a prime ideal, so x is a 
prime element. QED. 
 
Corollary:  Every p.i.d. is a u.f.d. 
proof:  Since a pid is noetherian, this follows from the two previous lemmas. 
QED. 
 
Remark: The corollary is not reversible, i.e. most ufd's are not principal. 
We have proved a noetherian ring in which irreducibles are prime is a ufd. 
 
Dimension of a ring: The Krull dimension of a ring R is the maximal number n 
such that R contains a strict chain of length n+1 of proper prime ideals.  Thus a 
field has Krull dimension zero, and the integers have Krull dimension one.  A 
domain which is not a field has Krull dimension one iff every non trivial prime 
ideal is maximal, e.g. any pid. 
 
Dedekind domains:  A Dedekind domain is a one dimensional noetherian, normal 
domain.  Pid's are Dedekind, but not vice versa.   
 
Fact: R is a pid iff R is a one dimensional noetherian ufd.  [Use ex.6, p.283, 
Dummitt-Foote.]  There are noetherian ufd's of arbitrary finite dimension 
k[X1,...,Xn] (see Gauss' thm. below), and even non noetherian ufd's 
k[X1,...,Xn,....], of infinite dimension. 
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Remark:  Gcd's do not exist in general except in ufd's, i.e. a noetherian domain is 
a ufd if and only if any two elements have a gcd (Sah, p.113). 
 
Unique factorization of polynomials over factorial rings 
Next we reproduce Gauss' famous argument for unique factorization of integral 
polynomials. 
Proposition(Gauss): If R is a ufd, so is R[X]. 
 
Definition: A polynomial in R[X] is called primitive if 1 is a gcd of its 
coefficients. 
 
Lemma(Gauss): The product of two primitive polynomials is primitive. 
proof:  f is primitive iff for every prime element p of R. f remains non zero in 
(R/p)[X].  If f and g are primitive, both remain non zero in (R/P)[X].  Since p is  a 
prime element of R, (R/P) is a domain, and so is (R/p)[X].  Thus fg is also non 
zero in (R/p)[X] for all primes p of R, so fg is also primitive.  QED. 
 With this lemma, it is a straight forward but slightly tedious exercise to 
deduce that R[X] is a ufd. from the fact that K[X] is a ufd, where K is the 
fraction field of R. 
 
Exercise: (Assume R a ufd.) 
(i) If f is any polynomial in R[X], there is some d in R such that f/d is a primitive 
polynomial in R[X];  d = gcd of coefficients of f, is unique up to associates. 
(ii) If f is a polynomial in K[X] not in R[X], there is some d in R such that df is a 
primitive polynomial in R[X], and d = lcm of denominators of coefficients in 
lowest terms of f, is unique up to associates. 
(iii) The units of R[X] are precisely the units of R. 
 
Lemma:  If f  is primitive in R[X] then f is irreducible in R[X] iff it is so in K[X]. 
proof: Asume f irred. in K[X], and that f = gh with g,h in R[X].  Then either g or 
h, say g, is a unit in K[X], hence a non zero element of K.  But g belongs to R[X], 
so g is a non zero element of R.  Since f is primitive, and h belongs to R[X], g is a 
unit in R, and f is irreducible in R[X]. 
If f is irred. in R[X], assume f = gh, with g,h in K[X], and neither is in R[X], then 
after multiplying out by the product of the lcm's of the lowest terms denominators 



 23 

of g,h, we have a primitive polynomial on the right but not the left, a 
contradiction.  If both g,h belong to R[X], by hypothesis one is a unit in R[X], 
hence also a unit in R and K and K[X], and we are done.  So we may assume g is 
in R[X] and h is not.  Then for appropriate d,e in R, as in the exercise above, we 
have f = gh = (d/e)(g/d)(eh), where f, (g/d), and (eh), are primitive in R[X].  
Hence d and e are associates, and we have f = (g/e)(eh), where (g/e) and (eh) are 
both in R[X], hence one is a unit in R[X], i.e. in R.  Thus either g or h is a unit in 
K, hence K[X], and f is also irreducible in K[X].  QED. 
 
