§5: (NEIGHBORHOOD) SUB/BASES

PETE L. CLARK

We have found our way to an important definition: if \(\tau \) is a topology on \(X \) and \(\mathcal{F} \in 2^X \) is a family such that \(\tau = \tau(\mathcal{F}) \), we say \(\mathcal{F} \) is a \textbf{subbase} (or \textbf{subbasis}) for \(\tau \).

Example: Let \(X \) be a set of cardinality at least 2.
(a) Again, if we take \(\mathcal{F} \) to be the empty family, then \(\tau(\mathcal{F}) \) is the indiscrete topology.
(b) If \(Y \) is a subset of \(X \) and we take \(\mathcal{F} = \{ Y \} \), then the open sets in the induced topology \(\tau_Y \) are precisely those which contain \(Y \). Note that these \(2^X \) topologies are all distinct. If \(Y = X \) this again gives the indiscrete topology, whereas if \(Y = \emptyset \) we get the discrete topology. Otherwise we get a non-Hausdorff topology: indeed for \(x \in X \), \(\{ x \} \) is closed iff \(x \in X \setminus Y \).

Exercise: Let \(X \) be a set and \(Y, Y' \) be two subsets of \(X \). Show that TFAE:
(i) \((X, \tau_Y)\) is homeomorphic to \((X, \tau_{Y'})\).
(ii) \(\#Y = \#Y' \).

The nomenclature “subbase” suggests the existence of a cognate concept, that of a “base”. Based upon our above intrinsic construction of \(\tau(\mathcal{F}) \), it would be reasonable to guess that \(\mathcal{F} \) is a base, or more precisely that a basis for a topology should be a collection of open sets, closed under finite intersection, whose unions recover all the open sets. But it turns out that a weaker concept is much more useful.

Consider the following axioms on a family \(\mathcal{B} \) of subsets of a set \(X \):

(B1) \(\forall U_1, U_2 \in \mathcal{B} \) and \(x \in U_1 \cap U_2 \), \(\exists U_3 \in \mathcal{B} \) such that \(x \in U_3 \subset U_1 \cap U_2 \).
(B2) For all \(x \in X \), there exists \(U \in \mathcal{B} \) such that \(x \in U \).

The point here is that (B1) is weaker than the property of being closed under finite intersections, but is just as good for constructing the generated topology:

Proposition 1. Let \(\mathcal{B} = (\mathcal{U}_i)_{i \in I} \) be a family of subsets of \(X \) satisfying (B1) and (B2). Then \(\tau(\mathcal{B}) \), the topology generated by \(\mathcal{B} \), is given by \(\{ \bigcup_{J \subset I} \mathcal{U}_i \} \), or in other words by the collection of arbitrary unions of elements of \(\mathcal{B} \).

Proof: Let \(T \) be the set of arbitrary unions of elements of \(\mathcal{B} \); certainly \(T \subset \tau(\mathcal{B}) \). It is automatic that \(\emptyset \in T \) (take the empty union), and (B2) guarantees that \(X = \bigcup_{i \in I} \mathcal{U}_i \). Clearly \(T \) is closed under arbitrary unions, so it suffices to show that the intersection \(\mathcal{U}_{i_1} \cap \mathcal{U}_{i_2} \) of any two elements of \(\mathcal{B} \) of \(\mathcal{B} \) can be expressed as a union over some set of elements of \(\mathcal{B} \). But the point is that (B1) visibly guarantees this: for each \(x \in \mathcal{U}_{i_1} \cap \mathcal{U}_{i_2} \), by (B1) we may choose \(\mathcal{U}_x \in \mathcal{B} \) such that \(x \in \mathcal{U}_x \subset \mathcal{U}_{i_1} \cap \mathcal{U}_{i_2} \). Then

\[
\mathcal{U}_{i_1} \cap \mathcal{U}_{i_2} = \bigcup_{x \in \mathcal{U}_{i_1} \cap \mathcal{U}_{i_2}} \mathcal{U}_x.
\]
A family \(\mathcal{B} \) of subsets of \(X \) satisfying (B1) and (B2) is said to be a base (or basis) for the topology it generates. Or, to put it another way, a subcollection \(\mathcal{B} \) of the open sets of a topological space \((X, \tau) \) which satisfies (B1) and (B2) is called a base, and then every open set is obtained as a union of elements of the base. And conversely:

Exercise X.X: Let \((X, \tau) \) be a topological space and \(\mathcal{B} \) be a family of open sets. Suppose that every open set in \(X \) may be written as a union of elements of \(\mathcal{B} \). Show that \(\mathcal{B} \) satisfies (B1) and (B2).

Example X.X: In a metric space \((X, d) \), then open balls form a base for the topology: especially, the intersection of two open balls need not be an open ball but contains an open ball about each of its points. Indeed, the open balls with radii \(\frac{1}{n} \), for \(n \in \mathbb{Z}^+ \), form a base.

Example X.X: In \(\mathbb{R}^d \), the \(d \)-fold products \(\prod_{i=1}^d (a_i, b_i) \) of open intervals with rational endpoints is a base. In particular this shows that \(\mathbb{R}^d \) has a countable base, which will turn out to be an extremely nice property for a topological space to have.

