Periodic Localization, Tate Cohomology, and Infinite Loopspaces

Talk 1

Nicholas J. Kuhn

University of Virginia

University of Georgia, May, 2010

Introduction

Three talks

My goal is to introduce a circle of ideas and results involving

- Localization with respect to periodic homology theories.
- Infinite loopspace theory.
- The Tate construction in equivariant stable homotopy theory.

The topics fit with the functor calculus theme of the conference.
In more detail . . .

- **Talk 1**
 - Periodicity in stable homotopy.
 - Bousfield localization.
 - Telescopic functors associated to Morava K–theories.

- **Talk 2**
 - Homotopy orbits and fixed points.
 - The norm map and the Tate spectrum of a G–spectrum.
 - Vanishing results for Tate spectra after periodic localization.

- **Talk 3**
 - Applications to splitting Goodwillie towers.
 - Application to computing $E^n_*(\Omega^\infty X)$.
 - Open questions and speculation (after Arone-Ching).

The stable and unstable worlds

$\mathcal{T} =$ the category of based topological spaces.

$ho(\mathcal{T}) =$ its homotopy category: weak equivalences have been inverted.

$\mathcal{S} =$ the category of spectra. In its basic flavor . . .

Definition A *spectrum* X is a sequence of based spaces X_0, X_1, \ldots, together with maps $\Sigma X_d \to X_{d+1}$.

Homotopy groups $\ldots \pi_*(X) = \colim_d \pi_{*+d}(X_d)$.

Homology groups $\ldots E_*(X) = \colim_d E_{*+d}(X_d)$.

Weak equivalences: f such that $\pi_*(f)$ is an iso. Invert these . . .

$ho(\mathcal{S}) =$ the associated homotopy category.
Why we like spectra

- $\text{ho}(S)$ is much more algebraic than $\text{ho}(T)$. . .
 - It is triangulated.
 - Cofibration sequences are equivalent to fibration sequences.

- Every spectrum is naturally equivalent to an Ω–spectrum, X such that each $X_d \to \Omega X_{d+1}$ is a weak equivalence of spaces, and Ω–spectra represent cohomology theories.

- S is home for many of our friends: Thom spectra, K–theories, elliptic spectra, topological modular forms, . . .

Back and forth: suspension spectra and infinite loopspaces

Definition For $Z \in T$, $\Sigma^\infty Z \in S$ has dth space $\Sigma^d Z$, with identity structure maps.

Definition For $X \in S$, $\Omega^\infty X \in T$ is the 0th space of an Ω–spectrum weakly equivalent to X.

The pair $\xymatrix{T \ar[r]^-{\Sigma^\infty} & S \ar[l]_-{\Omega^\infty}}$ induces adjoint functors on $\text{ho}(T)$.

$E_*(\Sigma^\infty Z) \simeq E_*(Z)$; Σ^∞ preserves cofiber sequences, hocolimits, . . .

$\pi_*(\Omega^\infty Z) \simeq \pi_*(Z)$ for $* \geq 0$; Ω^∞ preserves fib. sequences, holims, . . .
An unstable/stable hybrid: periodic unstable homotopy

Computing homotopy groups $\pi_*(Z)$ is hard.

Example $\pi_*(S^3) = ?$ Generalize a hard problem . . .

Definition If F is a finite complex, $\pi_n(Z; F) = [\Sigma^n F, Z]$

Example Computing $\pi_*(S^3; \mathbb{R}P^2)$ is still hard.

Simplify with localization . . . a self map $v : \Sigma^d F \to F$ (almost) makes $\pi_*(Z; F)$ a $\mathbb{Z}[v]$–module: given $f \in \pi_n(Z; F)$, $v \cdot f \in \pi_{n+d}(Z; F)$ is

$$\Sigma^{n+d} F \xrightarrow{v} \Sigma^n F \xrightarrow{f} Z.$$

Localize: $v^{-1} \pi_*(Z; F)$ is π_* of the telescope of

$$\text{Map}_T(F, Z) \xrightarrow{v^*} \text{Map}_T(\Sigma^d F, Z) \xrightarrow{v^*} \text{Map}_T(\Sigma^{2d} F, Z) \xrightarrow{v^*} \ldots$$

or

$$\text{Map}_T(F, Z) \xrightarrow{v^*} \Omega^d \text{Map}_T(F, Z) \xrightarrow{v^*} \Omega^{2d} \text{Map}_T(F, Z) \xrightarrow{v^*} \ldots$$

Morava K–theories

Localized at a prime p, there exist p–local spectra

$$K(1), K(2), K(3), \ldots$$

- $K(n)$ is a complex oriented ring spectrum.
- $K(n)_* = \mathbb{Z}/p[\nu_n, \nu_n^{-1}], |\nu_n| = 2p^n - 2$.
- $K(n)_*(X \wedge Y) \simeq K(n)_*(X) \otimes_{K(n)_*} K(n)_*(Y)$.

