THE MODULAR CURVE $X_0(169)$ AND RATIONAL ISOGENY

M. A. KENKU

1. Introduction

Let N be an integer ≥ 1. The affine modular curve $Y_0(N)$ parametrizes isomorphism classes of pairs $(E; C_N)$ where E is an elliptic curve defined over \mathbb{C}, the field of complex numbers, and C_N is a cyclic subgroup of E of order N. The compactification $X_0(N)$ is an algebraic curve defined over \mathbb{Q}.

Recently Mazur [6] proved a very important theorem on rational points on the modular curves $X_0(N)$, listing those primes N for which the curve has non-cuspidal rational points. The question of isogenies for composite N, rational over \mathbb{Q}, will be settled if one determines $X_0(N)(\mathbb{Q})$ for all N which are minimal of positive genus. In view of the articles [2, 3, 6] the outstanding cases are $N = 169$ and 125. We show here that $Y_0(169)(\mathbb{Q})$ is empty.

By the recent work of Berkovic [1] it is known that the Eisenstein quotient $J_0^*(169)$ has Mordell-Weil rank 0 over \mathbb{Q}. It then follows that $X_0(169)(\mathbb{Q})$ is finite. That result also enables us to apply a theorem of Mazur to show that, for a rational pair (E, C_N) corresponding to a rational point on $X_0(169)$, E has potentially good reduction at all primes except possibly 2, 13 and those primes $n \equiv 1 (13)$.

We construct an affine model of the curve making use of functions which are essentially modular units. The restriction on the primes at which E has potentially bad reduction translates into a similar restriction on the prime factors of the coordinate functions of our model. It is then deduced from this that $Y_0(169)(\mathbb{Q})$ is empty.

2. Preliminaries

As in the previous papers, let η be the modular form of dimension $-\frac{1}{2}$ given by

$$\eta(z) = q^{1/24} \prod (1 - q^n)$$

where $q = \exp (2\pi iz)$. The following lemma of Newmann [8] is well known.

[Lemma 1. The expression $\prod_{d|n} \eta(dz)^{r(d)}$ (where $r(d) \in \mathbb{Z}$) is a function of $X_0(N)$ so long as (i) $\sum_{d|n} r(d) = 0$, (ii) $\prod_{d|n} d^{r(d)}$ is a square, and (iii) $\prod_{d|n} \eta(dz)^{r(d)}$ has integral order at every cusp of $X_0(N)$.

For an arbitrary positive integer m, let $G(m)$ denote the multiplicative group of units of the ring of congruence classes modulo m. The following lemma is well-known.]

Received 10 July, 1979; revised 9 November, 1979.

[J. LONDON MATH. SOC. (2), 22 (1980), 239–244]
LEMMA 2. (i) $G(p^r)$ is cyclic of order $(p-1)p^{r-1}$ if p is an odd prime, and r is a positive integer.

(ii) $G(2^r) = \mathbb{Z}_2 \times \mathbb{Z}_{2^{r-2}}$.

The following theorem of Ogg [9] about cusps of $X_0(N)$ is very useful.

LEMMA 3. For each $d \mid N$, and $t = (d, N/d)$ we have $\phi(t)$ conjugate cusps $\left(\frac{x^d}{d}\right)$ of $X_0(N)$, each with ramification degree $e = t$ in $X_1(N) \to X_0(N)$ and these are all the cusps of $X_0(N)$. In particular all cusps are rational if N or $N/2$ is a square free integer.

Berkovic [1] proved the following theorem.

LEMMA 4. If m is a prime number different from 2, 3, 5, 11 and $h = (m-1, 12)$ and $12 = hq$ then for every $p \mid (m+1)/2q$, the ideal $I + pT = \mathcal{T}$ and the group $J_0(m)(\mathbb{Q})$ is finite.

In the statement above, T is the Hecke algebra of $J_0(N)$ and I is the Eisenstein ideal.

LEMMA 5. Let $N = q^2$ or q^3 where q is an odd prime. Let n be an odd prime which is different from q and such that $n \not\equiv 1(\operatorname{mod} q)$.

