By providing my signature below I acknowledge that I abide by the University's academic honesty policy. This is my work, and I did not get any help from anyone else:

Name (sign): Key	Name (print):
Student Number:	
Instructor's Name:	Class Time:

Problem Number	Points Possible	Points Made
1	18	
2	26	
3	16	
4	20	
5	22	
6	20	
7	15	
8	20	
9	15	
10	15	
11	15	
12	15	
13	30	
14	10	
15	15	
Total:	272	

- If you need extra space use the last page. Do not tear off the last page!
- Please show your work. An unjustified answer may receive little or no credit.
- If you make use of a theorem to justify a conclusion then state the theorem used by name.
- Your work must be **neat**. If I can't read it (or can't find it), I can't grade it.
- The total number of possible points that is assigned for each problem is shown here. The number of points for each subproblem is shown within the exam.
- Please turn off your mobile phone.
- You are only allowed to use a **TI-30XS Multiview** calculator. No other calculators are permitted, and sharing of calculators is not permitted.
- A calculator is not necessary, but numerical answers should be given in a form that can be directly entered into a calculator.

1. Determine the following limits. If you answer with ∞ or $-\infty$, briefly explain your thinking. Print your final answer in the box provided.

(a) [5 pts]
$$\lim_{x\to 2} (3x^2 + 7x - 5)$$

$$= 3 \cdot 2^{2} + 7 \cdot 2 - 5$$

$$= 12 + 14 - 5$$

$$= 21 - 5$$

answer:
21
(b) [5 pts]
$$\lim_{x\to 1^{-}} \frac{2x}{x-1}$$

$$2x \rightarrow 2 \quad as \quad x \rightarrow 1^{-}$$

$$x - 1 \rightarrow 0 \quad and is \ negative \ as \quad x \rightarrow 1^{-}$$

answer: $-\infty$
(c) [8 pts]
$$\lim_{x\to\infty} \frac{\ln(5x)}{x^{3}+1} \quad TF \quad \frac{\infty}{20}$$

$$= \lim_{X\to\infty} \frac{1}{5x} \cdot \frac{5}{3x^{2}}$$

$$= \lim_{X\to\infty} \frac{1}{3x^{3}}$$

$$= 0$$

answer: ∞

- 2. Determine the first derivative of each of the following functions. Print your answer in the box provided. You do not have to simplify your answers or explain your steps.
 - (a) [4 pts] $f(x) = 8x^3 15x + 12$

$$f'(x) = 24x^2 - 15$$

(b) [6 pts] $g(t) = \frac{\sin(t)}{t}$

$$g'(t) = \frac{t w(t) - Sin(t)}{t^2}$$

(c) [6 pts]
$$f(x) = \frac{e^x}{2x+1}$$

$$f'(x) = \frac{(2x+1)(e^{x}) - e^{x} \cdot 2}{(2x+1)^{2}} = \frac{e^{x}(2x-1)}{(2x+1)^{2}}$$

(d) [10 pts] $h(x) = (4x - 3)^2 \arctan(x)$

$$h'(x) = (4x-3)^2 \cdot \frac{1}{1+x^2} + \arctan(x) \cdot 2(4x-3) \cdot 4$$

$$h'(x) = \frac{(4x-3)^2}{1+x^2} + 8(4x-3) \operatorname{arctan}(x)$$

3. (a) [8 pts] Determine $\frac{dy}{dx}$ for the equation $y^3 - x^4y = 6$. Print your answer in the box provided. You do not have to simplify your answer.

$$3y^{2} \frac{1}{3y^{2}} - (x^{4} \frac{1}{3y^{2}} + y \cdot 4x^{3}) = 0$$

 $3y^{2} \frac{1}{3y^{2}} - x^{4} \frac{1}{3y^{2}} - 4x^{3}y = 0$
 $3y^{2} \frac{1}{3y^{2}} - x^{4} \frac{1}{3y^{2}} = 4x^{3}y$
 $\frac{1}{3y^{2}} (3y^{2} - x^{4}) = 4x^{3}y$

$$\frac{dy}{dx} = \frac{4\chi^3 y}{3y^2 - \chi^4}$$

(b) [8 pts] Determine an equation of the tangent line to the curve $y^3 - x^4y = 6$ at the point (1, 2).

