Numerical Analysis Qualifying Exam

Department of Mathematics, University of Georgia
January 9, 2016

Instruction: The following are 8 problems in total. Please start each problem on a separate sheet of paper, write on only one side of the paper, and number each page. The time limit on this exam is three hours.

1. Use Taylor's theorem for a function of two variables to carefully derive and state Newton's method for the numerical solution of the system of two nonlinear equations:

$$
\left\{\begin{array}{l}
f(x, y)=0 \\
g(x, y)=0
\end{array}\right.
$$

Give a sufficient condition which ensures that the Newton method converges.
2. Let \mathbf{x} and $\tilde{\mathbf{x}}$ be the solution of two linear systems: $A \mathbf{x}=\mathbf{b}$ and $\tilde{A} \tilde{\mathbf{x}}=\tilde{\mathbf{b}}$. Show
(a) If $A=\tilde{A}$, then

$$
\frac{\|\mathbf{x}-\tilde{\mathbf{x}}\|}{\|\mathbf{x}\|} \leq \operatorname{cond}(A) \frac{\|\mathbf{b}-\tilde{\mathbf{b}}\|}{\|\mathbf{b}\|} .
$$

where $\operatorname{cond}(A)=\|A\|\left\|A^{-1}\right\|$ stands for the condition number of A.
(b) Consider the case that $A \neq \tilde{A}$. Show that if $\left\|A^{-1}\right\| \cdot\|A-\tilde{A}\|<1$, then

$$
\frac{\|\mathbf{x}-\tilde{\mathbf{x}}\|}{\|\mathbf{x}\|} \leq \frac{\operatorname{cond}(A)\left[\frac{\|A-\tilde{A}\|}{\|A\|}+\frac{\|\mathbf{b}-\tilde{\mathbf{b}}\|}{\|\mathbf{b}\|}\right]}{1-\operatorname{cond}(A) \frac{\|A-\tilde{A}\|}{\|A\|}} .
$$

3. Recall that for any nonzero vector v of size $n \times 1, I-2 \frac{v v^{T}}{\|v\|^{2}}$ is called a Householder matrix, where I is the $n \times n$ identity matrix. Show that there exists a sequence of Householder matrices H_{1}, \ldots, H_{n} which converts any matrix A into a lower triangular matrix L, that is, $H_{n} \cdots H_{1} A=L$. (Hint: you may use a matrix of 4×4 to explain how to do.)
4. Let f be a continuous function on $[a, b]$. The following statements are true or false. If it is true, give some reasons, e.g., quote a well-known theorem. If it is false, give an example.
(1) There exists a sequence of polynomials p_{n} such that p_{n} converges to f uniformly.
(2) There exists a sequence of interpolatory polynomials $p_{n}(f)$ which interpolates f at $n+1$ distinct points $x_{i}^{(n)} \in[a, b], i=0,1, \cdots, n$ such that $p_{n}(f)$ converges to f uniformly. (3) Let $x_{i}^{n}=a+i(b-a) / n, i=0, \cdots, n$. The interpolatory polynomial $p_{n}(f)$ at these x_{i}^{n} 's converges to f pointwisely.
5. Let $p_{n}(x)=\sum_{i=0}^{n} c_{i} B_{i}^{n}(x)$ be a polynomial in B-form with respect to $[a, b]$. Here, $B_{i}^{n}(x)=\binom{n}{i}\left(\frac{x-a}{b-a}\right)^{i}\left(\frac{b-x}{b-a}\right)^{n-i}$ is defined on the interval $[a, b]$. Similarly, let $q_{n}(x)=\sum_{i=0}^{n} d_{i} \tilde{B}_{i}^{n}(x)$ with $\tilde{B}_{i}^{n}(x)=\binom{n}{i}\left(\frac{x-b}{c-b}\right)^{i}\left(\frac{c-x}{c-b}\right)^{n-i}$ defined on $[b, c]$. Derive the conditions on their coefficients of p_{n} and q_{n} that ensure

$$
\frac{d^{r}}{d x^{r}} p_{n}(b)=\frac{d^{r}}{d x^{r}} q_{n}(b), \quad \forall r=0,1,2 .
$$

6. Find an approximation for $\Delta f(x, y)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}$ using the following four function evaluations: $f(x, y), f(x, y+2 h), f(x-\sqrt{3} h, y-h)$ and $f(x+\sqrt{3} h, y-h)$, which form the three corners and the center of an equilateral triangle as shown below. Note that the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D correspond to the locations of these given function values, respectively.

7. Show that when the composite trapezoid rule is applied to $\int_{a}^{b} e^{x} d x$ using equally spaced points, the relative error is exactly

$$
1-\frac{h}{2}-\frac{h}{e^{h}-1}
$$

8. Derive the general $2^{\text {nd }}$ order Runge-Kutta method for numerical solution of ODE, where α is a variable:

$$
\begin{aligned}
K_{1} & =h f(t, x(t)) \\
K_{2} & =h f\left(t+\alpha h, x(t)+\alpha K_{1}\right) \\
x(t+h) & =x(t)+A K_{1}+B K_{2}
\end{aligned}
$$

In other words, express A and B in terms of α.