Suppose that E/\mathbb{Q} is an elliptic curve possessing a \mathbb{Q}-rational cyclic group C_N of order N. Let $x = j(E ; C_n)$ belong to $Y_0(N)(\mathbb{Q})$. Suppose there exists an optimal quotient $f : J_0(N)^{\text{new}} \to A$ such that $f(x)$ is of finite order in $A(\mathbb{Q})$. (This is necessarily true if the Mordell–Weil group $A(\mathbb{Q})$ is finite.) Then E has potentially good reduction at n.

Proof. Suppose that E has potentially bad reduction at n. Then the point x specialises to one of the cusps at n. Let P_0, P_∞ denote the unitary cusps which are rational. We assert that either x specialises to the reduction of P_0 or that of P_∞.

Suppose we take first the case $N = q^2$. Then besides P_0 and P_∞ there are $q-1$ other cusps P_i, $i = 1, \ldots, q-1$ which are rational in $K = \mathbb{Q}(\zeta_q)$, the cyclotomic field of q-th roots of unity, and which are conjugate by Lemma 3.

Since $n \not\equiv 1(\operatorname{mod} q)$, then the reduction \bar{P}_i of $P_i, i = 1, \ldots, q-1$ are not $\mathbb{Z}/p\mathbb{Z}$ rational; so $\bar{x} \neq \bar{P}_i$.

The argument for $N = q^3$ is similar. The rest of the proof now follows as in Corollary 4.3 of [6].

3. The modular curve $X_0(169)$

Consider the functions

$$X(\omega) = 13\eta^2(169\omega)/\eta^2(13\omega), \quad Y(\omega) = \eta^2(\omega)/\eta^2(13\omega).$$

Both functions satisfy conditions (i) and (ii) of Lemma 1. Let $j(\omega)$ be the classical modular invariant with $j(\sqrt{-1}) = 1728$. It is easy to show that the scheme of zeros
of \(X, Y, j(\omega)\) and \(j(13\omega)\) is as follows:

\[
\begin{array}{ccc}
\quad & P_0 & P_1 & P_\infty \\
X & -1 & -1 & 13 \\
Y & 13 & -1 & -1 \\
j(\omega) & -169 & -1 & -1 \\
j(13\omega) & -13 & -13 & -13 \\
\end{array}
\]

\(X\) and \(Y\) therefore also satisfy condition (iii).

Now let

\[
f(\tau) = 13\eta^2(13\tau)/\eta^2(\tau), \quad g(\tau) = \eta^2(\tau/13)/\eta^2(\tau).
\]

It is shown on page 62 of [4] that \(j(\tau) = F(T)/T\) where \(T = f(\tau)\) or \(g(\tau)\) and

\[
F(T) = (T^2 + 5T + 13)(T^4 + 7T^3 + 20T^2 + 19T + 1)^3.
\]

Suppose we put \(\tau = 13\omega\); then we have \(j(13\omega) = F(X)/X = F(Y)/Y\). Hence

\[
YF(X) - XF(Y) = 0. \tag{1}
\]

Since \(X\) and \(Y\) are of degree 13 in \(\mathbb{Q}(X_0(169))\) it is clear that

\[
\mathbb{Q}(X, Y) = \mathbb{Q}(X_0(169))
\]

especially as \(X\) does not belong to \(\mathbb{Q}(X_0(13))\). Equation (1) has \(X - Y\) as a factor. The other factor

\[
XY\{X^{12} + X^{11}Y + \ldots + 15145(X + Y)\} - 13 = 0 \tag{2}
\]

is irreducible and is the equation of an affine model of \(X_0(169)\).

The less complex equation (1) will be used most of the time but we make use of (2) to establish a congruence condition modulo 3 on \(X\) and \(Y\).

Theorem 1. The curve \(X_0(169)(\mathbb{Q})\) contains only two points which are the unitary cusp \(P_0\) and \(P_\infty\).

