Complex Analysis Qualifying Exam, Fall 2010

Do all problems, and justify your assertions.
(1) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
(a) Define what it means for f to be differentiable at a point $(a, b) \in \mathbb{R}^{2}$ (in terms of linear transformations).
(b) State a version of the inverse function theorem in this setting.
(c) Identifying \mathbb{C} with \mathbb{R}^{2} in the usual way, give, with proof, a necessary and sufficient condition for a function satisfying the definition of real differentiability in part (a) to be complex differentiable at the point $a+b i$.
(2) Let $a>0$. Evaluate $\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+a^{2}\right)^{3}} d x$.
(3) Let f be entire. Discuss, with proofs and examples, the types of singularities f might have at ∞ in each of the following cases:
(a) f has at most finitely many zeros in \mathbb{C};
(b) f has infinitely many zeros in \mathbb{C}.
(4) Let $\left\{f_{n}\right\}$ be a sequence of entire functions. Suppose $\left\{f_{n}\right\}$ converges pointwise to a function $g: \mathbb{C} \rightarrow \mathbb{C}$, and the convergence is uniform on each line segment in \mathbb{C}. Show that g is entire, and that $f_{n} \rightarrow g$ uniformly on each compact subset of \mathbb{C}.
(5) Let $H=\{z \in \mathbb{C}: \operatorname{Re}(z)>0\}$. Supppose f is an analytic function which takes the unit disc $D=\{z \in \mathbb{C}:|z|<1\}$ to H, and satisfies $f(0)=2$. Find a sharp upper bound for $\left|f^{\prime}(0)\right|$, justifying your bound by a proof and its sharpness by an example.
(6) Let u, v be harmonic functions on a region G. Prove that if the product $u v$ is identically zero, then either u or v must be identically zero.