Exercise X.X: a) On \(\mathbb{R} \), show that intervals of the form \((a, b) \) form a base for a topology \(\tau_S \) which is strictly finer than the standard (metric) topology on \(\mathbb{R} \). The space \((\mathbb{R}, \tau_S) \) is called the Sorgenfrey line after Robert Sorgenfrey.\(^1\) b) Show that the Sorgenfrey line does not have a countable base.

0.1. Neighborhood bases. Let \(x \) be a point of a topological space \(X \). A family \(\{N_\alpha\} \) of neighborhoods of \(x \) is said to be a neighborhood base at \(x \) (or a fundamental system of neighborhoods of \(x \)) if every neighborhood \(N \) of \(x \) contains some \(N_\alpha \). Suppose we are given for each \(x \in X \) a neighborhood base \(\mathcal{B}_x \) at \(x \). The following axioms hold:

\[(NB1) \ N \in \mathcal{B}_x \implies x \in N.\]
\[(NB2) \ N, N' \in \mathcal{B}_x \implies \text{there exists } N'' \in \mathcal{B}_x \text{ such that } N'' \subset N \cap N'.\]
\[(NB3) \ N \in \mathcal{B}_x \implies \text{there exists } V \in \mathcal{B}_x, V \subset N, \text{ such that } y \in V \implies V \in \mathcal{B}_y.\]

Conversely:

Proposition 2. Suppose given a set \(X \) and, for each \(x \in X \), a collection \(\mathcal{B}_x \) of subsets satisfying (NB1)-(NB3). Then the collections \(\mathcal{N}_x = \{ Y \mid \exists N \in \mathcal{B}_x \mid Y \supset N \} \) are the neighborhood systems for a unique topology on \(X \), in which a subset \(U \) is open iff \(x \in U \implies U \in \mathcal{N}_x \). Each \(\mathcal{N}_x \) is a neighborhood basis at \(x \).

Exercise X.X: Prove Proposition 2.

Remark: Consider the condition

\[(NB3') \ N \in \mathcal{B}_x, y \in N \implies N \in \mathcal{B}_y.\]

\(^1\)The merit of this “weird” topology is that it is often a source of counterexamples.
Replacing (NB3) with (NB3′) amounts to restricting attention to open neighborhoods. Since (NB3′) ⇒ (NB3), we may specify a topology on \(X \) by giving, for each \(x \), a family \(N_x \) of sets satisfying (NB1), (NB2), (NB3′). This is a very convenient way to define a topology: e.g. the metric topology is thus defined just by taking \(N_x \) to be the family \(\{B(x, \epsilon)\} \) of \(\epsilon \) balls about \(x \).

Here is a more interesting example. Let \(M = \{(x, y) \in \mathbb{R}^2 \mid y \geq 0\} \). Now:

For \(P = (x, y) \in M \) with \(y > 0 \), we take \(B_P \) to be the set of Euclidean-open disks \(B(P, r) \) centered at \(P \) with radius \(r \leq y \) (so that \(B(P, r) \subset M \)).

For \(P = (x, 0) \in M \), we take \(B_P \) to be the family of sets \(\{P \cup D((x, y), y) \mid y > 0\} \); in other words, an element of \(B_P \) consists of an open disk in the upper half plane which is tangent to the \(x \)-axis at \(P \), together with \(P \).

Exercise: Verify that \(\{B_P \mid P \in M\} \) satisfies (NB1), (NB2) and (NB3′), so there is a unique topology \(\tau_M \) on \(M \) with these sets as neighborhood bases. The space \((M, \tau_M)\) is called the Moore-Niemytzki plane.\(^2\)

Proposition 3. Suppose that \(\varphi : X \to X \) is a self-homeomorphism of the topological space \(x \). Let \(x \in X \) and \(N_x \) be a neighborhood basis at \(x \). Then \(\varphi(N_x) \) is a neighborhood basis at \(y = \varphi(x) \).

Proof: It suffices to work throughout with open neighborhoods. Let \(V \) be an open neighborhood of \(y \). By continuity, there exists an open neighborhood \(U \) of \(x \) such that \(\varphi(U) \subset V \). Since \(\varphi^{-1} \) is continuous, \(\varphi(U) \) is open.

As for any category, the automorphisms of a topological space \(X \) form a group, \(\text{Aut}(X) \). We say \(X \) is homogeneous if \(\text{Aut}(X) \) acts transitively on \(X \), i.e., for any \(x, y \in X \) there exists a self-homeomorphism \(\varphi \) such that \(\varphi(x) = y \). By the previous proposition, if a space is homogeneous we can recover the entire topology from the neighborhood basis of a single point. In particular this applies to topological groups.

Finally, one can also define the concept of a neighborhood subbase. We have no particular need of this in the sequel, so we leave the precise definition to the interested reader.

\(^2\)Like the Sorgenfrey line, and possibly even more so, this space is extremely useful for showing nonimplications among topological properties.