$$\frac{dy}{dx}\Big|_{(1,2)} = \frac{4 \cdot 1 \cdot 2}{3 \cdot 4 - 1} = \frac{8}{11}$$

Equation:
$$y - 2 = \frac{8}{11} (x - 1)$$

4. Determine the following indefinite integrals. Print your answer to each part in the box provided.

(a) [4 pts]
$$\int (-4x^7 + 8x^5 + 12) dx$$

= $-\frac{4}{8} \times^8 + \frac{8}{5} \times^6 + 12 \times + C$

Final answer:
$$-\frac{1}{2}x^{8} + \frac{4}{3}x^{6} + 12x + C$$

- (b) [6 pts]
$$\int \left(\sec^2(t) + \frac{1}{t}\right) dt$$

.

Final answer:
$$\tan(t) + \ln|t| + C$$

(c) [10 pts]
$$\int \frac{x^4}{\sqrt{x^5 + 3}} dx$$
$$= \int (x^5 + 3)^{-V_2} \cdot x^4 dx$$
$$u = x^5 + 3$$
$$du = 5x^4 dx$$
$$u = x^5 + 3$$
$$du = 5x^4 dx$$
$$u = \frac{1}{5} \int u^{-V_2} du$$
$$u = \frac{1}{5} \int u^{-V_2} du$$
$$u = \frac{1}{5} \cdot 2u^{V_2} + C$$

Final answer:

$$\frac{2}{5}\sqrt{x^{5}+3} + C$$

5. Evaluate the following definite integrals. Print your answer in the box provided.

(a) [6 pts]
$$\int_{1}^{8} \left(x^{2/3} - \frac{1}{x^{3/3}}\right) dx$$

$$= \int_{1}^{8} \left[x^{2/3} - x^{-4/3}\right] dx$$

$$= \left[\frac{3}{5}x^{5/3} + 3x^{-4/3}\right]_{1}^{8}$$

$$= \frac{3 \cdot 32}{5} + \frac{3}{2} - \frac{3}{5} - \frac{6}{2}$$

$$= \frac{9 \cdot 4}{5} - \frac{3}{2} - \frac{3}{2}$$

$$= \frac{9 \cdot 3}{5} - \frac{1}{5} - \frac{1}{5} - \frac{1}{5} - \frac{1}{5} - \frac{1}{5} - \frac{1}{5} - \frac{1}$$

Value:
$$-\frac{1}{4}e^{-1}-(-\frac{1}{4}e^{-1})=\frac{-1}{4e}+\frac{e}{4}$$

6. (a) [5 pts] State the limit definition of the derivative of f(x).

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \quad \text{or } f'(a) = \lim_{X \to a} \frac{f(x) - f(a)}{x - a}$$

(b) [10 pts] Use the limit definition of the derivative to show that the derivative of $f(x) = 12x - 2x^2$ is f'(x) = 12 - 4x. (You will receive 0 points for using the power rule.)

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

= $\lim_{h \to 0} \frac{12(x+h) - 2(x+h)^2 - 12x + 2x^2}{h}$
= $\lim_{h \to 0} \frac{12x+12h - 2(x^2 + 2xh+h^2) - 12x + 2x^2}{h}$
= $\lim_{h \to 0} \frac{12x+12h - 2x^2 - 4xh - 2h^2 - 12x + 2x^2}{h}$
= $\lim_{h \to 0} \frac{12h - 4xh - 2h^2}{h}$
= $\lim_{h \to 0} \frac{12h - 4xh - 2h^2}{h}$
= $\lim_{h \to 0} (12 - 4x - 2h)$
= $12 - 4x$