$K(1)$ is (essentially) complex K–theory with mod p coefficients.

It’s handy to define $K(0) = H\mathbb{Q}$.
Morava E–theories

Localized at a prime p, there exist p–local spectra

$$E_1, E_2, E_3, \ldots$$

- E_n is a complex oriented commutative S–algebra (a ring spectrum with a very nice multiplication).
- $E_{n*} = W(\mathbb{F}_{p^n})[u_1, \ldots, u_{n-1}][u, u^{-1}], |u_i| = 0, |u| = 2.$

\mathbb{F}_{p^n} is the field with p^n elements, $W(\mathbb{F}_{p^n}) \simeq \mathbb{Z}_p^n$ is its Witt ring.

E_1 is complex K–theory with p–adic coefficients.

E_n should be viewed as an ‘integral lift’ of $K(n)$.

The chromatic filtration of finite spectra

Subcategories of $ho(S) \ldots$

$\mathcal{C} = p$–local finite CW spectra.

$\mathcal{C}_n = K(n-1)_*\text{–acyclics in } \mathcal{C}.$

Theorem The categories \mathcal{C}_n are properly nested:

$$\mathcal{C} = \mathcal{C}_0 \supset \mathcal{C}_1 \supset \mathcal{C}_2 \supset \ldots.$$ Proper: (Mitchell, 1983).

Definition An object $F \in \mathcal{C}_n - \mathcal{C}_{n+1}$ is said to be of type n.
Periodicity in stable homotopy

The Nilpotence Theorem

Nilpotence Theorem Given \(F \in C \),
\[
\nu : \Sigma^d F \to F \text{ is nilpotent } \iff K(n)_{\ast}(\nu) \text{ is nilpotent for all } n \geq 0.
\]

‘\(\nu \) is nilpotent’ means that there exists \(k \) such that the composite
\[
\Sigma^{kd} F \xrightarrow{\nu} \ldots \xrightarrow{\nu} \Sigma^{2d} F \xrightarrow{\nu} \Sigma^d F \xrightarrow{\nu} F
\]
is null.

A categorical characterization of the \(C_n \)'s . . .

Thick Subcategory Theorem A nonempty full subcategory of \(C \) that is closed under taking cofibers and retracts is \(C_n \) for some \(n \).

\[v_n \text{-self maps} \]

Definition Given \(F \in C \), \(\nu : \Sigma^d F \to F \) is a \(v_n \)-self map if
\begin{itemize}
 \item \(K(n)_{\ast}(\nu) \) is an isomorphism.
 \item \(K(m)_{\ast}(\nu) \) is nilpotent for all \(m \neq n \).
\end{itemize}

Example \(p : S^0 \to S^0 \) is a \(v_0 \)-self map.

Example (Adams) There exists a stable map \(A : \Sigma^8 \mathbb{R}P^2 \to \mathbb{R}P^2 \) that is multiplication by \(v_1^4 \) in \(K \)-theory. \(A \) is a \(v_1 \)-self map.

Remark The cofiber of a \(v_n \)-self map will be in \(C_{n+1} \).
Periodicity in stable homotopy

Every kid wants an ice cream cone

Periodicity Theorem

- \(F \in C_n \iff F \) has a \(\nu_n \)-self map.

- Given \(F, G \in C_n \) with \(\nu_n \)-self maps \(u : \Sigma^c F \rightarrow F \) and \(v : \Sigma^d G \rightarrow G \), and \(f : F \rightarrow G \), there exist \(i, j \) such that \(ic = jd \) and the diagram

\[
\begin{array}{ccc}
\Sigma^i F & \xrightarrow{\Sigma^j f} & \Sigma^j G \\
\downarrow{u^i} & & \downarrow{v^j} \\
F & \xrightarrow{f} & G
\end{array}
\]

homotopy commutes.

