ON SUMS OF THREE SQUARES

BY

JAN WÓJCIK (WARSZAWA)

N. C. Ankeny [1] gave a proof of Gauss theorem on sums of three squares based on Minkowski convex body theorem. This proof has been subsequently simplified by L. J. Mordell [4]. The aim of this note is to give another proof of Gauss theorem based on the geometry of numbers and on a theorem of Legendre on a representation of zero by ternary forms (for a simple proof see [3], p. 157-158; the case considered there is almost identical with that which we need below).

GAUSS THEOREM. A positive integer is a sum of three squares of integers if and only if it is not of the form $4^k(8k+7)$.

Lemma 1. Let x, y, z be rational number such that $x^2 + y^2 + z^2$ is an integer. Then there exist rational numbers a, b, c such that $a^2 + b^2 + c^2 = 1$ and that $ax + by + cz$ is integer.

Proof. Let $x = x_1/d, y = y_1/d, z = z_1/d$, where x_1, y_1, z_1, d are relatively prime integers. Let M denote the lattice $(u + tx, v + ty, w + tz)$ and A the lattice (u, v, w), where $u, v, w, t, ux + vy + wz$ are integers, $0 \leq t \leq d - 1$. Let $d(M)$ and $d(A)$ be the determinants of M and A, respectively, $[M : A]$ be the index of A in M. Clearly,

(1) $[M : A] = d$.

The lattice A is characterized by the congruence $ux_1 + vy_1 + wz_1 \equiv 0 \mod d$. Hence, by (1), by formula (2) and Lemma 1 of Chapter I of [2], and by Lemma 9 of Chapter III of [2], there is

$$d(M) = d(A)/[M : A] = d(A)/d \leq 1.$$

Thus

$$V = \frac{4}{3}\pi(\sqrt{2})^3 > 8 \geq 8d(M),$$

where V is the volume of the all $x^2 + y^2 + z^2 < 2$.

In virtue of Minkowski convex body theorem there exists a vector (a, b, c) in M such that

$$(a, b, c) = (u + tx, v + ty, w + tz), \quad 0 < a^2 + b^2 + c^2 < 2.$$
Since \(a^2 + b^2 + c^2 = u^2 + v^2 + w^2 + 2t(ux + vy + wz) + t^2(x^2 + y^2 + z^2) \) is an integer, it follows that \(a^2 + b^2 + c^2 = 1 \), and that \(ax + by + cz = ux + vy + wz + t(x^2 + y^2 + z^2) \) is an integer, which completes the proof.

Lemma 2. If an integer is the sum of three squares of rationals, then it is the sum of three squares of integers.

Proof. Let \(x^2 + y^2 + z^2 \) be an integer, \(x, y, z \) be rationals. Let \(a, b, c \) be rationals the existence of which is asserted in Lemma 1. We may assume \(b^2 + c^2 \neq 0 \). Then we have the identity

\[
x^2 + y^2 + z^2 = (ax + by + cz)^2 + U^2 + V^2,
\]

where

\[
U = bx - \frac{ab + c^2}{b^2 + c^2} y + \frac{-abc + bc}{b^2 + c^2} z, \quad V = cx + \frac{-abc + bc}{b^2 + c^2} y - \frac{ac^2 + b^2}{b^2 + c^2} z.
\]

The integer \(U^2 + V^2 \) is the sum of two squares of rational numbers and so it is also the sum of two squares of integers (see [5], p. 352). This proves Lemma 2.

Proof of the theorem. The necessity of the condition is easy to verify. To prove the sufficiency we may assume that \(m \equiv 7 \mod 8 \) is squarefree. In virtue of Lemma 2 it is enough to show that \(m \) is the sum of three squares of rational numbers.

Let \(m = 2^\alpha m_1 \), where \(\alpha = 0 \) or 1, \(m_1 \) odd, \(m_1 = p_1 \cdots p_r, p_i \) primes. Let

\[
\beta = \begin{cases}
0 & \text{if either } \alpha = 0, \ m_1 \equiv 1 \mod 4 \text{ or } \alpha = 1, \\
1 & \text{if } \alpha = 0, \ m_1 \equiv 3 \mod 8.
\end{cases}
\]

By a theorem of Dirichlet on primes in arithmetic progression there exists a prime \(q \) such that

\[
\left(\frac{q}{p_i} \right) = \left(\frac{-2^\beta}{p_i} \right) \quad \text{and} \quad q \equiv \begin{cases}
1 \mod 8 & \text{if } m_1 \equiv 1 \mod 4, \\
5 \mod 8 & \text{if } m_1 \equiv 3 \mod 4.
\end{cases}
\]

Hence, in virtue of the quadratic reciprocity law,

\[
\left(\frac{-2^\beta q}{p_i} \right) = 1, \quad \left(\frac{m}{q} \right) = \left(\frac{2^\alpha m_1}{q} \right) = \left(\frac{2^\alpha}{q} \right) \left(\frac{q}{m_1} \right)
\]

\[
= \left(\frac{2^\alpha}{q} \right) \left(\frac{q}{p_1} \right) \cdots \left(\frac{q}{p_r} \right) = \left(\frac{2^\alpha}{p_1} \right) \left(-\frac{2^\beta}{p_r} \right) \cdots \left(\frac{2^\alpha}{p_r} \right) = \left(\frac{2^\alpha}{m_1} \right) = 1.
\]

This implies solvability of the congruences \(x^2 \equiv -2^\beta q \mod p_i, \ x^2 \equiv m \mod q \) and consequently also of the congruences \(x^2 \equiv -2^\beta q \mod m \), \(x^2 \equiv m \mod 2^\beta q \). In virtue of a theorem of Legendre it follows that the
equation \(mt^2 - z^2 - 2^6 qu^2 = 0 \) is solvable in integers \(t, z, u \), where \(t \neq 0 \) (see [3], p. 157-158). On the other hand, since \(q \equiv 1 \mod 4 \), \(2^6 qu^2 \) is the sum of two squares of integers. Hence \(mt^2 - z^2 = 2^6 qu^2 = x^2 + y^2 \),
\(m = (x/t)^2 + (y/t)^2 + (z/t)^2 \). The proof is complete.

REFERENCES

Reçu par la Rédaction le 27. 6. 1970