4000/6000 Day 6 Modular arithmetic

We want to build on the important observation that problem 2,
hw2, could be reduced from an infinite to a finite number of cases,
as follows. Recall Jan {and others) observed, since we have
arbitrarily many 4 cent stamps, that once we figure out how to pay
an amount of postage equal to N cents, then we can also pay any
amount of form N +4k, for any multiplier k. That means we can
pay any amount of postage greater than N if it has the same
remainder after division by 4. Since the only possible remainders
after division by 4 are 0,1,2,3, that means there are only 4 cases to
solve. le. once we figure out how to pay 18, 19, 20, and 21 cents,
we can pay all larger amounts which have the same remainder
after division by 4 as any of those numbers. But after division by 4,
the remainder of 18 is 2, and that of 19 is 3, that of 20 is 0, and
that of 21 is 1. So those four numbers cover all cases. le. every
integer differs frorm one of those four integers 18, 19, 20, 21, by an
integer multiple of 4. This method of reducing infinitely many
problems to a finite number of probklems is very useful, and was
employed extensively by the great number theorists of the
nineteenth century, in particular by Gauss, in his famous work,
Disquisitiones Arithmeticae (which has been translated into English).
This method is one of the precursors of the theory of groups, and is a
good place to begin before tackling general group theory. First we
give the basic definition.

Equivalence modulo n,

Definition: Given a natural number n, we say two integers a and b
are ''equivalent modulo n", or "equivalent mod n', or more
carelessly perhaps "equal mod n", if and only if they have the same
(non negative) rermainder after division by n. le. if and only if a =
qn+r, and b = sn+r, where 0 ¢ r < n, and q and s are integers. If this
holds we write a = b {mod n), or (less clearly) a = b (n), or just a =
b, if the modulus n is known and fixed. (The word "congruent" is
often used instead of "equivalent' in this context.)

Remark: We are talking as if there is only one remainder of an
integer after division by n, when use the language "the remainder"
and ask whether two integers have the same remainder. The fact
that this is true, uses the uniqueness of the integer r in the
expression, a = gn+r, when q and r are both integers and 0 ¢ r < n,



which was proved in ex. 5, HW 2. [.e. how do we find the remainder
after a is divided by n? Write a as a = qn+r, where q and r are
integers and 0 ¢ r < n. Then r is the remainder. (Of course we all
think we know how to divide, and that the process gives only one
possible answer, so we think the remainder is unique anyway, ie. it
is whatever have left over when we divide. Still it is imnportant to
know how to recognize the remainder, when we have not obtained

it by an actual division process.
Next we equate our definition with the definition in the book.

Lemma: Two integers a and b are equivalent mod n if and only if n
divides {a-b), ie. a = b {(mod n) if and only if n |[(a-b).

Proof: If a,b have the same remainder after division by n, then a =
gn+r, and b = sn+r, where 0 ¢ r < n. Thus a-b = (gn+r) - (sn*r) = gn
- sn = nl(g-s), so n does divide a-b.

Conversely, if n divides a-b, then a-b = nk, for some integer k. Thus
if a = gqn+r, where 0 ¢ r < n, then b = a -(a-b) = (gqn+r) - nk, = n(qg-
k) + r. Since g~k is an integer and 0 ¢ r < n, this means r is also the
remainder after division of b by n. QED.

Remark: This new version of equivalence is more useful for
computing than the definition in terms of remainders, which was
given only because I felt it had more intuitive meaning. Thus from
now on we will use the property in the previous lemma as our
definition of equivalence mod n.

Now we need to know what kind of problems this equivalence
relation is good for, and how we calculate with it. le. for what
purposes are two numbers equivalent, when they are equivalent
mod n, and how do we tell quickly whether two numbers are
equivalent mod n? We need to know how equivalence behaves
under arithmetic operations. The main point is that equivalence
respects both addition and multiplication. le. if all you want to
know about a sum or product is the remainder after division by n,
then you can replace any number in the calculation by an
equivalent number. To be precise:

Lemma: If a,b,c,d, are integers and n is a natural number, and if a
= b, and c = d (all modulo n), then also a+tc = b+d, and ac = bd.
Proof: To show a+c = c+d {mod n) we refer to the lemma after the



definition, and see we must check that n divides (a+c)-(b+d) = (a-b)

+ (c-d). But by hypothesis, n divides a-b and c-d, so it divides (a-b)
+ (c-d) by the three term principle. To be explicit, since there are
integers k,s such that a-b = kn, and c-d = sn, then (a-b) + (c-d) = kn
+ sn = (k+s)n.

Next we must show n divides ac-bd. This time it seems easier to
substitute. l.e. we know a-b = kn, and ¢c-d = sn, soa = b+kn, and ¢ =
d+sn. Thus ac = {(b+kn){d+sn) = bd + bsn + knd + knsn = bhd +
n{bs+kd+ksn). Thus ac-bd = n(bstkd+ksn), so n divides ac-bd. QED.

Remark: We also need to know equivalence mod n is really an
equivalence relation, i.e. we need to know that if a = b, then also a =
b {(mod n) for every natural number n, and if a = b {mod n), and b
= ¢ {(mod n), then also a = ¢ {(mod n), and finally if a = b { mod n),
then also b = a { mod n). These are exercises for you.

Example: Any decimal integer is equivalent mod 4 to its last two
terms. le. an(10) + ... a2(10)2 + a1(10) + ag = a1(10) + ag {(mod 4).
Proof: Since 4 divides 100, and 100 divides an(10)1 + .. az(lD}Z,
the number an(10)1 + .. a2(10)2, is equivalent to 0 {mod 4). Thus
the sum anp(10)n™ + ... a2(10)2 + a1(10) + aQ is equivalent to O +
a1(10) + ap (mod 4). QED.

Application: 14566789230926522 is not divisible by 4, because that
is the same as being equivalent to 0 mod 4. But this big number is
equivalent mod 4, to 22, which is not divisible by 4. QED.