(c) [5 pts] Determine all values of x for which the graph of $f(x) = 12x-2x^2$ has a horizontal tangent line.

$$12 - 4x = 0$$

 $12 = 4x$
 $3 = x$

7. [15 pts] Determine the absolute maximum and absolute minimum values of $f(x) = 2x\sqrt{9-x}$ on the interval [-1, 9].

$$f'(x) = 2x \cdot \frac{1}{2}(9-x)^{-\frac{1}{2}} - | + \sqrt{9-x} \cdot 2$$
$$= \frac{-x}{\sqrt{9-x}} + \frac{2\sqrt{9-x}}{1} \cdot \frac{\sqrt{9-x}}{\sqrt{9-x}}$$
$$= \frac{-x+2(9-x)}{\sqrt{9-x}}$$
$$= \frac{-x+\sqrt{8-2x}}{\sqrt{9-x}}$$
$$= \frac{\sqrt{8-3x}}{\sqrt{9-x}}$$

f'are: X29 not a critical number (domain)

$$f'(x)=0: x=6$$

$$\begin{array}{rcl} x & | & f(x) \\ \hline -1 & | & -2\sqrt{10} \\ 6 & | & 12\sqrt{3} \\ 9 & | & 0 \end{array}$$

8. The graph below is the graph of **the derivative of** f(x). Use it to answer the questions that follow. The grid lines are one unit apart, and the domain of f is (0,7).

- (a) [5 pts] Determine all critical numbers (critical points) of f.
 - X=1,3,6
- (b) [5 pts] Determine the intervals on which f is increasing.

(c) [5 pts] Determine all values of x at which f has a local minimum.

$$f'$$
 changes sign from $-to + at x = b$

(d) [5 pts] Determine the intervals on which f is concave up.

f is concave up where f' is increasing:

$$[2, 3] \cup [5, 7]$$

also accepted: $(2,3) \cup (5, 7)$

9. For this problem, use $f(x) = 3x^2 + 4$ on the interval [0, 2]. Its graph is provided to the right.

(a) [5 pts] Determine a Riemann sum for f on the interval [0,2] using 3 subintervals of equal width and using right endpoints on each subinterval.

$\Delta x = \frac{2-0}{3} = \frac{2}{3} \qquad [0, \frac{2}{3}] [\frac{2}{3}, \frac{4}{3}] [\frac{4}{3}, 2]$ Rie. sum : $f(\frac{2}{3}) \cdot \frac{2}{3} + f(\frac{4}{3}) \cdot \frac{2}{3} + f(2) \cdot \frac{2}{3}$ $= (3(\frac{2}{3})^{2} + 4) \cdot \frac{2}{3} + (3(\frac{4}{3})^{2} + 4) \cdot \frac{2}{3} + (3(2)^{2} + 4) \cdot \frac{2}{3}$

(b) [5 pts] Is your Riemann sum above an over- or under-estimate of the integral $\int_0^2 f(x) dx$? Explain how you can tell, without doing any calculations or working out the answers, whether it's an over-estimate or an under-estimate. (You may want to illustrate the Riemann sum on the graph of f provided above.)

It's an over-estimate because f is increasing on [0,2] or: ... because the rectangles above contain more area than the region under the curve.

(c) [5 pts] Use summation (sigma) notation to write an expression for a Riemann sum for f on the interval [0, 2] using n subintervals of equal width and using right endpoints on each subinterval. You do not have to work out the value of the sum, but your sum

should involve only $\sum_{k=1}^{n}$, the variables k and n, and numbers.