Telescopes

For \(F \) of type \(n \), let \(T(F) \) be the mapping telescope of a \(\nu_n \)-self map:

\[
T(F) = \operatorname{hocolim}\{ F \xrightarrow{\nu} \Sigma^{-d} F \xrightarrow{\nu} \Sigma^{-2d} F \xrightarrow{\nu} \ldots \}.
\]

Consequences of the Periodicity Theorem . . .

- \(T(F) \) is independent of choice of self map.

- If \(F \) and \(F' \) are both of type \(n \), then

\[
T(F)_*(W) = 0 \iff T(F')_*(W) = 0.
\]

Definition Let \(T(n) \) ambiguously denote \(T(F) \) for any particular type \(n \) finite spectrum \(F \).

- \(T(n)_*(W) = 0 \Rightarrow K(n)_*(W) = 0. \)

Telescope Conjecture The converse is true. Still open for \(n > 1 \).
Resolutions

Another consequence of the Periodicity Theorem . . .

Resolution Theorem There exists a diagram in \(\mathcal{C} \),

\[
\begin{array}{cccccc}
F(1) & \xrightarrow{f(1)} & F(2) & \xrightarrow{f(2)} & F(3) & \rightarrow \cdots \\
\downarrow & & \downarrow & & \downarrow & \\
S^0 & \swarrow & f(2) & \rightarrow & F(3) & \leftarrow \cdots \\
\end{array}
\]

such that each \(F(k) \in \mathcal{C}_n \), and \(\operatorname{hocolim}_k F(k) \rightarrow S^0 \) induces an \(T(m)_* \)-isomorphism for all \(m \geq n \).

Bousfield localization

\(E \)-local spectra

Definitions Fix a spectrum \(E \).

\(f : Y \rightarrow Z \) is an \(E_* \)-iso if \(E_*(f) \) is an isomorphism.

\(X \) is \(E \)-local if every \(E_* \)-iso \(f : Y \rightarrow Z \) induces a weak equivalence

\[
f^* : \operatorname{Map}_S(Z, X) \rightarrow \operatorname{Map}_S(Y, X).
\]

Remark This condition can be stated in terms of \(E_* \)-acyclics . . .

\[
X \text{ is } E \text{-local} \iff X^*(W) = 0 \text{ whenever } E_*(W) = 0 \\
\iff [W, X] = 0 \text{ whenever } E_*(W) = 0.
\]

Example \(K(n)_*(W) = 0 \Rightarrow K(n)^*(W) = 0 \Rightarrow E_n^*(W) = 0 \).
Thus \(E_n \) is \(K(n) \)-local.
Localization functors

(Bousfield, 1970’s) Given $E \in S$, there exists

- A functor $L_E : S \to S$.
- A natural transformation $\eta_X : X \to L_E X$ satisfying
 - $L_E X$ is E–local.
 - $\eta_X : X \to L_E X$ is an E_*–iso.

A formal consequence . . . L_E is idempotent . . .

- $\eta_{L_E X} \simeq L(\eta_X) : L_E X \simeq L_EL_E X$.

L_E inverts E_*–isos, and ‘kills’ E_*–acyclic spectra, in a minimal way.

Examples

Let $SG =$ Moore spectrum of type G.

Examples $L_{S\mathbb{Z}(p)} =$ localization at p. $L_{S\mathbb{Z}/p} =$ completion at p.

$L_E = L_F$ when $E_*(W) = 0 \iff F_*(W) = 0$.

Examples $L_{S\mathbb{Z}/p} = L_{S\mathbb{Z}/p^2}$. $L_K = LKO$.

More generally, $E_*(W) = 0 \Rightarrow F_*(W) = 0$ implies that $L_F X \simeq L_F L_E X$.

Example $L_{K(n)} = L_{K(n)}L_{T(n)}$.

Remark Telescope Conjecture asks if $L_{T(n)} = L_{K(n)}$.
More examples

Constructions yielding E–local objects . . .

- $X \to Y \to Z$ a fib. seq. with 2 out of 3 E–local \Rightarrow the 3rd is E–local.
- X is E–local $\Rightarrow \text{Map}_S(Y, X)$ is E–local.
- $X_i, i \in I$, are E–local $\Rightarrow \prod_{i \in I} X_i$ is E–local.
- G acts on an E–local $X \Rightarrow X^hG$ is E–local.
- R a ring spectrum $\Rightarrow R$–module spectra (including R!) are R–local.