Lemma:  If R is a ufd, then every primitive non zero non unit f in R[X] factors 
into irreducible elements of R[X]. 
proof:  By hypothesis f has degree > 0.  Since K[X] is a ufd, f = ∏ gi where all gi 
are irreducible in K[X].  If all gi belong to R[X] then they are primitive hence 
irreducible by the previous result and we are done.  As before, some of them must 
belong to R[X] or else we find a non unit d of R such that df is a product oif 
primitive polynomials of R[X], a contradiction.  In any event, we again find 
elements d,e of R such that f = (d/e)∏hi where the hi are primitive elements of 
R[X] each a non zero R multiple of the corresponding gi , hence each hi still 
irreducible in K[X].  Then each hi, being primitive, is also irreducible in R[X], and 
we are done.  QED. 
 
Corollary:  If R is a ufd, every non zero non unit f in R[X] factors into 
irreducible elements of R[X]. 
proof: If f is not primitive, write f = cg where g is primitive in R[X] and c is a 
non unit in R.   Factor f as above into porimitive irreducibles, and factor c into 
irreducibles in R.  These are still irreducible in R[X].  QED.  
 
Lemma: If f is primitive in R[X], g any element of R[X], and if f divides g in 
K[X], then f already divides g in R[X].  In fact if g = fh, with h in K[X], then h is 
in R[X]. 
proof:  Assume g = fh, with g in R[X], and h in K[X].  If h is not in R[X], as 
above there is some c in R, not a unit, with cg = f(ch), where f and ch are 
primitive in R[X], but cg is not, a contradiction.  QED. 
 
Corollary:  An irreducible element of R[X] is prime if R is a ufd. 
proof:  Assume f is irreducible in R[X] and hence primitive, and that f divides gh, 
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with g,h in R[X].  Since K[X] is a ufd, and f is still irreducible in K[X], f is prime 
in K[X], so f divides either g or h in K[X].  Since g,h are in R[X], the previous 
result shows that f divides one of them in R[X].  Hence f is prime in R[X]. QED. 
 
Corollary:  If R is a ufd, so is R[X]. 
proof:  We have shown R[X] has factorization into irreducibles, and that every 
irreducible in R[X] is prime.  But factorization into primes is always unique.  
QED. 
 
Corolalry: If k is a field or ufd, then k[X1,...,Xn] is a ufd. 
proof: By induction, since k[X1,...,Xn] is isomorphic to k[X1,...,Xn-1][Xn]. 
 
Corollary: If k is a field or ufd, then k[X1,...,Xn,....] (= polynomials in infinitely 
many variables) is a ufd. 
proof: A given polynomial involves only a finite number of variables, and cannot 
factor into a product of factors which involve other variables.  Hence a polynomial 
in k[X1,...,Xn] which is irreducible there is also irreducible in k[X1,...,Xn,....].  
This proves existence of irreducible factorizations.  But these rings also have the 
same units, so a polynomila irreducible in k[X1,...,Xn,....] is also irreducible in 
k[X1,...,Xn].  Thus if f is in k[X1,...,Xn], any two irreducible factorizations of it 
in k[X1,...,Xn,....] actually belong to k[X1,...,Xn], hence are equivalent there and 
also in k[X1,...,Xn,....].  QED.   
 
It is very useful to have some way to recognize irreducible polynomials. 
Corollary: (Eisenstein): Assume R is a ufd, f in R[X] is a polynomial of positive 
degree n, and p is a prime element of R that divides every coefficient ai of f with i 
< n, but not the leading coefficient an, and that p^2 does not divide the constant 
term a0 of f.  Then f is irreducible in K[X], where K = ff(R). 
proof:  If f were reducible over K , the factors would have degree at least one, 
and the factors can be chosen in R[X].  [I.e. if f = c(f).f0, if f = gh, with g,h, in 
K[X], we have f0 = c(f)-1g.h, and we showed then that f0 = g1h1 where g1 and 
h1 are the primitive versions of c(f)-1g, and h.  Then f = c(f)f0 = c(f)g1h1, is a 
factorization of f in R[X].]  Thus f = gh, where g,h are in R[X] and have degree ≥ 
1.  
 If we reduce mod p, we get [f] = [c]X^n = [g][h], in (R/(p))[X] , where 
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[c] is not [0].  Thus both [g] and [h] have non zero leading terms of degree < n.  
We claim both [g] and [h] have zero constant terms. 
 Although (R/p)[X] is not a ufd, X is a prime element of this domain since 
the quotient by X is R/p, a domain.  Factorization by prime elements is unique in 
any domain, so the factors [g] and [h] of [c]X^n must be associate to monomials 
of positive degree in X, hence neither has a constant term.  Then gh = f has 
constant term divisible by p^2, a contradiction.  QED. 
 