Proof. Let \(x = j(E; C_{169})\) belong to \(Y_0(169)(\mathbb{Q})\). By Lemma 5, the curve \(E\) has potentially good reduction at all primes \(p\) except perhaps for \(p = 2, 13\) and those \(p \equiv 1(13)\) at which \(E\) reduces to one of the \(P_i\), \(i = 1, \ldots, 12\). Consequently, if \(\omega_0\) belonging to the upper half plane \(H\) is a representative of the point on the orbit space \(H/\Gamma_0(169)\) corresponding to \(x\), then the denominator of \(j(\omega_0)\) has only 2, 13 and \(p \equiv 1(13)\) as possible prime factors. Since \(j(13\omega_0)\) is the modular invariant of an elliptic curve which is isogenous to \(E\) by an isogeny of order 13, the denominators of \(j(\omega_0)\) and \(j(13\omega_0)\) have the same prime factors. As \(j(13\omega) = F(X)/X = F(Y)/Y\) it follows that the only possible prime factors of the numerators and denominators of \(X\) are \(Y\) are 2, 13 and primes \(p \equiv 1(13)\).
Suppose that R is the integral closure of $\mathbb{Z}[j]$ in $\mathbb{Q}(X_0(169))$. We note that X and Y are units in $R[1/13]$.

Suppose then that 2 divides the denominator of $j(13\omega_0)$. Since the reduction of the $P_{1,s}$ modulo a prime ideal dividing 2 is not rational over \mathbb{F}_2, we know that x cannot reduce to any of them modulo 2. So x reduces to the reduction of either P_0 or P_∞ modulo 2.

Suppose that 2 divides the denominator of X. This implies that X specializes to ∞ at 2. Since X has a pole at P_0, while Y has a zero, we have that 2 divides the numerator of Y. It is easy to see from equation 1 (or by applying Theorem 9 and preceding results of [5]) that if 2^n, for a positive integer n, exactly divides the denominator of X, that 2^{13n} divides the numerator of Y and vice versa.

Similarly if p is a prime $\equiv 1(13)$ and divides the denominator of $j(13\omega_0)$ then x reduces modulo p to the reduction of one of the $P_{1,s}$. The prime p then divides the denominator of X and Y to the same power since X and Y have poles at the $P_{1,s}$.

On the other hand, it is possible for the prime 13 to divide the numerator of X and neither the numerator nor the denominator of Y and vice versa. Although this is possible, 13^2 does not divide the numerator of X. Before we examine the possible cases we make a useful observation: E has a potentially good reduction at 3, and hence 3 divides neither the numerator nor the denominator of X and Y. By reducing equation (2) modulo 3 it is easy to see that the only possible solutions for X and Y modulo 3, rational over \mathbb{F}_3 are $X = P_0 + 1(3)$ and $X = P_\infty - 1(3)$.

Finally we note that the Atkin-Lehner involution W_{169} permutes X and Y.

From the remarks above, we have only the following cases:

(i) $X = e_1/2^n \cdot 13^r \cdot m; \quad Y = e_2 2^{13n} \cdot 13^{13r} + 1/m,$

(ii) $X = e_1 2^{13n}/13^r \cdot m; \quad Y = e_2 13^{13r} + 1/2^n \cdot m,$

(iii) $X = e_1 \cdot 13^r \cdot 2^{13n}/m; Y = e_2 13^r/2^n \cdot m,$

(iv) $X = e_1 13 \cdot 2^{13n}/m; \quad Y = e_2/2^n \cdot m,$

(v) $X = e_1 2^{13n}/13^r \cdot m; \quad Y = e_2/m \cdot 13^r \cdot 2^n,$

where $e_i = \pm 1$ for $i = 1$ and 2, both r and n are non-negative integers and m is either 1 or a finite product of primes $\equiv 1(13)$.

We recall that

\[
F(T) = T^{14} + 26T^{13} + 325T^{12} + 2548T^{11} + 13832T^{10} + 54340T^9 + 157118T^8
+ 333580T^7 + 509366T^6 + 534820T^5 + 354536T^4 + 124852T^3 + 15145T^2 + 476T + 13,
\]

and note that all but the first and the coefficient of T are divisible by 13.