Example Completed at 2, $L_{K(1)}S$ is the fiber of $KO \xrightarrow{\Psi^3-1} KO$. Similar for p odd. Note: $KO = K^h\mathbb{Z}/2$. There are now nice descriptions of $L_{K(2)}S$ in terms of spectra of the form E^hG_2 with G finite. These are computationally useful!

Telescopic functors

The Periodicity Theorem well packaged for infinite loopspace theory . . .

Theorem (Bousfield $n = 1$, K. all n, 1980’s) For each $n \geq 1$ (and each p), there is a functor $\Phi_n : \mathcal{T} \to \mathcal{S}$ satisfying the following properties.

- For all spaces Z, $\Phi_n(Z)$ is $T(n)$–local.
- There is a natural isomorphism
 $$v^{-1}\pi_*(Z; F) \simeq [F, \Phi_n(Z)]_*$$
 for all unstable v_n–maps $v : \Sigma^dF \to F$, and spaces Z.
- For all spectra X, there is a natural weak equivalence
 $$\Phi_n(\Omega^\infty X) \simeq L_{T(n)}X.$$

Remark The first two properties (almost) characterize Φ_n.
Applications to spectra

Different spectra can have homotopy equivalent 0th spaces. However . . .

Proposition $\Omega^\infty X \simeq \Omega^\infty Y \Rightarrow L_{T(n)}X \simeq L_{T(n)}Y$ for all n.

Proof: Apply Φ_n to the equivalence $\Omega^\infty X \simeq \Omega^\infty Y$.

Example If R is a commutative S–algebra, $\Omega_1^\infty R$ has a delooping classically denoted by R_\otimes, and more recently by $gl_1(R)$. So

$$L_{T(n)}gl_1(R) \simeq L_{T(n)}R.$$

(Bousfield, 1982): With $n = 1$, recover the Adams–Priddy Thm that $BO_\otimes \simeq BO_\otimes$, suitably completed.

(Rezk, 2006): Let $R = E_n$, then identify, in terms of formal groups, the resulting ‘logarithm’ $l_{n,p} : E_0^0(Z)^\times \to E_0^0(Z)$.

Remark η_n will make an appearance in the other talks.

Applications to spectra (cont.)

Proposition After $T(n)$–localization, the evaluation map

$$\epsilon : \Sigma^\infty \Omega^\infty X \to X$$

has a natural section

$$\eta_n : L_{T(n)}X \to L_{T(n)}\Sigma^\infty \Omega^\infty X.$$

Proof: Apply Φ_n to the inclusion $(\Omega^\infty X) \to \Omega^\infty \Sigma^\infty (\Omega^\infty X)$.

Corollary For all X, $\epsilon^* : E_n^*(X) \to E_n^*(\Omega^\infty X)$ is split monic.

Remark By contrast, the kernel of $\epsilon^* : H^*(X; \mathbb{Z}/2) \to H^*(\Omega^\infty X; \mathbb{Z}/2)$ contains all elements of the form $Sq^i x$, $i > |x|$.

Remark η_n will make an appearance in the other talks.
Applications to spectra (cont.)

One more example, with $p = 2 \ldots$ there is a cofibration sequence

$$S^{-1} \xrightarrow{i} \mathbb{R}P_{-1}^\infty \xrightarrow{p} \mathbb{R}P_0^\infty \xrightarrow{t} S^0.$$

i is the inclusion of the bottom cell. t is the transfer map.

Kahn–Priddy: $\Omega^\infty t$ has a section. (Not quite true, but close enough.)

Thus $L_{T(n)} t$ has a section. We deduce that, localized at 2,

- $L_{K(n)} i$ is null for all n.
- $L_{K(n)} \mathbb{R}P_0^\infty \simeq L_{K(n)} (\mathbb{R}P_{-1}^\infty \vee S^0)$ for all n.

Contrast with speculation by Hopkins, Hovey \ldots

Conjecture X, Y finite and $L_{K(n)} X \simeq L_{K(n)} Y$ for all $n \Rightarrow X \simeq Y$.

Applications to spaces

Roughly put, the spectrum $\Phi_n(Z)$ determines the unstable v_n–periodic homotopy groups of a space Z.

Problem For ones favorite Z, identify $\Phi_n(Z)$ in familiar terms.