The previous criterion has a vast generalization as follows. 
The valuation associated to a prime. 
Let p be a prime in a ufd R, with fraction field K.  define a function  
vp:K*--->Z from non zero elements of K to the integers, as follows:  if x = a/b 
with a,b in R, then write a = cpr, and b = dps, where p does not divide either c or 
d, and define vp(x) = vp(a/b) = vp(a)-vp(b) = r-s.  Thus vp(x) is "the number of 
times p divides x", i.e. the number of times it divides the numerator minus the 
number of times it divides the denominator.  Thus an element x of K is in R iff 
vp(x) ≥ 0 for every prime p in R.   
 In geometry we think of the primes p as points, the elements x as functions, 
and the functions x with vp(x) < 0 are the ones with poles at p, while those with 
vp(x) > 0 have zeores at p.  The absolute value of vp gives the order of the zero 
or pole at p.   
 Note that the exponent i of Xi is nothing but the valuation vX(Xi) = i, 
determined by the prime element X of R[X].  So we are in some sense looking at f 
as a polynomial in the two variables X and p. 
 
Eisenstein-Dumas:  Assume R is a ufd, and f = ∑ aiXi is a polynomial of degree 
n over R with a0 ≠ 0.   Graph the integer lattice points (i,vp(ai)) in the plane ZxZ, 
and connect up the "first" and "last" points, (0,vp(a0)) and (n,vp(an)), by a line 
segment L.  If the following two conditions hold: 
(i) all intermediate lattice points (i,vp(ai)) for 0<i<n, lie on or above L, and (ii) 
gcd(n, vp(an)-vp(a0)) = 1, 
then f is irreducible over K = ff(R) = fraction field of R. 
proof of Dumas criterion:(see Van der Waerden, 2nd ed. vol.1, page 76). 
 
Corollary:(Eisenstein).  See statement above. 
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proof: Here we have a line segment L which has height ≤ 1 everywhere on the 
interval [0,n], and by hypothesis all intermediate points have height ≥1.  Moreover, 
vp(a0) = 1, vp(an) = 0, so gcd(n,-1)=1. 
 
Corollary:(reverse Eisenstein):  If p is prime and divides all ai for i >0 but not a0, 
and p^2 does not divide an, then f is irreducible over K. 
proof: Here the line segment L goes from (0,0) to (n,1) instead of from (0,1) to 
(n,0), hence has the same slope, and all the intermediate lattice points are still 
above it. 
 
Recall the usual root - factor theorem implies that a polynomial of degree ≤ 3 with 
no root over a field, is irreducible.  Here is a related result. 
Corollary: Let q be a prime integer, and consider f(X) = X^q -c, where c lies in a 
ufd R.  If c has no qth root in R, then f is irreducible over K = ff(R). 
proof: Since c has no qth root in R, there is some prime factor p of c such that p 
does not divide vp(c).  Thus gcd(p,vp(a0)) = 1.  Since there are only the two 
extreme lattice points, and vp(aq) = 0, we are done. 
 
Corollary:  Irreducibility of polynomials in two variables: 
If n, m are relatively prime, then Xn - Ym is irreducible in k[X,Y], where k is a  
field.  E.g. X2-Y3 is irreducible in k[X,Y]. 
proof: Regard k[X,Y] as the polynomial ring k[Y][X] over the ufd k[Y], where Y 
is a prime element.  Note Xn -Ym is primitive. 
 