$$\Delta X = \frac{2}{n} \qquad Rie \cdot sum = \sum_{k=1}^{n} \left[3 \left(\frac{2k}{n} \right)^{2} + 4 \right] \cdot \frac{2}{n} = \sum_{k=1}^{n} \left(\frac{12k^{2}}{n^{2}} + 4 \right) \cdot \frac{2}{n}$$

$$f(c_{k}) = 3(c_{k})^{2} + 4 = 3\left(\frac{2k}{n} \right)^{2} + 4 \qquad = \left[\sum_{k=1}^{n} \left(\frac{24k^{2}}{n^{3}} + \frac{8}{n} \right) \right]$$

10. Use the values of the given definite integrals to determine the quantities below.

$$\int_{1}^{7} f(x) \, dx = -8, \qquad \int_{3}^{7} f(x) \, dx = 12, \qquad \int_{1}^{7} g(x) \, dx = 9$$
(a) [5 pts] $\int_{1}^{7} (2f(x) - 5g(x)) \, dx$

$$= 2(-8) - 5(9)$$

$$= -16 - 45$$

$$= -61$$

(b) [5 pts]
$$\int_{1}^{3} f(x) dx = -20$$

(c) [5 pts]
$$\int_{1}^{7} (g(t) - t^{2}) dt$$

$$= \int_{1}^{7} g(t) dt - \int_{1}^{7} t^{2} dt$$

$$= 9 - \left[\frac{1}{3}t^{3}\right]_{1}^{7}$$

$$= 9 - \left(\frac{1}{3}\cdot 7^{3} - \frac{1}{3}\cdot 1^{3}\right) \longleftrightarrow \text{ or simer}$$

$$= \frac{27}{3} - \frac{343}{3} + \frac{1}{3} = -\frac{315}{3} = 105$$

11. The charts below contain information about a function f and its derivative. Assume that f is differentiable on [-2, 1]. Use the charts to answer the questions that follow.

x	-2	-1	0	1		x	-2	-1	0	1
f(x)	3	2	0	-1	Ĵ	f'(x)	$-\frac{1}{8}$	$-\frac{1}{3}$	-1	0

(a) [5 pts] Determine the linearization of f at x = -1.

$$L(x) = F(-1) + f'(-1)(x+1)$$

= $[2 + -\frac{1}{3}(x+1)] \leftarrow \text{ok final answer}$
= $2 - \frac{1}{3}x - \frac{1}{3}$
= $\frac{5}{3} - \frac{1}{3}x$

(b) [5 pts] Use your linearization above to estimate the value of f(-1.5).

$$f(-1.5) \approx L(-1.5) = 2 - \frac{1}{3}(-1.5+1) \leftarrow \text{ok final answer}$$

= $2 - \frac{1}{3}(-\frac{1}{2})$
= $2 + \frac{1}{6}$
= $\frac{13}{6}$
= 2.16

(c) [5 pts] Suppose you also know that f' is continuous on [-2, 1]. Explain why the graph of f must have an inflection point somewhere in the interval [-2, 1].

Based on the chart for f', there must be an inflection point in [-2,1] since f' changes from decreasing to increasing (at least once). 12. [15 pts] A diesel truck develops an oil leak. The oil drips onto the dry ground in the shape of a circular puddle. Assuming that the leak begins at time t = 0 and that the radius of the oil slick increases at a constant rate of .05 meters per minute, determine the rate of change of the area of the puddle 4 minutes after the leak begins.

goal:
$$\frac{dA}{dt}$$

 $A = \pi r^2$
 $\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$
 $\frac{dr}{dt} = .05 \text{ meters/minute.}$
 $r = .05 \text{ meters/minutes} = 0.2m \text{ since dfe is constant}$
 $\frac{dA}{dt} = 2\pi (0.2) (.05) \text{ square moters/minute.}$
 $= .02\pi \text{ square moters/minute.}$
 $\approx .06283 \text{ square moters/minute.}$

- 13. A landscape designer plans to construct a rectangular garden whose area is 2000 square meters. One side will consist of a wrought iron fence which costs \$90 per meter. The remaining three sides will be constructed from chain link fence costing \$25 per meter.
 - (a) [15 pts] Determine a function for the total cost C(x) of the garden, where x is the length of wrought iron fence used (in meters).

