Topology Qualifying Exam, January 2019

- (1) Is every complete bounded metric space compact? If so, give a proof; if not, give a counterexample.
- (2) Let X be a Hausdorff topological space. Recall that the **one-point** compactification \bar{X} of X is given by the following.
 - As a set $\overline{X} = X \cup \{\infty\}$, where ∞ is a point not belonging to X.
 - A subset of \overline{X} declared to be open if either it is an open subset of X, or it is of the form $U \cup \{\infty\}$, where $U \subset X$ and X U is compact.

Prove that the above description of open sets defines a topology on X, and that \overline{X} is compact under this topology.

- (3) Let $p : X \to Y$ be a covering space, where X is compact, pathconnected, and locally path-connected. Prove that for each $x \in X$ the set $p^{-1}(\{p(x)\})$ is finite, and has cardinality equal to the index of $p_*(\pi_1(X, x))$ in $\pi_1(Y, p(x))$.
- (4) Is there a covering map from

$$X_3 := \{x^2 + y^2 = 1\} \cup \{(x - 2)^2 + y^2 = 1\} \cup \{(x + 2)^2 + y^2 = 1\} \subset \mathbb{R}^2$$

to the wedge of two S^{1} 's? If there is, give an example; if not, give a proof.

- (5) (i) Consider the quotient space T² = R² / ~, where (x, y) ~ (x+m, y+n) for m, n ∈ Z, and let A be any 2 × 2 matrix whose entries are integers such that det A = 1. Prove that the action of A on R² descends via the quotient R² → T² to induce a homeomorphism T² → T².
 - (ii) Using this homeomorphism of \mathbb{T}^2 , we define a new quotient space $T_A^3 := \frac{\mathbb{T}^2 \times \mathbb{R}}{\sim}$, where $((x, y), t) \sim (A \cdot (x, y), t+1)$. Compute $H_1(T_A^3)$ in the case that $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
- (6) (i) Use the Lefschetz fixed point theorem to show that any degree-one map from $f: S^2 \to S^2$ has at least one fixed point.
 - (ii) Give an example of a map $\mathbb{R}^2 \to \mathbb{R}^2$ having no fixed points.
 - (iii) Give an example of degree-one map $S^2 \to S^2$ that has only one fixed point.
- (7) For topological spaces X, Y, the **mapping cone** C(f) of a map f: $X \to Y$ is defined as $(X \times [0, 1]) \sqcup Y/ \sim$, where $(x, 0) \sim (x', 0)$ and $(x, 1) \sim f(x)$. Let $\phi_k : S^1 \to S^1$ be a k-fold covering. Find $\pi_1(C(\phi_k))$.
- (8) Let Σ be a connected compact surface and let $p_1, \dots, p_k \in \Sigma$. Prove that $H_2(\Sigma \bigcup_{i=1}^k \{p_i\}) = 0$.