Section 2.4C: More Building Functions.

Functions from 2D Geometry, continued.

1. Two cars leave an intersection at the same time. Car A travels north at 25 miles per hour, and Car B travels east at 30 miles per hour. Find the distance (in miles) between the two cars at time \(t \), where \(t \) represents the number of minutes elapsed since the cars left the intersection.

2. A square is inscribed with another square of a side length \(x \) as shown below. If the length of \(BC \) is 10 times the length of \(AB \), express the area of the inscribed square as a function of \(x \).

3. The relative positions of an aircraft runway and an \(a = 10 \)-foot-tall control tower are shown in the figure. The beginning of the runway is at a perpendicular distance of \(b = 300 \) feet from the base of the tower. If \(x \) denotes the distance an airplane has moved down the runway, express the distance \(d \) between the airplane and the top of the control tower as a function of \(x \).

Functions from 3D Geometry.

3D Objects: Here are more geometric formulas that you'll need.

- **Sphere**: For a sphere of radius \(r \):

 \[SA = 4\pi r^2 \quad V = \frac{4}{3}\pi r^3 \]

- **Box**: For a box with length \(L \), width \(W \), and height \(H \):

 \[SA = \text{sum of six faces} \quad V = L \cdot W \cdot H \]

- **Cylinder**: For a cylinder with radius \(r \) and height \(h \):

 \[SA = 2\pi r^2 + 2\pi r \cdot h \quad V = \pi r^2 \cdot h \]

- **Cone**: For a cone with radius \(r \) and height \(h \):

 \[SA = \pi r^2 + \pi r \cdot \sqrt{r^2 + h^2} \quad V = \frac{1}{3}r^2 \cdot h \]

1. The figure shows a box with a square base. The volume of the box is 380 cubic feet. Express the surface area of the box, including top and bottom, as a function of \(x \).

2. A right circular cylinder has radius \(r \) and height \(h \). The surface area of the cylinder, including top and bottom, is 460 sq. ft. Express the volume of the cylinder as a function of \(r \).

3. A right circular cylinder has radius \(r \) and height \(h \). The volume of the cylinder is 3700 cubic feet. The bottom of the cylinder is reinforced steel, costing $35 per square foot, whereas the sides and top cost just $5 per square foot. Express the total cost of the cylinder as a function of \(r \).

4. A silo is to be built as in the diagram, a cylinder surmounted by a hemisphere. The radius of the silo is \(r = 70 \) ft and the TOTAL silo height \(L \) is not yet determined. The cost to paint the outside of the entire silo is $12 per square foot. Express the cost to paint the silo as a function of \(L \).

5. A wind tunnel is formed of a half cylinder with a rectangular base and semicircular ends. The volume must be 10000 \(\text{ft}^3 \) and the curved roof costs $11 per \(\text{ft}^2 \) to build. Find an expression that represents the (total) cost to build the curved roof as a function of the radius \(r \) of the semicircular end.

6. A bowl in the shape of a hemisphere with radius \(R \) inches, is filled with water to a depth \(h \) inches as shown below. The area of the surface of the water is \(A = 27\pi \) square inches. Express the radius \(R \) of the bowl as a function of the depth of water \(h \).