Complex Analysis Qualifying Exam 2019 Fall Committee: Valery Alexeev, Benjamin Bakker and Jingzhi Tie

1. Show that $\int_{0}^{\infty} \frac{x^{a-1}}{1+x^{n}} d x=\frac{\pi}{n \sin \frac{a \pi}{n}}$ using complex analysis, $0<a<n$. Here n is a positive integer.
2. Prove that the distinct complex numbers z_{1}, z_{2} and z_{3} are the vertices of an equilateral triangle if and only if

$$
z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}
$$

3. Let γ be piecewise smooth simple closed curve with interior Ω_{1} and exterior Ω_{2}. Assume $f^{\prime}(z)$ exists in an open set containing γ and Ω_{2} and $\lim _{z \rightarrow \infty} f(z)=A$. Show that

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\xi)}{\xi-z} d \xi= \begin{cases}A, & \text { if } z \in \Omega_{1} \\ -f(z)+A, & \text { if } z \in \Omega_{2}\end{cases}
$$

4. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an injective analytic (also called univalent) function. Show that there exist complex numbers $a \neq 0$ and b such that $f(z)=a z+b$.
5. Find a conformal map from $D=\{z:|z|<1,|z-1 / 2|>1 / 2\}$ to the unit disk $\Delta=\{z:|z|<1\}$.
6. A holomorphic mapping $f: U \rightarrow V$ is a local bijection on U if for every $z \in U$ there exists an open disc $D \subset U$ centered at z so that $f: D \rightarrow f(D)$ is a bijection. Prove that a holomorphic map $f: U \rightarrow V$ is a local bijection if and only if $f^{\prime}(z) \neq 0$ for all $z \in U$.