e \$25/meter $C(x) = 90x + 25\left(\frac{2000}{x}\right) + 25x + 25\left(\frac{2000}{x}\right)$ 2000 m² $C(x) = ||S_{x} + \frac{100\ 000}{x}$ www.hAMM X 190/meter $y=\frac{2000}{x}$ X· y= 2000

(b) [15 pts] What dimensions of the garden will minimize the total cost? Use calculus techniques to show that the dimensions result in the minimum possible cost.

domain:
$$(0, \infty)$$

 $C'(x) = ||S - \frac{|00|00}{x^2}$
 $C' dne: none c'=0: ||S = \frac{100000}{x^2}$
 $Vote: The x^2 = \frac{100000}{115}$
first durivative test $x^2 = \frac{20000}{23} = 100 \cdot \sqrt{\frac{2}{23}}$
Second derivative test: $C''(x) = \frac{200000}{x^3}$
 $C''(\sqrt{\frac{20000}{23}}) = \frac{200000}{\sqrt{\frac{120000}{23}}} = 2000 \cdot \sqrt{\frac{2}{2}} > 0 \text{ so } C(x) \text{ has a local min at } x = 100 \cdot \sqrt{\frac{7}{23}}$
Since there is only one critical number in $(0, \infty)$, the local min is an absolute min. The dimensions are $x = 100 \cdot \sqrt{\frac{2}{23}} \approx 29.4984$ meters and $y = \frac{2000}{100\sqrt{\frac{7}{23}}} \approx 67.8233$ meters.

14. [10 pts] Let $y = \ln(x)$. Show that $\frac{dy}{dx} = \frac{1}{x}$ by solving the equation $y = \ln(x)$ for x and then — using implicit differentiation. Your final answer should be $\frac{dy}{dx}$, given as a function of x.

$$J = ln(x)$$

$$e^{y} = x \quad (solve \text{ for } x)$$

$$e^{y} \frac{dy}{dx} = 1 \quad (\text{diffurentiate both sides with respect to } x)$$

$$\frac{dy}{dx} = \frac{1}{e^{y}} \quad (solve \text{ for } \frac{dy}{dx})$$

$$\frac{dy}{dx} = \frac{1}{x} \quad (sub \text{ in } x \text{ for } e^{y} \text{ since } e^{y} = x)$$

15. Information about a function, f, and its derivative is given below. Use the information to answer the questions that follow.

(a) [5 pts] Make a rough sketch of the graph of y = f(x). (Hint: Think about slopes.)

(b) [5 pts] Determine $\lim_{x \to 1^-} f(x)$.

2

(c) [5 pts] Determine $\lim_{x \to 1^+} f(x)$.

D

Extra space for work. **Do not detach this page.** If you want us to consider the work on this page you should print your name, instructor and class meeting time below.

Name (print): _____ Instructor (print): _____ Time: _____

$$\frac{1}{2} |3-|^{5t} derivative test C'(x) = ||5-\frac{100,000}{x^2} = \frac{115x^2-100,000}{x^2} (ritical number: x = 100 \sqrt{2/23} ~ 29.49 (0,100 \sqrt{2/23}) (100 \sqrt{2/23}, \infty) \frac{100}{2} (1) = ||5-1000000 C'(100) = \frac{115(100)^2-1000000}{100^2} = \frac{115 \cdot 10000 - 100 0000}{100^2} \frac{115(100)^2}{100^2} = \frac{115 \cdot 100000}{100^2}$$

Therefore ((x) has a local min at x = 100 $\sqrt{2/23}$

Since there is only one critical number in $(0, \infty)$, the local min is an absolute min. The dimensions are $X = 100 \cdot \sqrt{\frac{2}{23}} \approx 29.4884$ meters

and
$$y = \frac{2000}{100\sqrt{2}/23} \approx 67.8233$$
 meters.