ANOTHER PROOF OF CAUCHY'S GROUP THEOREM

JAMES H. McKay, Seattle University

Since $ab = 1$ implies $ba = (ab)b^{-1} = 1$, the identities are symmetrically placed in the group table of a finite group. Each row of a group table contains exactly one identity and thus if the group has even order, there are an even number of identities on the main diagonal. Therefore, $x^2 = 1$ has an even number of solutions.

Generalizing this observation, we obtain a simple proof of Cauchy’s theorem. For another proof see [1].

CAUCHY’S THEOREM. If the prime p divides the order of a finite group G, then G has kp solutions to the equation $x^p = 1$.

Let G have order n and denote the identity of G by 1. The set

$$S = \{(a_1, \ldots, a_p) \mid a_i \in G, a_1a_2 \cdots a_p = 1\}$$

has n^{p-1} members. Define an equivalence relation on S by saying two p-tuples are equivalent if one is a cyclic permutation of the other.

If all components of a p-tuple are equal then its equivalence class contains only one member. Otherwise, if two components of a p-tuple are distinct, there are p members in the equivalence class.

Let r denote the number of solutions to the equation $x^p = 1$. Then r equals the number of equivalence classes with only one member. Let s denote the number of equivalence classes with p members. Then $r + sp = n^{p-1}$ and thus $p \mid r$.

Reference

A REMARK ON BOUNDED FUNCTIONS

V. F. Cowling, University of Kentucky

Denote by E the class of functions regular and bounded by unity in $|z| < 1$. Denote by E^* the subclass of functions of E which are in addition univalent in $|z| < 1$. Analogies of various inequalities which are known to hold for functions in the class E have been obtained for functions of the class E^*. For example, it is known [3] that there exist functions in E for which the sequence $\{a_0 + \cdots + a_n\}$ $f(z) = \sum a_nz^n$ is unbounded. On the other hand, it is shown by Fejér in [1] that if $f \in E^*$ then $|a_0 + \cdots + a_n| < 1 + (1/\sqrt{2})$ for all n. 119