Corollary:  If a ≠ 0,1, then Y2 - X(X-1)(X-a) is irreducible in k[X,Y]. 
proof: Usual Eisenstein applies to this monic hence primitive polynomial, for the 
prime element X, in the ring k[X][Y]. 
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8000 Day Three:  Brief course on modules over a commutative ring 
 
 Next we define the concept of an "action" of a (commutative) ring R on an 
abelian group.  Then all the constructions made for abelian groups generalize in 
exactly the same way. 
 If M is an abelian group, an R module structure on M is a ring map s:R---
>End(M) = {group homomorphisms M--->M}, where End(M) is a (usually non 
commutative) ring with composition as multiplication, hence the identity map acts 
as the element 1.    
 Using the map s, we can "multiply" elements of M by elements of R, i.e. by 
definition we set rx = (s(r))(x), and the usual properties hold, (ab)x = a(bx), 
(a+b)x = ax +bx, 1x = x, and a(x+y) = ax+ay. 
 We define EndR(M) as the subring of End(M) consisting of those group 
homomorphisms which commute with multiplication by all elements of R.  Note: 
EndZ(M) = End(M), but for other rings R, EndR(M) is usually smaller than 
End(M).  The homomorphisms in EndR(M) are called R module maps, and 
similarly for the subset HomR(N,M) of Hom(N,M). 
 An R homomorphism with an R module inverse is called an R isomorphism. 
 If R--->End(M) is an R module structure on M, the kernel of the map  
R--->End(M) is the ideal ann(M) = {those elements r in R such that rx = 0 for all 
x in M}.  An R module structure is called faithful if ann(M) = {0}. For any R 
module structure, M has a natural induced faithful R/ann(M) module structure.   
 Thus M has an R module structure iff some quotient R/I is isomorphic to a 
subring of End(M), and M has a faithful R module structure if and only if R itself 
is isomorphic to a subring of End(M). 
 A subgroup N of the R module M is a submodule iff N is closed under 
multiplication by elements of R. 
 If f:M-->N is an R module map, the subset of elements x of M such that 
f(x) = 0, is a submodule of M called the kernel of f.  The submodule of N of all 
elements of form f(x) for x in M, is called the image of f. 
 
Ex. A finitely generated abelian group cannot have a Q module structure. 
 
Ex. An ideal of R is the same as a submodule of R. 
 
  A submodule is generated by a subset of elements {xi} of M, if each 
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element of M is an R linear combination of some finite subset of the {xi}.   If the 
same finite subset of elements {xi} can be used to generate every element of M, 
then M is finitely generated. 
   
 A module is noetherian if every submodule is finitely generated.  A ring is 
noetherian if and only if it is noetherian as a module.  A module is cyclic if it has 
one generator. Thus an ideal is cyclic iff it is principal.  A cyclic module is 
isomorphic to R/I for some ideal I.  In a p.i.d. every non zero ideal I is isomorphic 
to R as modules. 
 
Submodules and Quotient modules 
 If N is a submodule of M, the quotient group M/N has a natural structure of 
R module such that M-->M/N is a module map with kernel N.   A homomorphism 
f:M-->P with N contained in the kernel of f, factors uniquely as M-->M/N-->P. 
 
Products and direct sums of families of modules 
 If {Mi}I is an indexed collection of R modules, the product module ∏IMi is 
the family of functions s from I to the union of the Mi such that s(i) belongs to Mi 
for every i in I.   
 
An R module map N-->∏IMi is equivalent to an indexed family of R module maps 
N-->Mi. 
 
 The direct sum of an indexed family {Mi}I of modules is the submodule ∑I 
Mi of ∏IMi consisting of those functions f whose value is zero at all but a finite 
number of elements i of I.  Thus for a finite index set I, the product and sum are 
the same.   
 
We denote the product (or sum) of n copies of R by R^n.  Any module 
isomorphic to Rn is called a free R module of rank n.  We also denote by Mn the 
sum (or product) of n copies of M. 
 
An R module map ∑I Mi -->N is equivalent to an indexed family of R module 
maps Mi-->N.   
 
 For each element x of M, there is a unique R module map f:R-->M such 
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that f(1) = x.  Consequently, HomR(Rn, M)  ≈ M^n.   
 
An R module map f:R^n-->R^m is defined by a unique m by n matrix of entries of 
R, whose jth column is the vector f(ej) where ej = (0,...,1,...,0), and the 1 is in the 
jth position. 
  
 A sequence of R homomorphisms is called exact iff the image of each map 
equals the kernel of the next map. 
  