Application: 14566789230926522 is not a perfect square.
Proof: Since 14566789230926522 = 22 = 2 (mod 4), if x2 =
14566789230926522, then x2 = 2 {(rmod 4). But every number is

congruent to either 0,1,2, or 3, mod 4. So x is congruent to one of
these numbers (mod 4). We only have to try these four numbers to

see if any one works. If x = 0, then x2 = 0, which is not congruent
to2. If x =1, then x2 = 1, which is not congruent to 2. If x = 2,
then x2 = 4 = 0, which is not congruent to 2. If x = 3, then x2 = 9
= 1, which is not congruent to 2, mod 4. Since must be congruent
to either 0,1,2, or 3, x2 rmust be congruent to either 0 or 1 (mod 4).
le. x2 can never be congruent to either 2 or 3 mod 4.



Hence 98763829812765219 is also not a square, since it is congruent
mod 4 to 19, and 19 is congruent to 3 mod 4 and no square can be
congruent to 3 mod 4. However 61 is congruent to 1 mod 4, so it
could be a square by this test. Of course 61 is not a square, unless |
forgot my arithmetic. Thus, if life is simple in this direction, there
should be some other test that 61 fails. Lets try mod 8. There the
squares are 02 =0, 12 = 1, 22 = 4,32 =1, 42 = 0,52 = 1, 62 = 4,
72 = 1. Since 61 = 5 (mod 8), 61 cannot be a square. Similarly
1111111311188889545452314156788990987625288117111112222233
333222217777788335929296199874325165 = 5 (mod 8) [Why?], is
not a square, although it could take years for my computer to
factor this number.

Test for solvability of integer equations: If the equation x2 =
k, can be solved for some integer x, then all the equations x2 = k
{mod n), must also have solutions for every modulus n. le. if even

one modulus n exists such that x2 = k {mod n} has no solutions
among the numbers 0,1,2,3,,,,,, {n-1), then there is no integer

solution to the equation x2 = k.

Exercise: Test all primes p up to 37 to see for which ones the
equation x2 + y2 = p, can be solved in integers. (This is a famous
problem solved by Fermat)

Exercise: Test all primes p up to 37 to see when x2 = -1 (mod p)
can be solved.

Exercise: Make some conjectures, based on your data.

Question: What other kind of equations can be tested by this kind
of test?

Integers modulo n.

The fact that equivalence mod n respects arithmetic operations
means we can regard the equivalence classes as being a new kind of
numbers. We regard different integers that are equivalent mod n,
as being all equal to the same new number, not an ordinary integer,
but a "mod n integer". The lemma we proved about addition and
multiplication says we can do arithmetic with these new numbers
almost as if they were any other kind of numbers. le. suppose we
write K for the new number represented by k mod n. Then k = §
whenever k and s are equivalent mod n. For example, mod 7, we



have 1 = 8. We can add and multiply these new numbers by
adding and multiplying their representing integers, and it does not
matter which representing integers we use for the work, because
since any two integers representing the same new number are
equivalent, the answers will also be equivalent. l.e. mod 7 we have
(2)(4) = 8 = 1. There are only 7 of these new numbers, namely 0,
1,2, 3, 4, 5, 6. Any other symbol of form n equals one of these,

= k whenever n and k have the same remainder after

k
division by 7, so all possibilities are covered by 0, 1, 2, 3, 4, 5, 6.

Properties of arithmetic mod n.

We define multiplication of the new numbers k and s to be the new
number represented by the old product ks. We do the same for the
sums. This has to be checked to make sense. le. we are saying that
to multiply or add new numbers you take the old numbers
representing them and multiply, or add, those. But there many
ways to choose the old numbers representlng our new numbers. le.
mod 7, since 1 = 8, to multiply 1 by 3 has to give the same answer
as to multiply 8 by 3. One gives 3, and one gives (24). But since 1
and 8 are equivalent mod 7, 1(3) = 3 is equivalent to 8(3) = 24 mod
7. Thus the new numbers mod 7 represented by 3 and 24 are equal.
Thus arithmetic mod n at least makes sense. But how does it
behave? There is no reason for the new arithmetic to have all the
same properties as our old arithmetic. For example is it
commutative? I am having trouble writing these bars the book uses
with my computer, so [ will try another system, of using square
brackets instead. So let k = [k] represent the new number, mod n,
represented by k, {and hence also by k+n, and by k + 27n, etc,....).

Definition: Given a natural number n, and an integer k, let [k]
denote the equivalence class of k, mod n. Then we can add and
multiply these equivalence classes as follows: [k] + [s] = [k+s], and
[klls] = [ks].

Proposition: The operations defined above are unambiguously
defined, both are commutative, and multiplication distributes over
addition. There are identities both for the new addition and the new
multiplication, and not surprisingly, these identities are [0] and [1].
proof: Try this as an exercise. I will do a few. To show
multiplication is well defined, we must show that if [s] = [t] and [u] =



[v], that then [su] = [tv]. But [s] = [t] and [u] = [v], if and only if s
and t are equivalent mod n, and also u and v are equivalent mod n.
Then by our earlier lemma also su and tv are equivalent mod n.

Hence [su] = [tv]. For commutativity, we claim [s][u] = [ulls]. But
[sl[u]l = [sul, and [ulls] = [us]. Thus it suffices to show that [su] = [us].
But since su = us, also [su] = [us]. For additive identities we are
claiming that [0]+[a] = [a]. But [0]+[a] = [0+a] = [a].

QED.

The subject gets more interesting when we observe some properties
that are no longer the same as for ordinary integers.

What about the cancellation property?
The main difference between modular arithmetic and ordinary

arithmetic, is loss of the cancellation property at times. [.e. mod 6,

we have [2][4] = [2][1], but [4] is not congruent to [1] mod 6. Worse
seermning (but actually the same) is the presence of "zero divisors', ie.
neither [2] nor [3] is congruent mod 6 to [0], but [2][3] = [6] = [0O].
Notice we can write equal signs if we write the brackets, ie. [a] = [b]

{mod n), means the same as a = b {mod n).

