Complex Analysis Qualifying Exam - Spring 2024

Committee: Peter Lambert-Cole, Lin Mu (Chair) and Jingzhi Tie

Show work and carefully justify/prove your assertions. For example, if you use a theorem that has a name, mention the name. Arrange your solutions in numerical order even if you do not solve them in that order.

1. Prove that the distinct complex numbers z_{1}, z_{2} and z_{3} form an equilateral triangle if and only if

$$
z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1} .
$$

2. Let $f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$ be analytic and one-to-one in $|z|<1$. For $0<r_{0}<1$, let $\bar{D}_{r_{0}}$ be the closed disk $|z| \leq r_{0}$. Show that the area A of $f\left(\bar{D}_{r_{0}}\right)$ is finite and is given by

$$
A=\pi \sum_{n=1}^{\infty} n\left|c_{n}\right|^{2} r_{0}^{2 n}
$$

[Hint: First find a formula in terms of polar coordinates in $x y$-plane for the area element $d u d v$ using complex analysis, where $f=u+i v$. Note that $d x d y=r d r d \theta$.]
3. Suppose f is entire and there exists $A, R>0$ and natural number N such that $|f(z)| \leq$ $A|z|^{N}$ for $|z| \geq R$. Show that (i) f is a polynomial and (ii) the degree of f is at most N.
4. Computer the integral $I(b)=\int_{0}^{\frac{\pi}{2}}(\tan t)^{i b} d t$ for $b \in \mathbb{R}$ and $b \neq 0$. Hint: Some simple substitution will reduce the integral to a familiar form.
5. Let γ be piecewise smooth simple closed curve with interior Ω_{1} and exterior Ω_{2}. Assume $f^{\prime}(z)$ exists in an open set containing γ and Ω_{2} and $\lim _{z \rightarrow \infty} f(z)=A$. Show that

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\xi)}{\xi-z} d \xi= \begin{cases}A, & \text { if } z \in \Omega_{1} \\ -f(z)+A, & \text { if } z \in \Omega_{2}\end{cases}
$$

6. (a) (The maximum modulus principle) Suppose that U is a bounded domain and that $f(z)$ is a non-constant continuous function on \bar{U} whose restriction to U is holomorphic. If $z_{0} \in U$, show that

$$
\left|f\left(z_{0}\right)\right|<\sup \{|f(z)|: z \in \partial U\}
$$

(b) Furthermore if $|f(z)|$ is constant on ∂U, then $f(z)$ has a zero in U : there exists $z_{0} \in U$ for which $f\left(z_{0}\right)=0$.
7. Let $G=\mathbb{D} \backslash\left[\frac{1}{2}, 1\right)$. Find a conformal map from G to the upper half plane \mathbb{H}. You need to write the conformal map explicitly and show that it is an one-to-one and onto map from G to the upper half plane.