Exercises 
1)  A submodule of a ring R is the same thing as an ideal. 
2) If 0--->A--->B--->C--->0 is an exact sequence of R module maps, then B is 
noetherian iff both A and C are noetherian.  (Hint: A,C fin. gen. implies B is also.) 
3) If R is a noetherian ring, then Rn is a noetherian R module. 
4) If R is noetherian and M a fin gen R module, then M is noetherian. 
  
Hilbert "basis" theorem. 
The next result gives lots of noetherian rings.  The concept of R module makes 
the proof slightly shorter, so we placed it here. 
 
Proposition(Hilbert): If R is noetherian, so is R[X]. 
proof: If I is any ideal of S = R[X] we want to find a finite number of generators 
for I.  Consider the set J of all leading coefficients of elements of I, and check 
that J is an ideal of R hence finitekly generated say by a1,...,an.  Then for i = 
1,..,n, choose an element fi of I that has leading coefficient equal to ai.  Let r be 
the maximum of the degrees of the polynomials f1,...fn.  If f is any polynomial in 
I of degree ≥ r, by multiplying the fi by suitable poiwers of x, we obtain 
polynomials gi of the same degree as f, and whose leading coefficients generate 
the ideal of all leading coefficients of elements of I.  Hence there is an R linear 
combination of the gi which ahs the same degree and the same leading coefficient 
as does f. This linear combination is also an R[X] linear combination of the fi.  
Thus we have for some polynomial coefficients hi, that ∑ hifi - f has lower degree 
than f.    
 Repeating this we eventually can lower the degree of f until it is less than r.  
I.e. for some polynomial coefficients ki we get that ∑ ki fi - f belongs to I and 
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also to S(r) = the module of polynomials in R[X] of degree less than r.  Since the 
module S(r) is generated over R by 1,X,....,Xr-1, it is finitely generated over R, 
hence noetherian as R module, hence certainly also as R[X] module.  Thus I 
intersect S(r) is a finitely generated R[X] module, so we can choose a finite 
number of R[X] generators t1,...,tm for it.   Then ∑ ki fi - f = ∑ -witi for some 
polynomials wi, and f = ∑ ki fi + ∑ witi.  Hence the finite set {ki, tj} generates I 
over R[X].  QED. 
 
Diagonalization of matrices over a pid 
 Next we observe that the pid property is exactly the property of the integers 
needed to do the key step of the classification of finitely generated abelian groups. 
 
Proposition:  We can diagonalize a matrix over any pid, by invertible matrix 
operations, but not ones obtained from elementary row and column operations.  
I.e. if M is an m by n matrix, with entries in a pid R, there exist invertible (but not 
elementary) matrices A,B over R, such that AMB is diagonal, in the sense that all 
entries xij, with i≠j, are zero. 
proof:  Using the same procedure as with integer matrices, it suffices by 
induction to show that we can arrange for the upper left entry of M to divide all 
the other entries in the first row and column.  We get to use the elementary row 
and column operations, but we will supplement them by an additional invertible 
matrix multiplication which does not arise from a product of elementary matrices. 
 Recall the key step was to show that we can replace a first row of M 
containing  [a  b  *  *  *  ........], where a does not divide b,  by [ d  c   *  *  *  
......] where d is a proper divisor of a.  By interchanging columns, if a fails to 
divide any entry in the first row, we can also replace a by a proper divisor.  
Similarly, if a fails to divide any entry in the first column we can replace a by a 
proper divisor.  
 Since a has only a finite number of proper divisors in a ufd, hence in any 
pid, this process can only be repeated a finite number of times.  Hence eventually, 
the upper left entry will divide all other entries in both the first row and column, 
and can be used to replace all other entries by zeroes.  Then induction allows the 
matrix to be reduced to diagonal form.  
 Now to accomplish this, since R is a pid, make the key replacement by an 
invertible matrix operation as follows.  If a does not divide b, then gcd(a,b) = d 
has strictly fewer prime factors than a, and d can be written as a linear 
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combination d = ax+by, where after dividing through by d, we see that the gcd of 
x,y is 1.  Hence we can write 1 = zx + wy.  This lets us construct a matrix B with 
first two rows [ x  -w  0  0  0 .... 0] , and [ y  u  0  0  0  .....0].  This matrix 
multiplies our original one from the right to yield upper left entry ax+by = d = 
gcd(a,b).   
 Moreover this matrix can be completed to an invertible one B, since the 2 by 
2 determinant in the upper left corner is 1.  I.e,. we just put zeroes in all the rest 
of the first two column entries, and put an identity matrix in the bottom right 
corner.  QED. 
 
