Probability Theory, Ph.D Qualifying, Spring 2017

Completely solve any five problems.

- 1. (a) If $\{X_n, n \ge 1\}$ are r.v.s with $\sup_{n\ge 1} E|X_n|^{\beta} < \infty$ for some $\beta > 0$, then $\{|X_n|^{\alpha}, n \ge 1\}$ is uniformly integrable for $0 < \alpha < \beta$.
 - (b) Prove that for any r.v. X

$$E|X| = \int_0^\infty P(|X| \ge t) dt$$

2. Given a random variable X with finite mean square. Let \mathcal{D} be a σ -algebra. Show that $E[X|\mathcal{D}]$ is the minimizer of $E(X - \xi)^2$ over all \mathcal{D} -measurable r.v.s ξ , i.e.,

$$E(X - E[X|\mathcal{D}])^2 \le E(X - \xi)^2$$

for all \mathcal{D} -measurable r.v.s ξ .

- 3. Prove for nondegenerate i.i.d. r.v.s $\{X_n\}$ that $P(X_n \text{ converges}) = 0$.
- 4. Show that random variables $\{X_n\}$ and X satisfy $X_n \to X$ in distribution iff

$$E[F(X_n)] \to E[F(X)]$$

for every continuous distribution function F.

5. If the independent L^1 random variables X_1, \ldots, X_n, \ldots satisfy the condition

$$Var(X_i) \le c < \infty, \ i = 1, 2, \dots,$$

then the SLLN holds, i.e.,

$$\frac{1}{n}\sum_{i=1}^{n}(X_i - EX_i) \to 0, \text{a.s.}$$

6. (a) State (without proof) the Levy continuity theorem regarding a sequence of characteristic functions.

(b) Let $\{X_n\}$ be iid r.v.s with distribution F(x) having finite mean μ and variance σ^2 . Let $S_n = X_1 + \cdots + X_n$. Show that

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \to N(0, 1) \text{ in distribution as } n \to \infty.$$

7. Let X_1, X_2, \ldots be a sequence of independent r.v.s with $EX_i = 0$. Let $S_n = X_1 + X_2 + \cdots + X_n$ and $\mathcal{F}_n = \sigma\{X_1, \ldots, X_n\}$. Show that $\phi(S_n)$ is an \mathcal{F}_n -submartingale for any convex ϕ provided that $E|\phi(X_n)| < \infty$ for all n.