What about division?

On the other hand, sometimes we can now divide, whereas we
could not do so usually with ordinary integers. l.e. mod 7 we have
[2]{4] = [8] = [1], and [3][5] = [15] = [1], and [6][6] = [36] = [1], and
[11[1] = [1] of course, so every non zero integer mod 7 has a
multiplicative inverse (mod 7).

Note it was not surprising that [6] had a multiplicative inverse
mod 7, since [6] = [-1], and we always have [-1][-1] = [1]. Thus mod
6, [5] has a multiplicative inverse, namely [5] = [-1] mod 6, so [5][5]
= [-1][-1] = [1]. (Of course also [5][5} = [25] = [1] (rmod 6))

Also interesting is the fact that -1 now is sometimes a perfect
square. l.e. mod 5, we have [-1] = [4] = [2][2]. Thus number systems
where -1 has a square root, are not so very hard to construct, nor
perhaps so very strange after all. This means that in our new
number systern we have no notion of positive and negative, since
mod 6, [S] = [-1]. Recall it was the fact that -1 was negative in the
ordinary integers, whereas squares were positive, that made this
problem insoluble there.



Divisibility tests.

Now the divisibility tests in the book are not so hard. le.
divisibility by 2 or 5 or 10, means congruent to 0 mod those
numbers. Since the part of a decimal integer after the units digit is
a multiple of 10, it is certainly congruent to 0 mod either 2, 5, or 10.
Thus any decimal is congruent to its units term, mod any of those
numbers. Thus it is divisible by one of those numbers if and only if
its units part is. Since 100 is divisible by 4, any decimal is
congruent to its last two digits, so divisibility by 4 can be checked
there. Since 1000 is divisible by 8, the last three digits suffice to
check divisibility by 8. Since every power of 10 has form 9999..9 +
1, they are all congruent to 1 mod both 3 and 9. For example 50 is
congruent to 5; 400 is congruent to 4; and 3000 is congruent to 3.
Thus 3,456 is congruent to 3+4+5+6 = 18, mod either 3 or 9. Hence
3456 is divisible by both 3 and 9. To test for divisibility by 6 I claim
it suffices to check for divisibility by both 2 and 3. Why? (Note
divisibility by both 2 and 4, does not imply divisibility by 8 )

The tricky one is the test for division by 7. This time they say
to replace the number 3456 by 345 -2(6). But this number is not
equivalent to the original one mod 7, so why does the test work? It
works because we are not claiming the two numbers formed this
way always have the same remainder after division by 7, we are
only claiming that one has remainder zero if and only if the other
does. l.e. we are not claiming they both represent the same number
mod 7, we are only claiming that one represents zero if and only if
the other does.

This involves a case where the cancellation property does hold.
[.e. in the ordinary integers, n and 10n are not equal, but one of
them is zero if and only if the other one is. We claim that mod 7,
the number 3456 is congruent to 10 times the number 354 - 2(6).
Moreover, 10 has the cancellation property mod 7, because it has a

multiplicative inverse mod 7. l.e. [10]l[S] = [50] = [1], mod 7. Hence
for any number n, if [10n] = [0] {(mod 7), then also [S]{10n] = [S0n]
= [50]in] = [1]ln] = [n], so n must also be congruent to zero. To check

our claim, note that 10(354-2(6)) = 3540 -20{(6). But -20 = 1 {(mod
7), so 3540 -20(6) is congruent to 3540+1(6) = 3546, mod 7. This is
why the test works, ie. it replaces a number whose remainder is 1
by one whose remainder is congruent to 10(1), ie. 3. The remainder
4 gets replaced by the remainder congruent to 10(4), ie. 5, etc... The
only time the new remainder is zero, is if it was originally zero.



4000/6000 Solving congruences

When we take two different moduli, say 9 and 11, we see that the
same integer can look different when viewed modulo these two
numbers. l.e. not surprisingly, an integer can easily have a different
remainder when we divide it by two different numbers. For
instance 15 has remainder 6 on division by 9 and remainder 4 on
division by 11. Hence 15 = 6 (mod 9) and 15 = 4 (mod 11). What
about the converse problem? Given two remainders, say a and b,
can we find an integer that has remainder a mod 9, and remainder

b mod 117

E.g. can we solve both the congruences:
x = 7 {mod 9), and x = 5 {(mod 11), with the same integer x?

Suppose we just start trying numbers? Lets take a smaller example
first to make it easier to see what is going on. Try to solve x = 1 (3),
and x = 2 (4). Lets make a table where x —([x]3, [x]4), and where
[x]n denotes the equivalence class of x mod n.

(0,0}
(1,1)
(2,2)
(0,3), (note the first entry has started over but not the second)
(1,0)
{2,1)
(0,2)
{1,3)
(2,0)
(0,1) (note there are still no repetitions)
(1,2}
(2,3)
(0,0) (our first repetition, what do you think will be next?)
(1,1)
(2,2)
(0,3), (etc,...., everything repeats as before).

N U AN = O
111171171111

= P 0
= O

111111

T
a b adN

Thus there is no need to look further than the first twelve numbers.
Fortunately we have already found a solution, namely 10 = (1,2).
There are two basic questions to ask?



1. Why does the table it repeat after every 12 numbers?
2. Do we get every possible pair? If so, why?

Lets try another example. Solve x = 1 (mod 3}, x = 5 (mod6).

(0,0)

(1,1)

(2,2)

(0,3), (again only the first entry has repeated)

(1,4)

(2,5)

(0,0) Uh oh! Both numbers repeated! Why!