More useful properties of Φ_n:

- Φ_n takes homotopy pullbacks in \mathcal{T} to homotopy pullbacks in \mathcal{S}.
- $\Phi_n(\text{Map}_\mathcal{T}(A, Z)) \simeq \text{Map}_\mathcal{S}(A, \Phi_n(Z))$ for all $A, Z \in \mathcal{T}$.
- $\Phi_n(Z \langle d \rangle) \simeq \Phi_n(Z)$ for all $Z \in \mathcal{T}$ and all d.
Applications to spaces (cont.)

A strategy . . . ‘resolve’ the space \(Z\) by infinite loopspaces, and apply \(\Phi_n\).

Mahowald (1980): At 2, the James–Hopf map

\[
\Omega^{2m+1}S^{2m+1} \to \Omega\Sigma\Sigma\mathbb{R}P^{2m}
\]

induces an isomorphism on \(v_1\)-periodic homotopy.

Apply \(\Phi_1\) and deduce

Theorem Localized at 2, \(\Phi_1(S^{2m+1}) \simeq L_{K(1)}\Sigma^{2m+1}\mathbb{R}P^{2m}\).

R. Thompson: the odd primary analogue.

Applications to spaces (cont.)

A ‘conceptual’ proof, and generalization to higher \(n\) . . .

Apply \(\Phi_n\) to the resolution of \(S^{2m+1}\) by infinite loopspaces arising from the Goodwillie–Weiss tower of the identity, as analyzed by Arone–Mahowald.

(Help from B. Johnson and Dwyer.)

Theorem \(\Phi_n(S^{2m+1})\) has a finite resolution with fibers the \(T(n)\)-localization of known suspension spectra.

Example Localized at 2, there is a cofibration sequence

\[
\Phi_2(S^3) \to L_{T(2)}\Sigma^3\mathbb{R}P^2 \to L_{T(2)}\Sigma^3B,
\]

with \(B\) both \(K(1)_*\)-acyclic and fitting into a cofibration sequence

\[
\Sigma\mathbb{R}P^\infty / \mathbb{R}P^2 \to B \to \Sigma^2\mathbb{R}P^\infty / \mathbb{R}P^4.
\]
Telescopic functors

Construction of Φ_n

Step 1 An unstable map $\nu : \Sigma^d F \to F$ induces natural maps

\[
\text{Map}_T(F, Z) \xrightarrow{\nu^*} \Omega^d \text{Map}_T(F, Z) \xrightarrow{\nu^*} \Omega^{2d} \text{Map}_T(F, Z) \to \ldots
\]

Not interesting if ν is nilpotent. But if ν is ν_n-periodic, define $\Phi_F : T \to S$ by letting $\Phi_F(Z)$ have rdth space $\text{Map}_T(F, Z)$, and structure maps

$$\Phi_F(Z)_{rd} \xrightarrow{\nu^*} \Omega^d \Phi_F(Z)_{(r+1)d}.$$

By periodicity, this extends to stable F, and is natural in F.

Φ_F satisfies versions of the properties of Φ_n:

- $\Phi_F(Z)$ is $T(n)$–local.
- $\pi_*(\Phi_F(Z)) = \nu^{-1}\pi_*(Z; F)$.
- $\Phi_F(\Omega^\infty X) \simeq \text{Map}_S(F, L_{T(n)}X)$.

Step 2 Recall that the Resolution Theorem says that one has

\[
\begin{array}{ccc}
F(1) & \xrightarrow{f(1)} & F(2) & \xrightarrow{f(2)} & F(3) & \to \ldots \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
S^0 & \to & \to & \to & \to & \to & \to
\end{array}
\]

such that each $F(k)$ is of type n, and $\text{hocolim}_{k} F(k) \to S^0$ is a $T(n)_*$–iso.

Definition $\Phi_n(Z) = \text{holim}_{k} \Phi_F(k)(Z)$.

Then \ldots $\Phi_n(\Omega^\infty X) = \text{holim}_{k} \Phi_F(k)(\Omega^\infty X)$

\[\simeq \text{holim}_{k} \text{Map}_S(F(k), L_{T(n)}X)\]

\[= \text{Map}_S(\text{hocolim}_{k} F(k), L_{T(n)}X)\]

\[\simeq \text{Map}_S(S^0, L_{T(n)}X) = L_{T(n)}X.\]
Some References