This version of the exam includes a corrected version of problem 6: the sentence in italics was omitted from the original version.

Instructions: Work all 7 problems. Problem 1 is worth 10 points and all the others are worth 15 points. (3 hour exam, 100 points total)

1. For each of these 2 kinds of mappings, state a version of the inverse function theorem.
a) for a differentiable real mapping $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, and
b) for a complex-differentiable mapping $f: \mathbb{C} \rightarrow \mathbb{C}$.
2. Give the Laurent series expansions of $\frac{z+1}{z(z-1)}$
a) about $z=0$, and
b) about $z=1$.
3. Compute the integral $\int_{0}^{\infty} \frac{d x}{\left(1+x^{2}\right)\left(1+9 x^{2}\right)}$.
4. a) Let $\Omega \subset \mathbb{C}$ be an open set and suppose that $f: \Omega \rightarrow \mathbb{C}$ is an analytic function with $f^{\prime}(z) \neq 0$ for all $z \in \Omega$. Show that f preserves angles. Include a definition of what angle-preserving means.
b) Find a conformal map from the vertical strip $\{z: 0<\operatorname{Re} z<\pi\}$ onto the upper half-disk $\mathbb{D} \cap\{\operatorname{Im} z>$ $0\}$.
5. Assuming that $|b|<1$, show that $f(z)=z^{3}+3 z^{2}+b z+b^{2}$ has exactly 2 roots (counting multiplicity) in $|z|<1$.
6. Suppose that $\left\{f_{n}\right\}$ is a sequence of analytic functions on an open set $\Omega \subset \mathbb{C}$ converging pointwise to a function f on Ω. Suppose in addition that the sequence is locally uniformly bounded, i.e. for each compact subset $K \subset \Omega$ there is a constant $C<\infty$ such that $\left|f_{n}(z)\right| \leq C$ for all $z \in K$ and all n. Prove that f is an analytic function on Ω and that the convergence is uniform on compact subsets of Ω. Give an example to illustrate that the convergence need not be uniform on all of Ω.
7. Let $\mathbb{D} \subset \mathbb{C}$ be the open unit disk. Suppose $f: \mathbb{D} \rightarrow \mathbb{D}$ is analytic, and admits a continuous extension $\bar{f}: \overline{\mathbb{D}} \rightarrow \overline{\mathbb{D}}$ such that $|\bar{f}(z)|=1$ whenever $|z|=1$.
a) Prove that f is a rational function.
b) Suppose that $z=0$ is the unique solution of $f(z)=0$. Prove that $f(z)=\lambda z^{n}$ for some $\lambda \in \mathbb{C},|\lambda|=1$, and $n \in \mathbb{N}$.
c) More generally, suppose that $a_{1}, \ldots, a_{n} \in \mathbb{D}$ are the zeroes of f, listed with multiplicity. Prove that

$$
f(z)=\lambda \prod_{i=1}^{n} \frac{z-a_{i}}{1-\bar{a}_{i} z}, \quad|\lambda|=1 .
$$

(Hint: $z \mapsto \frac{z-a_{i}}{1-\bar{a}_{i} z}$ is an automorphism of \mathbb{D} taking $a_{i} \mapsto 0$.)