(1,1)

(2,2)

(0,3) (We are not getting anywhere by going further)

1171171111111

OO, AADNELO

In the first example, with moduli 3 and 4, the repetition began after
12 steps, but in the second example after only 6 steps. As you may
guess, the difference is that 3 and 4 are relatively prime, but 3 and
6 are not. le. suppose that x and y are two different numbers so
that x = a {mod n) and v = a {mod n), and also x = b {mod m), and
v = b (mod m). This means that x-y = 0 {mod n) and also x-y = 0
(mod m). le. n divides x-y, but also m divides a-b. What does this
say about (a - b)? It is a rultiple of both n and m, ie. it is a
common multiple of n and m. Hence a-b is divisible by "lem(n,m}" =
"least common multiple of n and m'".

Exercise: Let n = 1T piSi and m = T pili be prime factorizations of
natural numbers n and m, except we allow ome exponents may be
zero, so that the same primes may occur in both factorizations. If
for each prime pj we define ri = max({sij,ti} to be the larger of the
exponents with which pj occurs in n or in m, thene = T pifiis a
multiple of both n and m, and e divides any other common multiple
of n and m. We call e the "least common multiple of n and m". It is
the smallest positive common multiple of n and m.

Lemma: If n and m are relatively prime natural numbers, then
len{n,m) = nm.



Proof: We know that if e is the lecmm of n and m, then n divides e.
Hence e = nk for some integer k. But also m divides e, so m divides e
= nk. But we already know that since n and m are relatively
prime, and m divides nk, then n divides k. Hence k = nt for some
integer t. Thus e = nk = nmt. Hence e is & multiple of nm. But
since nm is a common positive multiple of both n and m, and e is
the least positive one, then e ¢ nm. Hence t = 1, and e = nm. QED.

Exercise: For any tweo natural numbers n,m, we have
nm = gcd{n,m)-lcm(n,m). le. the product of n and m is also the
product of their gcd and their lem.

Theorem: If n and m are relatively prime then for every pair of
integers a,b, there is an integer x such that x = a {mod nJ), and x =
b {(mod m).

Proof: There are only nm possible different pairs. If x and y yield
exactly the same pairs, then we must have x = y (mod n), and also
x = vy {(mod m), so we must have (x-y) = 0 modulo both n and m.
Thus x-y must be divisible by both na nd m, and hence also by nm.
Hence there are no repetitions in the pairs obtained from any of the
first nm integers 0,1,2,3,....... , nm-1. Since these yield nm different
pairs, and there are only nm different pairs possible, we must obtain

every possible pair from some integer. QED.

How about finding explicit solutions? Recall in linear algebra if
we have a correspondence f:V— RZ such that f(x+y) = f(x) + f(y) and
f(cx) = cf(x), then as long as we can solve f(x) = (1,0) and f(y) =
(0,1), then we can solve any equation f(z) = (a,b}). Namely we just
take z = ax+tby.

Then f(z) = flax+by) = af(x) + bf(y) = a(1,0) + b(0,1) = (a,b).

Now notice that if n ,;m are relatively prime wer can solve the
equation nx+my = 1. That means that the number nx differs from
1 by a multiple of m. le. ny is congruent to 1 mod m. But also ny
is congruent to 0 mod n. So the correspondence f: x P ([x]n,[x]Im),
takes ny to (0,1). It also takes mx to (1,0). Thus to get a number
going to (a,b) we just choose z = a{lmx) *+ biny). Then z corresponds
to a-flmx) + b-f{ny) = a(1,0) + b(0,1) = (a,b).

For example, to solve x = 7 {mod 9) and x = 5 (mod 11), first solve



11x + 9y = 1, say by noticing that 5(11) - 6(3) = 1. Then we have
that 7(5)(11) - 5(6)(9) = 7(55) - 30(9) = 385 - 270 = 115 works. But
nm = 9{11) = 99 corresponds to (0,0) so we can subtract it and get
another smaller answer namely 115 - 99 = 16 also works.

Try another one from the book. Solve x = 16 (35), x = 27 (64). Our
first job is to solve 35x + 64b = 1. use Euclidean algorithm.

64 = 35 + 29.
35 =29 +6
29 = 4(6) + 5
6=50+1

then gcd(64,35) = gecd(5,1) = 1. Now work backwards.

1 =6-5 =6 -(29-4(6)) = -29 +5(6) = -29 +5(35-29)

= -6{29) +5(35) = -6(64-35) +5(35) = -6(64) +11(35), and this checks.
Thus our solution is -96(64) + 297(35) = 10395 - 6144 = 4251.

But 35(64) = 2240, so we can subtract this and get 2011. Indeed
dividing gives 2011 = 31(64) + 27, AND 2011 = 57(35) + 16. QED.



4000/6000 Cancellation property in modular arithmetic, little
Fermat

1. Recall the "three term principle”. Given an expression like a+b = ¢, all
integers, if an integer n divides two of the three terms, say a and c, then n
also divides the third, i.e. b. To prove this, write a = nr, since n divides a,
and also ¢ = ns, and then we substitute to get nr + b = ns, so b = nr - ns =
n(r-s). So n does divide b.

In the language of modular arithmetic, this has an even easier statement.
Le. an integer divisible by n is congruent to 0 mod n, so we are saying that
in an expression like a+b = c, if two terms are congruent to zero (mod n),
so is the third. This is a very believable statement.

2. Cancellation property

We can also talk about dividing in modular arithmetic, but we
cannot always divide, just as we cannot always divide by integers. The
situation is a little different from integers. With integers you cannot
always divide, but you do always have the cancellation property. In
modular arithmetic, you do not always have the cancellation property, but
when you do, you can also divide. Lets explore this further.

We know we can solve cx = 1 (mod m) if ged(c,m) = 1. Solving cx =
1 (mod m), is what it means to divide by c, mod m. Ie. if cd = 1 (mod
m), then d is the multiplicative inverse of c, so multiplying by d is the
same as dividing by c.