Corollary:  A finitely generated module N over any p.i.d. R, is isomorphic to a 
product of cyclic modules Rr x R/(x1) x ....x R/(xs), where no xi is a unit or zero, 
and each xi divides xi+1.  Moreover, the ideals (xi) are uniquely determined by the 
isomorphism class of N, as well as the integers r and s. 
proof sketch:  As before, if N has m generators, we map Rm onto N, and since 
R is noetherian, the kernel of this map is finitely generated, so we can map some 
Rn  onto this kernel, thus realizing N as the cokernel of a map f:Rn --->Rm, hence 
as the cokernel of a matrix M.  Then diagonalizing the matrix by invertible 
operations as above, does not change the isomorphism class of the kernel and 
cokernel.  But for a diagonal m by n matrix with diagonal entries z1,...,zm, 
dividing each other, (some of the early ones possibly equal to 1, and some of the 
last ones possibly equal to 0), the cokernel is easily shown to be isomorphic to the 
product R/(z1) x .....x R/(zm).  Then we delete the factors at the beginning having 
z = 1, since those cyclic quotients R/(z) are {0}.   Then put the factors from the 
end, with z = 0, at the beginning, since they are = R.  Then letting the xi's be the 
z's that are different from 1 and 0, we have our decomposition.  The uniqueness 
of the xi is no easier, but no harder, than before.  For uniqueness of the rank r, 
see below. QED. 
 
First we prove the vector space case, since this proof is sometimes omitted in 
elementary courses. 
Proposition: If K is a field, and Kn ≈ Km, then n = m. 
proof: An isomorphism Kn --> Km is represented by an m by n invertible matrix 
of entries in K.  Since K is a field, it is also a pid, so we can diagonalize this matrix 
by invertible matrix multiplication, and obtain an invertible diagonal matrix.  Such a 
matrix must be square, so n=m. QED. 
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 Now assume that N is an R module and I is an ideal of R.  Then define IN 
as the submodule of N generated by all products rx where r is in I and x is in N.  
This equals all R linear combinations of form ∑ aixi where the ai are in I and the xi 
are in N. 
 
Exercise: For a product of R modules, N = N1 x ... x Ns, we have IN ≈  
IN1 x ... x INs.  
 
Cor: If I is a maximal ideal of R, then Rn/IRn ≈ (R/I) x ... x (R/I) ≈  
K x ... x K, where K is the quotient field R/I.   
 
Cor: If Rn ≈ Rm, for any ring R, then n = m. Hence the rank r of a finitely 
generated module over a pid is well defined. 
proof: If Rn ≈ Rm then Kn ≈ Km, so by vector space theory n = m.  QED.  
 
Note: Over a Euclidean domain such as k[X], we can carry out the 
diagonalization, hence the decomposition of a finitely generated module more 
constructively, as we did for integers.  I.e. in that case the gcd of two elements 
can be obtained by repeated subtraction, following Euclid.  This will be used in the 
next chapter to find canonical forms of matrices and hence of linear maps of finite 
dimensional vector spaces. 
 
APPENDIX: 
A glimpse of the geometry of rings 
 If R is a domain, and P a prime ideal, define the "localization" of R at P to be the 
ring RP of formal quotients a/b, where a,b are in R, b is not in P, and a/b = c/d iff 
ad=bc as usual.  Then a one dimensional noetherian ufd is a pid, so if R is a 
Dedekind domain then RP is a pid for every prime ideal P.  I.e. a Dedekind domain 
R is locally principal. 
 
 Note that a ring R is itself an R module, and hence the concept of a sub R 
module of R, i.e. an ideal, has interest.  If R is not a pid, then ideals of R may 
require several generators.  The theory of factorization of individual elements of R 
deals only with principal ideals.   E.g. in C[X,Y] principal ideals (f) correspond to 
plane curves f=0, while maximal ideals (X-a, X-b), requiring 2 generators, 
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correspond to points (a,b).  It takes an argument to prove all maximal ideals have 
this form.   
 
