Algebra, Fall 2016

Problem 1 score (out of 10) \qquad
Problem 2 score (out of 10) \qquad
Problem 3 score (out of 10) \qquad
Problem 4 score (out of 10) \qquad
Problem 5 score (out of 10)
Problem 6 score (out of 10) \qquad
Problem 7 score (out of 10) \qquad
TOTAL SCORE (out of 70) \qquad

Problems

(1) (10 points) Let G be a finite group and let $s, t \in G$ be two distinct elements of order 2. Show that the subgroup of G generated by s and t is a dihedral group. Recall that the dihedral groups of order $2 m$ are of the form

$$
D_{2 m}=<\sigma, \tau \mid \sigma^{m}=1=\tau^{2}, \tau \sigma=\sigma^{-1} \tau>,
$$

for some $m \geq 2$.
(2) (10 points) Let A and B be two $n \times n$ matrices with the property that $A \cdot B=B \cdot A$. Suppose that A and B are diagonalizable. Prove that A and B are simultaneously diagonalizable.
(3) (10 Points) How many groups are there up to isomorphism of order $p q$, where $p<q$ are prime integers?
(4) (10 points) Set $f(x)=x^{3}-5 \in \mathbb{Q}[x]$.
(a) Find the splitting field K of $f(x)$ over \mathbb{Q}.
(b) Find the Galois group G of K over \mathbb{Q}.
(c) Exhibit explicitly the correspondence between subgroups of G and intermediate fields between \mathbb{Q} and K.
(5) (10 points) How many monic irreducible polynomials over \mathbb{F}_{p} of prime degree ℓ are there? Justify your answer.
(6) (10 points) Let R be a ring and $f: M \rightarrow N$ and $g: N \rightarrow M$ be R-module homomorphisms such that $g \circ f=\operatorname{id}_{M}$. Show that $N \cong \operatorname{Im} f \oplus \operatorname{Ker} g$.
(7) (a) (1 points) Define solvable for a group G.
(b) (9 points) Show that every group G of order 36 is solvable. Hint: You can use that S_{4} is solvable.