Thus if ¢d = dc = 1 (mod m), and we want to solve cx = b (mod m),
then we can multiply by d on both sides, i.e. we can divide by c. Then we
get dex = db (mod m), so since dc = 1 (mod m), we have 1x = x = db (mod
m).

Moreover if x = db (mod m), then indeed cx = cdb = 1b = b (mod
m). So x = db solves cx = b (mod m), and it is the only solution "mod m",
i.e. all other solutions are congruent to db mod m. That means the other
solutions are of form db + km, for any choice of integer k.

For example, mod 11, since 4(3) = 12 = 1 (mod 11), then dividing
by 3 is the same as multiplying by 4. So to solve 3x = 8 (mod 11), we
multiply by 4, getting 4(3x) = 4(8) (mod 11), i.e. 12x = 1x = x = 32 = 10
(mod 11). Checking, we see that 3(10) = 30 = 8 + 22 = 8 (mod 11).

Thus we can divide by any ¢ (mod m), such that ged(c,m) = 1. This
also implies the cancellation property holds for such c¢. le. suppose dc =
1 (mod m). Then if cx = cy (mod m), we multiply by d and get dcx = dcy
(mod m), i.e. since dc = 1 (mod m), this says x =y ( mod m).

Now we claim the converse is also true. I.e. the only numbers c that



have the cancellation property mod m, are those that have a

multiplicative inverse mod m. le. we know we can solve ¢x = 1 (mod m )
if and only if the gcd of c,m divides 1, i.e. if and only if ged(c,m) = 1. So
we have to show that gcd(c,m) = 1 is implied by c having the cancellation
property. Equivalently, if ged(c,m) = k > 1, then ¢ = kr, and m = ks, where
r,s are integers. Then cs = krs = tks = rm = 0 (mod m). But since s < m, §
is not congruent to zero mod m. Since cs = 0 (mod m) but s # 0 (mod
m), ¢ does not have the cancellation property.

Another argument that the cancellation property implies
invertibility, is as follows. Consider the set of products cx for all x from 0
to m-1. Since c¢ has the cancellation property, the m products cx are all
different mod m, for x = 0,1,2,3,...... ,(m-1). But there are only m
different numbers mod m, and one of them is 1. Hence one of these
products c¢x must equal 1. Ile. cx = 1 (mod m) does have a solution, and a

unique one.

3. Fermat little theorem. (This is a good test to show an integer is not
prime, which works well on computers, and is useful for making codes.)

Theorem: If p is prime, and a is any integer, then aP = a (mod p).
proof: We prove it only for positive integers. (It is then easy to prove
for negative ones.) It is true for a = 1, for sure, since 1P = 1. Now use
induction. Ie. assume that aP = a (mod p), and try to show (a+1)P =
(a+1) (mod p). To do this, just expand (a+1)P by the binomial theorem.

(a+1)P = aP + (pjap-l + (”jap-2 + +( P ja + 1.
1 2 p-1

If we could show that all the binomial coefficients above are divisible by
p, the right hand side would be congruent to a+l, and we would be done.
So we just have one more step to prove.

Lemma: If p is prime, and 0 < k < p, then [Z} is divisible by p.

'
Proof: As always, first recall the definition of the symbol (p ) =P
k)~ kNp-k)!
which we know is a natural number say m. Then p! = (m) k!(p-k)!. We

claim p divides m. To see this recall the meaning of k! = 1(2)(3).....(k),
and (p-k)! = 1(2)(3)....(p-k).

Thus p! = (mM)(1)(2)(3).....(k)(1)(2)(3)....(p-k).

Now p >k > 0, so p > p-k > 0. Since p is larger than all the factors on the
right side except for m, p cannot divide any of the factors
(D(2)(3).....(k)(1)(2)(3)....(p-k). By the divisibility property of primes, p

must then divide m = (Z}, as claimed. QED.



4000 Day 9, properties of the new numbers systems, Iy, Zp

We have seen that understanding the new numbers systems, Zp, can
help us also to understand things about ordinary integers. E.g. an
equation of form x2 + y2 = p, where p is a prime integer, can be solved
for x and y integers, if and only if the "same" equation can be solved over

Z4. le. if we can find integers x,y such that x2 + y2 is congruent to p mod

4, then we can find, possibly different integers x,y such that x2 + y2 is
actually equal to p. We have not proved this, but we have proved the

much easier converse, that if we cannot solve X2 + y2 = p (mod 4), i.e. if
we cannot solve it in the numbers system Z4, then we certainly cannot
solve it in the integers.

We have also rephrased the familiar three term principle in terms of
the new systems Zp as follows: if ab, ¢ are integers and a+b = ¢, and if n
divides two of these terms, then that means that two of the terms are
congruent to zero mod n. It follows that the third term is also congruent
to zero mod n, i.e. that n divides the third term. For example suppose n
divides a and b. Then mod n we can replace a and b by zero. Thus we
have 0 + 0 = ¢ (mod n). Since the sum of two zeroes is also 0 mod n, then
c = 0 mod n, i.e. n divides c. So the three term principle just says that if
we have an equation like a+b = ¢, and two of the terms are zero in Zp,
then so is the third.

Here is another important property of division, the divisibility
property of primes. Le. if p divides ab, and a,b are integers, then p
divides either a or b, or both. If we state this mod p, it says that if ab = 0
mod p, then either a or b, or both are equal to zero mod p, (or rather,
congruent to zero mod p).  So this is a familiar property similar to one
for ordinary integers. However it is not true for all moduli. If n =6, it is
not true that 6 can only divide a product when it divides one of the
factors. E.g. 6 divides 4(3) but 6 does not divide either 4 or 3. if we state
this mod 6, we have that (4)(3) = 0 mod 6, but neither 4 nor 3 equals 0
mod 6. Thus the fact that composite integers do not have the divisibility
property of primes translates into the fact that in modular arithmetic mod
n, where n is not a prime, we have the strange property that the product
of two non zero "numbers" can be zero (mod n).