“Weak nullstellensatz” 
Theorem: The correspondence taking p = (p1,...,pn) to (T1-p1,...,Tn-pn) is one 
to one between points of C^n and maximal ideals of C[T1,...,Tn]. 
Proof:  The case n = 1 is the definition of algebraically closed.  So assume n ≥ 2.  
We will use induction.  By substituting (Ti-pi) + pi for Ti and expanding, we can 
write every polynomial in the Ti as a polynomial in the Ti-pi.  This shows that 
evaluation at p, is a surjection onto k with kernel the ideal (T1-p1,....,Tn-pn) = (T-
p).  This ideal is thus maximal and so the correspondence above is well defined 
from points to maximal ideals.  It is also injective since if u ≠ p, say ui ≠ pi, then 
Ti-ui does not belong to the kernel of evaluation at p, hence the ideals (T-u) and 
(T-p) are different. 
  
 Thus the main point is surjectivity.  Let m in k[T] be a maximal ideal.  It 
suffices to show for all i, that m contains an element of form Ti-pi since then m 
contains (T1-p1,...,Tn-pn).  Since both ideals are maximal they are then equal.  So 
fix i, say i = 1, and consider the map  
C[T1]—>C[T1,...,Tn]/m, and its kernel  m in C[T1].  If the kernel were (0), then 
since C[T]/m is a field, the fraction field C(T1) would embed in C[T]/m.  But 
C[T]/m is generated as C vector space by the monomials in the Tj’s hence has 
countable vector dimension over C.  On the other hand we claim the set {1/(T1-
pj)} for all pj in C, is independent, and uncountable, a contradiction. 
 To check this write ∑j cj/(T1-pj) = 0 where the {pj} are finitely many 
distinct elements of C, and {cj} are any elements of C, and multiply out the 
denominators, i.e. multiply by ∏j (T1-pj).  We get ∑j cj (∏k≠j (T1-pk))= 0.  
Setting T1 = pl, we get cl(∏k≠l (pl-pk)) = 0.  Since ∏k≠l (pl-pk) ≠ 0, we must 
have cl = 0 for all l.  Hence the set {1/(T1-pj), pj in C} is indeed independent over 
C. 
 Now that the kernel of C[T1]—>C[T1,...,Tn]/m, is not (0), it must equal 
some prime ideal of form (f(T1)) in C[T1] where f(T1) is irreducible.  Since C is 
algebraically closed, the only irreducible polynomials are linear so f may be 
assumed to be of form T1-p1 for some p1 in C, as desired. QED. 
 
Fact:  If K is a subfield of C, containing Q and of finite dimension as a vector 
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space over Q, define O, the ring of integers in K, to be the set of all those 
elements of K which are integral over Z.  Then O is a finite Z module, hence a 
finitely generated abelian group, and in fact a Dedekind domain, i.e. a normal 
domain of Krull dimension one.  These rings are of great importance in algebraic 
number theory.  E.g. if they were all ufds, which they are not, Fermat’s last 
theorem would have been proved a lot sooner. 
 
Assume R is a noetherian domain. 
Definition:  A polynomial is monic if it has leading coefficient 1. 
An element of the fraction field K of a domain R is integral over R if it is the root 
of a monic polynomial in R[X]. 
A domain R is normal, or integrally closed, if the only elements of K that are 
integral over R are elements of R. 
 
Exercise1:  Any ufd is normal. [hint:  look at the proof of the “rational root” 
theorem from precalculus.] 
Exercise2: In a ufd R, prove all “minimal” prime ideals are principal.  I.e. if the 
only prime ideal contained in P is {0}, then P is principal. 
Exercise3,4,5: If R is a domain in which all non zero prime ideals are minimal, 
prove R is a pid.  (see DF, problem 6, parts a,b,c, page 283.) 
 
