Complex Analysis Qualifying Exam - Spring 2023

Show work and carefully justify/prove your assertions. For example, if you use a theorem that has a name, mention the name. Arrange your solutions in numerical order even if you do not solve them in that order.

1. (10 points) Let $z_{k}(k=1, \cdots, n)$ be complex numbers lying on the same side of a straight line passing through the origin but not on the line. Show that

$$
z_{1}+z_{2}+\cdots+z_{n} \neq 0, \quad 1 / z_{1}+1 / z_{2}+\cdots+1 / z_{n} \neq 0
$$

Hint: Consider a special situation first.
2 (10 points) Suppose f is an entire function whose range omits numbers in $(-\infty, 0]$. Prove that f is constant. Hint: The analytical function $g(z):=\sqrt{z}$ maps the region $\mathbb{C} \backslash(-\infty, 0]$ to the open right half plane.
3. (10 points) (1) Show that the series

$$
\zeta(z):=\sum_{n=1}^{\infty} \frac{1}{n^{z}}
$$

defines an analytic function in the region $x>1$, where $z=x+i y$ and $n^{z}=e^{z \log n}$.
(2) Find series representation of $\zeta^{(k)}(z)(k \geq 1)$ in $x>1$ and justify you answer.
4. (10 points) Let γ be a piecewise smooth simple closed curve oriented counterclockwise with interior Ω_{1} and exterior Ω_{2}. Assume $f^{\prime}(z)$ exists in an open set containing γ and Ω_{2} and $\lim _{z \rightarrow \infty} f(z)=A$. Show that

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\xi)}{\xi-z} d \xi= \begin{cases}A, & \text { if } z \in \Omega_{1} \\ -f(z)+A, & \text { if } z \in \Omega_{2}\end{cases}
$$

5. (10 points) Use complex analysis to compute the following integral

$$
\int_{0}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x
$$

6. (10 points) Suppose $f: \mathbb{D} \rightarrow \mathbb{D}$ is analytic on the unit disc and has a zero of order n at 0 . Prove that $|f(z)| \leq\left|z^{n}\right|$ for all $z \in \mathbb{D}$ and obtain a sharp upper bound on $\left|f^{(n)}(0)\right|$.
7. (10 points) Find the fractional linear transformation that maps the circle $|z|=2$ into $|z+1|=1$, the point -2 into the origin, and the origin into i.