When p is prime, we know from the argument above (be sure you
can give it carefully), that in the number system Zp, the product of two
(or more) numbers cannot be zero (i.e. congruent to zero) unless at least
one of them is. This lets us recover some familiar things about
multiplication in these systems that we are used to in the ordinary
number system. For example, how many solution do you think the

equation x2 - 1 = 0 can have, in Zpn? Well if you have made some



multiplication tables, then mod 8, you know that 12 =32 =52 =72 =1
(mod 8). Thus this equation x2 - 1 = 0 has 4 solutions, even though it
only has degree 2! This is different from the case for ordinary numbers,
where we learned in high school that an equation of degree d can have at
most d solutions.

Why does it fail here, and yet hold for ordinary numbers? We can
try to prove this equation has only two solutions as follows: first factor it

as x2 - 1 = (x-1)(x+1). Then plugging in a value for x in the left side gives
zero if and only if it gives zero on the right side. But on the right side we
get a product (x-1)(x+1). Then we want to say that this product can only
be zero if one of the factors is zero. lLe. we want to say the only way (x-
1)(x+1) can be zero is if either (x-1) = 0, or (x+1) = 0. But if (x-1) = 0,
then x = 1, and if (x+1) = 0, then x = -1. That would prove the only
solutions were 1 and -1, using the property that a product of non zero
numbers cannot be zero. Thus IF this property is true, then the only
solutions of x2 -1 = 0 would be 1 and -1. But this property fails mod 8,
since (2)(4) = 0 mod 8. Thus if we have x = 3, then 3-1 = 2 and 3+1 = 4,
so then (3-1)(3+1) = 0 mod 8. So 3 and -3 = 5 would solve the equation
x2 - 1 = (x-1)(x+1) = 0 (mod 8), as well as 1, and -1 = 7.

This makes modular arithmetic a little strange if the modulus is a
composite number. But modulo any prime number we have the property
we are used to. We need to give this property a secret name, SO W€ can
refer to it without anyone who is not in the course knowing what we are
talking about. Well maybe it is just so it takes less words to talk about it.
For some reason, a number system with (addition and multiplication
satisfying rules given below, and) the property that the product of two
non zero numbers is never zero, is called an "integral domain".

We also give special names to all number systems where one can
add and multiply subject to some usual rules. They are called “rings” or
sometimes "commutative rings" if multiplication is commutative, but I do
not know where the name comes from. Lets try to agree on a few
definitions, i.e. names, for the basic types of number systems that have
been found useful.

I find it hard to memorize long lists of properties like those on page
2, or page 38. (When I was a beginning algebra student in college the
book had the definition of integral domain on page 1 with all the
properties. 1 was very discouraged, as I thought 1 had to memorize all of
them before going to page 2!) But we do need to know them, so it helps
to organize them into smaller blocks, like this:

We are interested in number systems in which one can add and
multiply, like the integers. Thus the properties break into three blocks,
the properties of adding, the properties of multiplying, and one property



that relates the two. Now what properties should adding have? First of all
it should always be defined, i.e.

Definition of commutative rings

Addition properties:

A0. (closure) for any two of our numbers a,b the sum a+b should be
defined as another one of our numbers.

Then there should be some properties that say you always get the
same answer no matter how you add them, in a reasonable way.
First there is “associativity”, 1.e.

Al. (associativity) for any three numbers a,b,c, a + (b+c) should
equal (a+b) + c.

This says if you have three numbers in order, you can add the first two of
them and then add the third one, or you can add the last two, and then
add the first one to their sum. (Associativity does not say that you can
start with the first and third numbers, i.e. that a + (b+c) = (a+c) + b, but
if you combine it with commutativity, which comes later, you get that
t00.)

Then there should be a number that does nothing when you add it,

1.e. there should be a "zero":

A2. (identity) there is an element O such that for every number a,
a+0=0+a-=a.

Another basic property of adding is "commutativity":

A3. (commutativity) for any two numbers a and b, a+b should equal
b+a.

This says it does not matter in what order you add numbers.

Then you should be able to “subtract”, i.e. to cancel out the effect of
adding any element a by adding some other element -a, which we call the
(additive) inverse of a, i.e.

A4. (inverses) given any number a, there should a number which we call
-a, such that a + (-a) = (-a) + a = 0.

That's about it for addition. Now what about multiplication? It is
almost the same story, except you leave out the last property, or



sometimes the last two properties. lLe. again for any two numbers a,b you
want ab to make sense, and you want associativity, and an identity for
multiplication, i.e. a “1”.  You do not always require commutativity,
because there are some interesting numbers systems where commutativity
does not hold for multiplication, and you do not require multiplicative
inverses.

Multiplication properties:
MO. (closure) For any two numbers a,b, in our system, their product ab
should be defined as another number in our system.

M1. (associativity) for any three numbers a,b,c, in our system, the
products a(bc) and (ab)c should be equal.

M?2. (identity) there should be a number called 1 # O, such that for any
number a in our system, we have la = al = a.

M3. (commutativity) for any two elements a,b, (i.e. numbers) in our ring,
we want ab = ba.

Finally we have one property connecting addition and multiplication
D1 (distributivity) For any three numbers a,b,c in our ring, we must have
a(b+c) = ab + ac. '

That’s it. Any system that has all these properties is called a
“commutative ring”. If it has all but M3, we call it a “ring”. Actually I am
so used to dealing with commutative rings I sometimes forget to say the
word commutative and just say ring when I mean a commutative ring.
Most of the rings in this course will be commutative, except rings of
square matrices.

Our main examples so far of commutative rings are the integers Z, and the
modular rings Zn. The advantage of making these rules explicit is that
once you prove a theorem which only uses these properties, then it is a
true theorem in any number system where those properties are true. In
particular any theorem proved using just the ring properties is true in
every ring Zp as well as in Z. Notice we do not have any “ordering”
property here, much less a “well ordering property”, so theorems about
integers which are proved using well ordering may not be true in the rings
Zn.