Fact: If R is a normal noetherian domain, then for all minimal primes P of R, the 
localization RP is a pid.  Note this is weaker than the analogous property for a ufd.  
Both facts allow us to define the order of the zero or pole of a rational function 
along a subvariety of codimension one. 
Definition:  If R is a domain, the fraction field K, of R, is defined as the set of all 
formal quotients {x/y:  x,y are in R, and y ≠ 0}, subject to the equivalence 
relation,  x/y = a/b iff xb=ay.  This is a field containing the isomorphic copy {x/1: 
x is in R} of R.  
Definition:  If R is a domain and P a prime ideal, the “partial” fraction ring RP, 
called “the localization of R at P”, is the following subring of K. 
RP = {x/y in K such that y is not in P}.  Since P is prime, the product of two 
such fractions is another such fraction. 
 
Exercise6: Prove that the ideal PRP generated by P in RP is maximal, and that all 
elements of RP not in this ideal are units.  Conclude that there is only this one 
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maximal ideal in RP.  [RP is called a “local ring”.] 
 
Example:  If k is a field, and R = k[X,Y] is the ring of polynomial functions on 
the affine plane k2, then (X,Y) = P is a maximal, hence prime, consisting of 
polynomial functions vanishing at the point (0,0).  Then RP is the ring of those 
rational functions which are defined at (0,0), i.e. whose denominators do not 
vanish at (0,0).   
 
Exercise7: If R is normal, P prime, prove RP also normal. 
Exercise 8: If R is ufd, P prime, prove RP also ufd. 
Exercise 9-10:  If k = Z/2Z, find all k[X] module structures on k3 up to 
isomorphism (which extend the usual k module structure). 
 
Geometry of normal, and factorial rings. 
A ring is factorial if it is a ufd, and locally factorial if all RP are ufd’s. 
 
Assume k is algebraically closed, k = the complex numbers C.  Let R = 
k[T1,...,Tr]/I, S = k[T1,...,Ts]/J, where I,J are prime ideals.  Let X = Z(I) be the 
common zero locus in kr of the polynomials in I, and Y = Z(J) in ks.   
Assume there is a dense polynomial map f:X--->Y inducing via pullback, an 
injective ring map of polynomial functions S--->R, and an isomorphism on rational 
functions ff(S)--->ff(R). 
1.  Then X,Y are irreducible algebraic sets, and there is a dense open set U in Y 
such that the restriction f:f-1(U)--->U is an isomorphism.  
 
(the next two parts are both called Zariski’s “main theorem”) 
2.  Moreover, if S is a normal ring, then we can choose U such that for all y in Y-
U, f-1(y) is either empty or of dimension ≥ 1.  In particular, if f has all finite 
fibers, then f is an open embedding of X into Y, hence a bijective polynomial map 
to a normal variety is an isomorphism.    
 
3.  If S is locally factorial, then for every irreducible component E of the closed 
set X-f-1(U) where f is not an isomorphism, E has codimension = one in X, while 
f(E) has closure in Y of codimension ≥ 2. 
 
A variety X = Z(I) is called normal or locally factorial if its ring R is such. 
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Definition:  A singular point of an algebraic variety X is a point near which it 
does not “look like a manifold”.   
 If X = Z(I), and R = k[T1,...,Tr]/I, as above, define dim(X) = Krull dimension of 
R.  If X is n dimensional, and P the maximal ideal of a point x, then X is singular 
at x if and only if it takes more than n generators to generate PRP.   
Fact:  If R is the ring of polynomial functions on the affine variety X as above, 
and x is a non singular point with maximal ideal P, the local ring RP is always a 
ufd.  I.e. all non singular varieties are locally factorial. 
 
 It was Zariski who discovered the geometric meaning of normality, and 
made it part of a general program of studying varieties. 
 
Theorem:  If I = (g) is a principal prime ideal in k[T1,...,Ts], and Y = the zero 
locus of g, then:  
 1) Y is normal if and only if the singular locus of Y has codimension ≥ 2 in Y. 
 
2) Y is locally factorial if (but not only if) the singular locus has codimension ≥ 4 
in Y.  (Grothendieck) 
  
3) On a normal variety, a rational function that is regular off a set of codimension 
≥ 2, is actually globally regular (Hartogs, or Riemann extension property). 
 
4) Removing the singular locus of a normal variety over C cannot disconnect the 
variety, not even locally in the complex topology. 
 
 
 
 
 
 
 


