Algebra, Fall 2016

- Problem 1 score (out of 10)
- Problem 2 score (out of 10)
- Problem 3 score (out of 10)
- Problem 4 score (out of 10)
- Problem 5 score (out of 10)
- Problem 6 score (out of 10)
- Problem 7 score (out of 10)
- TOTAL SCORE (out of 70)

Problems

(1) (10 points) Let G be a finite group and let $s, t \in G$ be two distinct elements of order 2. Show that the subgroup of G generated by s and t is a dihedral group. Recall that the dihedral groups of order 2m are of the form

$$D_{2m} = <\sigma, \tau \mid \sigma^m = 1 = \tau^2, \tau\sigma = \sigma^{-1}\tau >,$$

for some $m \geq 2$.

(2) (10 points) Let A and B be two $n \times n$ matrices with the property that $A \cdot B = B \cdot A$. Suppose that A and B are diagonalizable. Prove that A and B are simultaneously diagonalizable. (3) (10 Points) How many groups are there up to isomorphism of order pq, where p < q are prime integers?

- (4) (10 points) Set $f(x) = x^3 5 \in \mathbb{Q}[x]$.
 - (a) Find the splitting field K of f(x) over \mathbb{Q} .
 - (b) Find the Galois group G of K over \mathbb{Q} .
 - (c) Exhibit explicitly the correspondence between subgroups of G and intermediate fields between \mathbb{Q} and K.

(5) (10 points) How many monic irreducible polynomials over \mathbb{F}_p of prime degree ℓ are there? Justify your answer.

(6) (10 points) Let R be a ring and $f: M \to N$ and $g: N \to M$ be R-module homomorphisms such that $g \circ f = \mathrm{id}_M$. Show that $N \cong \mathrm{Im} f \oplus \mathrm{Ker} g$.

- (7) (a) (1 points) Define solvable for a group G.
 - (b) (9 points) Show that every group G of order 36 is solvable. *Hint:* You can use that S_4 is solvable.