Notice that we did say that 1 and O are different elements. If it happened
that 1 = 0, then for any element a we would have (0)a = (0+0)a = (0)a +
(0)a, so subtracting (0)a from both sides, 0 = (0)a. But also since 0 = 1,



then (0) a = (1)a = a. So every a would equal 0, i.e. there would be only
one element, 0, in our whole ring. By our rules then a ring has at least
two elements, since it contains at least 0 and 1 which are different. In
fact there is a ring, namely Z2 = {0,1} with exactly two elements.

Here are some familiar properties of integers that hold in any ring.
Lemma: There is only one additive identity. Le. O stands for only one
number.

proof: If u is an other additive identity, then 0 = O+u (because adding u
does nothing) = u (because adding O to u does nothing). QED.

Lemma: In any ring, for any element a, we have Oa = 0.
Proof: We know 0 = 0+0, so 0Oa = (0+0)a = Oa + 0a. Now subtracting Oa
from both sides leaves 0 = 0a. QED.

Lemma: There is only one additive inverse of each element a. Thus -a
really denotes a unique element.

proof: If a has two inverses, say b and c, then a+b = 0 = a+c, so b = b+0
= b+(a+c) = (b+a)+c = 0 + ¢ = c. Thatis, b = c. QED.

Likewise there is exactly one element “17, and at most one multiplicative
inverse of each element. (Try proving these facts.)

Lemma: In any ring, for any element a, (-1)(a) = -a. lLe. if you multiply
the additive inverse of 1, by the element a, you obtain the additive inverse
of a.

Proof: Since additive inverse are unique, it suffices to show that (-1)a
behaves like -a. ILe. it suffices to show that (-1)a +a = 0. But a = la, so
(-a +a = (-Da +(1)a = (-1+1)a = 0a = 0. QED.

There are two more important properties that some rings have, namely
cancellation property for multiplication, and multiplicative inverses. A
commutative ring with multiplicative inverse is called a “field”, and a
commutative ring with the cancellation property is called a “domain” or
“integral domain”.

Definition of “Fields”

A commutative ring is called a field if in addition to the properties above,
you can always divide (except by zero), i.e. if it also satisfies the following
inverses property for multiplication:

M4 (inverses) for each element a except O, there is an element called a1,
such that a(a-l) = (a-1)a = 1.



The cancellation property is the following:

C1 (cancellation) Every non zero element a # O has the cancellation
property: i.e. whenever if b,c are any two elements of our ring such that
ab = ac, then in fact b = c.

To be sure, not every ring has this property.

Definition: A "zero divisor" in a ring, is an element a such that there is
some element b with b # 0, such that the product ab = 0.

Zero is always a zero divisor since 0(1) = 0. The interesting zero divisors
are thus the ones which are not themselves zero. Thus we often say
carelessly that a ring has "no zero divisors" if O is the only one.

N1 ("no zero divisors" [other than zero itself]) if a,b are any two elements
of our ring such that ab = 0, then either a or b must be zero. Equivalently,
if a # 0 and b # 0 then ab # 0.

We will prove the equivalence of C1 and N1 next.

Lemma: An element a has the cancellation property, if and only if a is

not a zero divisor.

Proof: Suppose a has the cancellation property i.e. that ab = ac only

when b = ¢. If ax = 0, we want to show x = 0. But we know a0 = 0, so ax =

0 = a0, hence by the cancellation property, we must have x = 0.
Conversely if a is not a zero divisor, i.e. if ax = 0 always implies x =

0, assume that ab = ac. Then ab-ac = 0, so a(b-c) = 0, so b-c must equal

0. Le. b = ¢, and a has the cancellation property. QED.

A commutative ring with the cancellation property, such as the integers,
has a special name, “integral domain”.

Definition of integral domain:

A commutative ring is called a “domain”, or an “integral domain”, if it has
property C1, or equivalently N1, i.e. if it has no zero divisors (except
ZEero).

E.g. Z is a domain, and so is Z5, but Z¢ is not a domain.

Remark on funny use of language. You might think that a "zero
divisor" should be any number that divides into zero. But 0(a) = 0, for all
a, so everything divides zero. So we keep the term "zero divisor" only for
a such that ab = 0 for some b # 0. So be careful, memorize the definitions
precisely, and work out some examples to understand them better.



The multiplicative inverse property is actually stronger than the
cancellation property, as follows.

Lemma: If an element a of some ring has a multiplicative inverse, then a
also has the cancellation property, i.e. if a has an inverse, and ab = 0, then
b =0.

Proof: If ab = 0, and we multiply on the left by the inverse of a, we get
(a-Dab = (a-1)0 = 0. But (a-1)ab = (a-la)p = 1b =b,s0 b =0. QED

Thus every field is a domain, and every domain is a commutative ring, but
not vice versa. lLe. Zg is a commutative ring but not a domain, and Z is a

domain but not a field. There is no example among the rings Zp of a
domain which is not a field, because these rings are finite. ILe. every finite
domain is in fact a field.

Theorem: Suppose R is a finite integral domain, then R is a field.
proof: Let a # 0 be any non zero element of R. We must prove there is
an element b of R such that ab = 1. Look at all products ax for every
element x in R. Since R is a domain, the non zero element a has the
cancellation property, so all the products ax are different. Le. if x is
different from y then ax is different from ay. If R contains n elements,
then the n different elements x give us n different products ax. Since we
get n different products of form ax, and there are only n elements in the
ring R, every element of R occurs as a product. In particular the element
1 occurs as a product. So there is some element b such that ab = 1. This
b is the multiplicative inverse of a. QED.

The argument we gave at the beginning was a discussion of how many
elements can equal their own multiplicative inverse. Ie. note that y is the
multiplicative inverse of x if and only if xy = 1. Hence x is its own
multiplicative inverse if and only if x2 = 1.

