Numerical Analysis Qual Exam (Fall 2015)

All problems are 10 points each.

Problem 1. Both polynomials $P^{(1)}(x)=x^{4}-2 x^{3}+2 x^{2}-2 x+1$ and $P^{(2)}(x)=x^{4}-x^{3}+x-1$ have a root $x^{*}=1$. However, the errors between two consecutive Newton's iterations $e_{k}^{(i)}=\left|x_{k+1}^{(i)}-x_{k}^{(i)}\right|, k \geq 0$ with $x_{0}^{(i)}=1.2$ are shown in the following table for $P^{(i)}, i=1,2$:

k	0	1	2	3	4
$i=1$	$0.910 \cdot 10^{-1}$	$0.517 \cdot 10^{-1}$	$0.278 \cdot 10^{-1}$	$0.145 \cdot 10^{-1}$	$0.741 \cdot 10^{-2}$
$i=2$	0.152	$0.448 \cdot 10^{-1}$	$0.329 \cdot 10^{-2}$	$0.163 \cdot 10^{-4}$	$0.398 \cdot 10^{-9}$

The errors for $P^{(1)}$ decrease much slower.
a) (2 points) Explain the reason for this phenomenon.
b) (2 points) What can be done to accelerate the convergence for the first polynomial $P^{(1)}$?
c) (6 points) Justify your suggestion with a mathematical proof.

Problem 2.

a) (5 points) Define the Gaussian quadrature $G_{n}(f)$ carefully for a continuous function f.
b) (5 points) State the convergence theorem of the Gaussian quadratures $G_{n}(f)$ to the integral of f and give a proof.

Problem 3. Suppose that $A \in R^{n \times n}$ is nonsingular. Let $\vec{u}, \vec{v} \in R^{n}$ be two vectors. Under what condition is the following matrix

$$
\left(\begin{array}{cc}
0, & \vec{u}^{T} \\
\vec{v}, & A
\end{array}\right)
$$

invertible (4 points)? Find the explicit form for the inverse matrix (6 points).
Problem 4. Let

$$
U_{n}(x):=\frac{\sin ((n+1) \arccos x)}{\sqrt{1-x^{2}}}, \quad n=0,1,2, \ldots
$$

a) (5 points) Prove that these functions are algebraic polynomials of degree n.
b)(5 points) For integers $n \neq m$, prove

$$
\int_{-1}^{1} \sqrt{1-x^{2}} U_{n}(x) U_{m}(x) d x=0
$$

Problem 5. Fix $n \geq 1$. Let B_{n} be a polynomial B-spline of degree n with integer nodes and support on $[0, n+1]$. Prove that $\left\{B_{n}(x-i)\right\}_{i=-n}^{N-1}$ are linearly independent on the interval $[0, N], N \geq 1$.

Problem 6. An $(n+1)$-dimensional linear subspace H of $C[a, b]$ is called a Haar subspace if each non-zero function in H has at most n roots.

Show that the linear span H of functions $\left\{1, x, x^{2}, \cdots, x^{n-1}, f(x)\right\}$ is a Haar subspace of $C([a, b])$ if the $n^{t h}$ derivative $f^{(n)}(x)$ of f is strictly positive on $[a, b]$.

Problem 7. Suppose that the matrix norm $\|\cdot\|$ is subordinate. Let S be a non-singular square matrix. Prove or disprove that $\|A\|_{*}:=\left\|S A S^{-1}\right\|$ is also a subordinate norm.

Problem 8. Suppose that a square matrix A is strictly diagonally dominant. Show that the Gauss-Seidel iteration for the linear system $A \mathbf{x}=\mathbf{b}$ converges.

Problem 9. Consider a single step method $y_{k+1}=y_{k}+h \psi\left(x_{k}, y_{k}, h\right)$ for numerical solution of initial value problem of ODE $y^{\prime}=f(x, y)$. Suppose that $\psi(x, y, h)$ is Lipschitz continuous with respect to y with Lipschitz constant L. Suppose that the local truncation error of order m, i.e., $T_{k}(h)=\frac{y\left(x_{k+1}\right)-y\left(x_{k}\right)}{h}-\psi\left(x_{k}, y\left(x_{k}\right), h\right)=\mathcal{O}\left(h^{m}\right)$. Show that numerical solution y_{k} approximates $y\left(x_{k}\right)$ in the following sense

$$
\left|y\left(x_{k}\right)-y_{k}\right| \leq e^{(b-a) L}\left|y\left(x_{0}\right)-y_{0}\right|+\frac{e^{(b-a) L}-1}{L} C h^{m}
$$

for $k=1, \cdots, n$.
Problem 10. Consider a linear least squares problem:

$$
\min \|A \mathbf{x}-\mathbf{b}\|^{2}
$$

where A is a matrix of size $m \times n$ with $m>n$ and \mathbf{b} of size $m \times 1$. (a) Use the SVD to describe how to solve the least square problem (5 points), and (b) explain why your method works (5 points).