Since $X \equiv Y \mod (3)$ it is clear that $e_1 \neq e_2$ in all the five cases. In case (1)

\[
e_2 \{1 + 26e_1 (2^n \cdot 13^r \cdot m) + \ldots + 2^{14n} \cdot 13^{14r} + 1 \cdot m^{14}\}
\]

\[
e_1 \{13^{(14r+1)3} \cdot 2^{14 \times 13n} + 2e_2 13^{(13r+1)3} \cdot 2^{13 \times 13n} + \ldots + m^{14}\}.
\]
Hence, 2^{n+1} divides $m^{14}e_2 - e_1$. Since $e_1 \neq e_2$, we have $n = 0$. This implies that 13 divides $m^{14} + 1$. This is impossible since $m \equiv 1(13)$. So case (i) is impossible. For case (ii) we have

$$e_2 \{2^{13n \times 14} + 26e_1(2^{13 \times 13n} \cdot 13^r \cdot m) + \ldots + 13^{14r+1} \cdot m^{14}\}$$

$$= e_1 \{13^{(14r+1) \times 13} + 2e_2(13^{1 \times 13(13r+1)} \cdot 2^n \cdot m) + \ldots + 2^{14n} \cdot m^{14}\}.$$

Hence 13 divides $2^{14n}(e_1 m^{14} - e_2 2^{14n \times 12})$. This is impossible since $e_1 \neq e_2$ and both components are congruent to 1(13).

In case (iii) equation (1) reduces to

$$e_1 \{2^{13n \times 14} 13^{14r-1} + 26e_2(2^{13n \times 13} \cdot 13^{13r-1} \cdot m) + \ldots + m^{14}\}$$

$$= e_2 \{13^{14r-1} + 26e_1(2^n \cdot 13^{13r-1} \cdot m) + \ldots + 2^{14n} \cdot m^{14}\}.$$

This shows that 2^{n+1} divides $m^{14}e_1 - 13^{14r-1}e_2$. Since $e_1 \neq e_2$ and $m^{14} \equiv 1(8)$ while $13^{14r-1} \equiv 5(8)$, it follows that $n = 0$. This implies that m divides $2 \times 13^{14r-1}$ which is impossible; so case (iii) is also impossible.

In respect of case (iv) we have

$$e_2 \{2^{13n \times 14} \cdot 13^{13} + 26e_1(2^{13n \times 13} \cdot 13^{12} m) + \ldots + m^{14}\}$$

$$= e_1 \{1 + 26e_2(2^n \cdot m) + \ldots + 2^{14n} \cdot 13 \cdot m^{14}\}.$$

Again 2^{n+1} divides $m^{14}e_2 - e_1$. Since $e_1 \neq e_2$ then $n = 0$. But then 13 will divide $m^{14} + 746m^{13} + 1$. Since $m \equiv 1(13)$ and 746 $\equiv 5(13)$ this is impossible.

Finally in case (v) we have

$$e_2 \{2^{13n \times 14} + 26e_1(2^{13n \times 13} \cdot 13^r \cdot m) + \ldots + 13^{14r+1} \cdot m^{14}\}$$

$$= e_1 \{1 + 26e_2(2^n \cdot 13^r \cdot m) + \ldots + 13^{14r+1} \cdot m^{14} \cdot 2^{14n}\}.$$

This implies that 2^{n+1} divides $13^{14r+1} \cdot m^{14}e_2 - e_1$. Again since $e_1 \neq e_2$, we have $n = 0$; if this is so, then 13 divides 2. This is absurd.

This concludes the proof of the theorem.

Remark. In the proof of Theorem 7 of [3] we did not explain why $(\omega) - (\omega(u))$ is linearly equivalent to $(p') - (\omega(p'))$ if it is of order 7. This follows from the fact the $X_0(91)$ has exactly four points (the unitary cusps) rational over \mathbb{F}_2. This can be quickly seen from the characteristic polynomial of T_2.

References

Department of Mathematics,
University of Ibadan,
Nigeria.