Numerical Analysis Qualifying Examination, Spring 2024

Each problem is worth 10 points.

1. (a) (3 points) Describe in detail the Jacobi iterative method for solving a system of linear equations $A \mathrm{x}=\mathbf{b}$.
(b) (2 points) Define what it means for a matrix to be strictly diagonally dominant.
(c) (5 points) Show that the Jacobi iterative method converges when the matrix A is strictly diagonally dominant.
2. (a) (2 points) Define the $Q R$ factorization of a matrix A.
(b) (4 points) Give a procedure for computing the QR factorization of A.
(c) (4 points) Suppose that A is a tridiagonal 3×3 matrix with QR factorization $A=Q R$. Show that $R Q$ is also a tridiagonal matrix.
3. (a) (3 points) Define the C^{2} cubic spline space $\mathcal{S}_{3}^{2}(\triangle)$ over a partition

$$
\Delta=\left\{a=x_{0}<x_{1}<\cdots, x_{n}=b\right\}
$$

of the interval $[a, b]$.
(b) (4 points) Given values $f\left(x_{0}\right), \ldots, f\left(x_{n}\right)$, let S_{f} be the natural cubic interpolating spline over the interval $[a, b]$, i.e.

$$
\begin{equation*}
S_{f} \in \mathcal{S}_{3}^{2}(\triangle), \quad S_{f}\left(x_{i}\right)=f\left(x_{i}\right), i=0, \cdots, n \tag{1}
\end{equation*}
$$

Suppose this cubic spline is given by

$$
\left.S_{f}\right|_{\left[x_{i}, x_{i+1}\right]}=a_{i}+b_{i}\left(x-x_{i}\right)+c_{i}\left(x-x_{i}\right)^{2}+d_{i}\left(x-x_{i}\right)^{3}, i=0, \cdots, n-1
$$

Derive relations among $a_{i}, b_{i}, c_{i}, d_{i}$ and $a_{i+1}, b_{i+1}, c_{i+1}, d_{i+1}$ that ensure that $S_{f} \in \mathcal{S}_{3}^{2}(\triangle)$.
(c) (3 points) Show that these conditions may be reduced to a system of linear equations in the c_{i}, where the associated matrix is invertible.
4. Recall that the Legendre polynomials $P_{0},(x), P_{1}(x), \ldots$ are the polynomial functions determined by the conditions

$$
\operatorname{deg} P_{n}(x)=n, \quad P_{n}(1)=1, \quad m \neq n \Longrightarrow \int_{-1}^{1} P_{m}(x) P_{n}(x) d x=0
$$

(a) (3 points) Given a function $f(x)$, explain how to use the $P_{n}(x)$ for numerical approximation of $\int_{-1}^{1} f(x) d x$.
(b) (3 points) What is the advantage of this process (known as Gauss quadrature) over the Newton Cotes formula?
(c) (4 points) Let $G_{n}(f)$ be the Gauss quadrature using the orthogonal polynomial of degree n. Show that $G_{n}(f) \rightarrow \int_{-1}^{1} f(x) d x$ as $n \rightarrow \infty$ for any continuous function f.
5. Consider the numerical differentiation formula

$$
f^{\prime}(x) \approx \frac{1}{h}\left(-\frac{1}{4} f(x-h)-\frac{3}{4} f(x)+\frac{5}{4} f(x+h)-\frac{1}{4} f(x+2 h)\right)
$$

(a) (4 points) Determine the order of accuracy of this approximation.
(b) (4 points) Use Richardson extrapolation to improve its order of accuracy . What is the order of accuracy of the resulting method?
(c) (2 points) Explain why this formula cannot give a good approximation of $f^{\prime}(x)$ if h is taken extremely small.
6. Consider the ODE

$$
x^{\prime}(t)=f(t, x(t)), \quad x\left(t_{0}\right)=x_{0}
$$

(a) (4 points) Write the formula for Heun's method and write its Butcher table.
(b) (6 points) Prove that Heun's method is at least second order accurate.
7. Consider the second order ODE

$$
x^{\prime \prime}(t)=-3 x^{\prime}(t)-2(x(t))^{3}, \quad x(0)=1, \quad x^{\prime}(0)=-2
$$

(a) (3 points) Reformulate it as an initial value problem of a system of first order ODEs.
(b) (7 points) Apply the second order Taylor method with time step h and give explicit formulas for the iterations. Calculate the first iteration x_{1} for $h=0.1$.
8. For the ODE $x^{\prime}(t)=f(t, x(t))$, consider the general linear multistep method

$$
a_{k} x_{i}+\cdots+a_{0} x_{i-k}=h\left(b_{k} f_{i}+\cdots+b_{0} f_{i-k}\right)
$$

where $f_{j}:=f\left(t_{j}, x_{j}\right)$ and $a_{0}, \ldots, a_{k}, b_{0}, \ldots, b_{k}$ are coefficients with $a_{k} \neq 0$.
(a) (7 points) Let p be a given positive integer. Derive the linear relations on the coefficients a_{i}, b_{j} that are necessary and sufficient condition for this method to have at least p-th order accuracy.
(b) (3 points) Consider the case $k=2$ and $\left(b_{0}, b_{1}, b_{2}\right)=(0,0,1)$. Determine the coefficients a_{0}, a_{1}, a_{2} so that the above method has the highest possible order of accuracy .