Lemma: In any domain, hence in any field, the only elements which equal
their own multiplicative inverses are 1 and -I.

proof: Exercise. (see above.)

Next we ask which of the rings Zp is a domain, and hence a field.
Lemma: Zm is a domain if and only if n is a prime.
Proof: Assume n is prime. To show Zp is a domain we must show that if
(ab) is zero mod n, then either a or b is zero mod n. But for a number to
be zero mod n, means n divides the number. So we must show that if n
divides the product ab then n divides either a or b. Since n is prime we
know this is true by the prime divisibility property.

Conversely, if n is not prime, then n = ab for some numbers 2 < a, b



< n. Then neither a nor b is divisible by n, since they are smaller, so
neither a nor b is zero mod n, but the product ab = n is zero mod n. QED.

Summary:

Today we gave some rules which are always assumed in any number
system which is called a "commutative ring", and we deduced some other
facts that are also always true.

In particular:
1) multiplication by zero always gives zero.

2) multiplication by -1 always gives the additive inverse of an element.

Then we focussed on a property which is NOT always true: the
cancellation property, which we stated in two different ways. Le. if either
one of the two properties below is true, the other one is true also.

1) For all a,b,c, if a # 0, and ab = ac then b = c.
2) For all a,b, if a # 0 and b # 0O then ab # 0.

These properties are equivalent essentially by subtraction.
A commutative ring with one, hence both, of those last two properties, is
called an (integral) domain.

IF your ring is a domain, THEN the equation x"2 = 1 has only the solutions
x =1 and x = - 1. (In Z2, these two solutions are also equal, but in any
other Zn they are not.)

Then we proved that every field is a domain, and that every FINITE domain
is also a "field". '

The first step in studying todays class, is to learn these facts well (and the
rules for a commutative ring), and to experiment with some examples Zn.
The second step is to learn the proofs of these facts (one at a time! Be
happy with each success).



A correction: I said you need these facts in doing the homework. That is
true. I also said that these facts are not proved in the book. That is only
partly true. lLe. for the homework you do not need these facts for ALL
commutative rings, or ALL domains, which is what we proved, you only
need these facts for the special rings Zp.

Now in fact it is easier to prove these facts for the rings Zn, and it is only
fair to say that this is already "done" in the book.

This uses the correspondence between the rings Zn and the familar ring Z,
where we ALREADY know all these facts.

Recall 1 write [x] for an element of Zp corresponding to an integer X.

Le. to prove in Zp that Oa = 0, just use the fact that every element of Zp is
of form [x] for some elemnt x of Z. ILe. we know that a in Zp equals [X]
for some x in Z, and that the additive identity in Zp, equals [0], where now
0 is the zero in Z.

Then we can prove that [x][0] = [0] as follows:

We know that Ox = 0 in Z. But we also know that [0][x] = [0x] in Zp,
because that is the rule for multiplication in Zn.

Thus we have [0][x] = [0x] = [O].

We also know that (-1)a = -a in Z. Hence to prove [-1][a] = [-a] in Zp, just
argue as follows:

[-1][a] = [(-1)a] = [-a] = -[a].

(I.e. it is also true that [-a] = -[a], because we can just check it. Le. we
check that adding [-a] to [a] gives [0]. Le. we have [-a] + [a] = [-a+a] = [0].
So [-a] does equal -[a].

So in general when a commutative ring is constructed out of another
commutative ring, it sometimes inherits properties from the other ring.

Note however that Zp does NOT automatically inherit the cancellation
property from Z.

I.e. suppose we know that [a][b] = [0] in Zn. Then [a][b] = [ab] = [O].



But we canNOT conclude that ab = 0 in Z. If we could, we could say that
one of the numbers a or b must be zero, but we do not know this. We
only get that ab is congruent to 0, mod n. It does NOT follow from the
cancellation property in Z, that either a or b is also congruent to zero.

It does follow of course when n is prime, but that requires a special
argument, (the prime divisibility argument).

More new number systems '
Our next three numbers systems are all fields, important in many
areas of mathematics, the rational numbers is the smallest number system
which includes the integers and in which we can divide. Then we have
enough numbers to solve equations like 3x = 5. The real numbers is the
smallest number system sufficient to measure all possible lengths on a
line (recall that certain lengths are not rational). The reals also form a

field, and then we have enough numbers to solve equations like x2 =p
where p is prime. The complex numbers is the smallest number system
containing the real numbers and containing solutions to all polynomial

equations with real coefficients, even x2 = -3, or even x97 - nx39 +
11999753 x - 41 = 0. (Le. Gauss proved some complex numbers solving
this equation exist, but there is no reasonable way to “find” them.) The
complex numbers also form a field, but not an “ordered” one.

Since these new number systems are getting bigger, they require us
to think up new names for the new numbers. This is actually one of the
hardest parts of the subject. ILe. we often cannot discuss or think about
anything well if we do not know its name. It is not hard to make up
names for rational numbers by using two integers for each rational
number. (However sometimes two different pairs of integers name the
same rational number, like 1/2 and 3/6.) Similarly we can make a name
for each complex number by using two real numbers, like 1 + 3i. This
time it is easier since two different pairs of real numbers always name a
different complex number. The hard part is getting names for the reals.
It takes an infinite number of rational numbers to give a name to one real
number, because there are so many more real numbers than rational
ones. We can use decimals and get a name for each real number that uses
only integers between O and 9, but it still takes infinitely many of them.
Le. a real number is named by an infinite decimal. E.g. m = 3.14159265
3589793238462643383279502884197169399375105820974.........
Notice it is impossible to actually write this name down fully.  Again some
different infinite decimals name the same real number, like 1.00000...... ,
and .9999999....... All this makes it very hard to calculate with real




numbers. Thus in studying real numbers the technique of approximation,
i.e. limits, makes it appearance. We often skip the details of describing
real numbers and take their properties for granted (until math 41007?).
We will do that mostly in this course. Of course we still have to know

what those properties are.



