Algebra Preliminary Examination, April 1996

1. (a) Let V be a nonzero finite-dimensional vector space over \mathbb{C}, endowed with a positive definite hermitian form $<,>: V \times V \rightarrow \mathbb{C}$. Let $A: V \rightarrow V$ be a hermitian map. Show that V has an orthogonal basis consisting of eigenvectors of A.
(b) Let $A \in M_{n}(\mathbb{C})$ be an hermitian matrix. Does there exist a matrix $B \in M_{n}(\mathbb{C})$ such that $B^{n}=A$? Justify your answer.
2. Let G be a group of permutations of a set S with n elements. Assume that G is transitive (i.e., for any $x, y \in S$, there exists $\sigma \in G$ such that $\sigma(x)=y)$.
(a) Show that n divides the order of G.
(b) Suppose $n=4$. For which integers $k \geq 1$ can such a G have a order $4 k$? Justify your answer.
3. Denote by \mathbb{F}_{8} the field with 8 elements and let \mathbb{F}_{8}^{+}be its associated additive group. If R is any ring with identity 1 , let R^{*} denote its associate multiplicative group of units. List all groups of order 8 , up to isomorphism. Then identify which type occurs in each of
(a) $(\mathbb{Z} / 17 \mathbb{Z})^{*} /(\pm 1)$,
(b) the group of symmetries of a square,
(c) the roots of $x^{8}-1$ in \mathbb{C},
(d) \mathbb{F}_{8}^{+},
(e) $(\mathbb{Z} / 16 \mathbb{Z})^{*}$.
4. Let k be a field. Let V be a finite-dimensional k-vector space. Let $L: V \rightarrow V$ be a linear map. If $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$ is any polynomial in $k[x]$, let $f(L)=\sum_{i=0}^{n} a_{i} L^{i}$ denote the associated linear map.
(a) Let $w \in V$. Show (directly) that there exists a nonzero polynomial $g(x) \in k[x]$ such that $g(L)(w)=0$.
(b) Use a) to show that there exists a nonzero polynomial $f(x) \in k[x]$ of minimal degree such that $f(L)(v)=0$, for all $v \in V$.
(c) Let $\lambda \in k$ be a root of $f(x)$ as in b). Show that there exists $v \in V, v \neq 0$, such that $L(v)=\lambda v$.

5 . Let R be a commutative ring with an identity element $1(1 \neq 0)$.
(a) Give the definition of a maximal ideal of R.
(b) Show that R always contains a maximal ideal.
(c) Let M be an ideal of R. Show that M is a maximal ideal of R if and only if R / M is a field.
6. Let p be prime. To which finite group is the group $\mathbb{Z} / p \mathbb{Z} \otimes_{\mathbb{Z} / p \mathbb{Z}} \mathbb{Z} / p \mathbb{Z}$ isomorphic to? Carefully justify your answer. (You may want to recall the definition of \otimes).
7. Let $3^{1 / n}$ denote the unique real positive root of $x^{n}-3$. Let $F_{i}:=\mathbb{Q}\left(3^{1 / 2^{i}}\right), i \in \mathbb{N}$. Let $F:=$ $\mathbb{Q}\left(3^{1 / 2^{i}}, i \in \mathbb{N}\right)=\bigcup_{i \in \mathbb{N}} F_{i}$.
(a) Show that F is not a finite dimensional \mathbb{Q}-vector space.
(b) Fix $i \in \mathbb{N}$. Describe the group of all field automorphisms $\sigma: F_{i} \rightarrow F_{i}$. Justify your answer.
(c) Show that the identity map $i d: F \rightarrow F$ is the only field automorphism of F.
8. Consider the ideal I of $\mathbb{Z}[i]$ generated by 2 (i.e., $I=(2)$).
(a) How many elements does the quotient ring $\mathbb{Z}[i] / I$ have? Justify your answer.
(b) $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 4 \mathbb{Z}$, and \mathbb{F}_{4} are three non-isomorphic rings. Is the ring $\mathbb{Z}[i] / I$ isomorphic to any of these rings? If yes, which one? Justify your answer.

