Topology Qualifying Examination August, 2015

Instructions: Work all problems. Give clear explanations and complete proofs.

- (1) Show that if A and B are compact, then so is $A \times B$.
- (2) Given two points a and b of a space S, a collection of sets A_1, \ldots, A_n in S is called a *simple chain from a to b* if $a \in A_1$, $b \in A_n$, and $A_i \cap A_j \neq \emptyset$ if and only if $|i-j| \leq 1$.

Prove that if $\{U_{\alpha}\}$ is a collection of open sets covering S and S is a connected space, then there is a simple chain of elements in $\{U_{\alpha}\}$ joining a and b for any a and b. Hint: Consider the set C_a of all b so that there is a simple chain of elements joining a and b. Prove that C_a is open and closed.

(3) Let τ be the map that in cylindrical coordinates takes (r, θ, z) to $(r, \theta + \pi, z)$, thus τ maps the torus T to itself as shown below.

The map τ from the torus to itself.

- a) Find a cell structure on T such that τ maps cells to cells.
- b) Let Q be the quotient of T given by identifying x and $\tau(x)$ for all $x \in T$. What is $\chi(Q)$?
 - c) Is Q a surface?

(4) The nerve of a collection of sets is an abstract simplicial complex that has a 0-cell for each set, a 1-cell joining each pair of sets that intersect each other, a 2-cell for every triple of sets with a common intersection, and so forth. Consider the collection of sets below:

Now

- (a) Draw the nerve of the collection.
- (b) Compute the homology of the nerve.
- (5) A continuous vector field V on the plane is a continuous map from \mathbb{R}^2 to \mathbb{R}^2 . The portion of V along the boundary of a disk D is shown below:

Show that the vector field has a zero inside D.

- (6) Express a Klein bottle as the union of two annuli. Use the Mayer-Vietoris squence and this decomposition to compute its homology.
- (7) Compute the fundamental group, using any technique you like, of $\mathbb{R}P^2 \# RP^2 \# RP^2$.
- (8) Explicitly give a collection of deck transformations on $\{(x,y)|-1 \le x \le 1, -\infty < y < \infty\}$ such that the quotient is a Mobiüs band.