ALGEBRA QUALIFYING EXAM SPRING 2024

Each problem is worth 10 points.
(1) Let q be a prime integer and let $G=S_{q}$, the symmetric group on q elements. Let $a=$ $(12 \cdots q)$ be a q-cycle in G.
(a)Find the order of $C_{G}(a)$, the centralizer of a in G.
(b)Let $Q=\langle a\rangle$, the cyclic subgroup of G generated by a. Find the order of $N_{G}(Q)$.
(2) Let r be a rational number which is not a perfect square. Let n be a positive integer.Let $g(x) \in \mathbb{Q}[x]$ be an irreducible factor of the polynomial $f(x)=x^{2 n}-r$ in $\mathbb{Q}[x]$. Prove that $g(x)$ has even degree..
(3) Use the Fundamental Theorem for finitely generated abelian groups to prove that the multiplicative group F^{*} of a finite field F is cyclic.
(4) Let R be an integral domain.
(a)Prove that if $a \in R$ is prime then a is irreducible in R.
(b)Prove that if R is a Unique Factorization Domain then every irreducible element of R is prime.
(c) Give an example of a ring R and an element $a \in R$ which is irreducible but not prime.
(5) Let A be the $n \times n$ matrix over \mathbb{Q} with 2 's on the diagonal, 1 's just below the diagonal, and 0's everywhere else, i.e. $A=\left(\begin{array}{cccccc}2 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 2 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 2\end{array}\right)$.(For example, if $n=4, A=$ $\left(\begin{array}{llll}2 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2\end{array}\right)$.) Find J, the Jordan Canonical Form of A.
(b)Find the minimal polynomial of A. Justify your answer.
(6) (a) Let E be an extension field of F with $[E: F]=n$ and let $\alpha \in E$. Prove that α belongs to no proper subfield of E if and only if the minimal polynomial of α / F has degree n.
(b)Let q be a prime integer. Find the number of monic irreducible polynomials of degree q in $\mathbb{F}_{p}[x]$.
(c)Let q be a prime integer. Find the number of monic irreducible polynomials of degree q^{2} in $\mathbb{F}_{p}[x]$.
(d) Let q, r be distinct prime integers. Find the number of monic irreducible polynomials of degree $q r$ in $\mathbb{F}_{p}[x]$.
(7)) Let q be a prime integer and let $f(x)=x^{q}-2$ in $\mathbb{Q}[x]$. Let ω be a primitive q-th root of unity.
(a)Prove that the splitting field of $f(x)$ is $\mathbb{Q}\left(2^{1 / q}, \omega\right)$.
(b)Let G be the Galois group of $f(x) / \mathbb{Q}$. Prove that for each $b \in \mathbb{Z}_{q}$ and each $a \in \mathbb{Z}_{q}^{*}$ there is a unique element $\sigma_{a, b}$ of G which sends $2^{1 / q} \rightarrow 2^{1 / q} \omega^{b}$ and $\omega \rightarrow \omega^{a}$. You may assume that $f(x)$ is irreducible in $\mathbb{Q}(\omega)[x]$.
(c)Let G_{1} be the subgroup of $G L_{2}\left(\mathbb{F}_{q}\right)$ consisting of matrices of the form $\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)$ with $b \in \mathbb{Z}_{q}$ and $a \in \mathbb{Z}_{q}^{*}$. Prove that the map $\tau: G \rightarrow G_{1}$ given by $\sigma_{a, b} \rightarrow\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)$ is an isomorphism of groups.
(8) Let p, q be prime integers with $p<q$.
(a)Prove that every group G of order $p q$ is a semidirect (perhaps direct) product of the cyclic groups C_{p} with C_{q}
(b)Prove that if p does not divide $q-1$ then G is cyclic.
(c)Prove that if p does divide $q-1$ then there is a G which is not abelian.

