DEGREES OF SUMS IN A SEPARABLE FIELD EXTENSION

I. M. ISAACS

Let F be any field and suppose that E is a separable algebraic extension of F. For elements $\alpha \in E$, we let $d\alpha$ denote the degree of the minimal polynomial of α over F. Let $\alpha, \beta \in E$, $d\alpha = m$, $d\beta = n$ and suppose $(m, n) = 1$. It is easy to see that $[F(\alpha, \beta): F] = mn$, and by a standard theorem of field theory (for instance see Theorem 40 on p. 49 of [1]), there exists an element $\gamma \in E$ such that $F(\alpha, \beta) = F(\gamma)$ and thus $d\gamma = mn$. In fact, the usual proof of this theorem produces (for infinite F) an element of the form $\gamma = \alpha + \lambda \beta$, with $\lambda \in F$.

In this paper we show that in many cases the choice of $\lambda \in F$ is completely arbitrary, as long as $\lambda \neq 0$. In Theorem 63 on p. 71 of [1], it is shown that if $n > m$ and n is a prime different from the characteristic of F, then $d\gamma(\alpha + \beta) = mn$. The present result includes this.

THEOREM. Let $E \supseteq F$ be fields as above and let $\alpha, \beta \in E$ with $d\alpha = m$, $d\beta = n$ and $(m, n) = 1$. Then $d\gamma(\alpha + \beta) = mn$ for all $\lambda \neq 0, \lambda \in F$ unless the characteristic, $\text{ch}(F) = p$, a prime, and

(a) $p \mid mn$ or $p < \min(m, n)$,

(b) if m or n is a prime power, then $p \mid mn$ and

(c) if $q > m$ for every prime $q \mid n$, then $p \mid n$.

PROOF. First we reduce the problem to one of group representations. We may assume without loss that E is a finite degree Galois extension of F and let G be the Galois group. Then G transitively permutes the sets of roots $A = \{\alpha_i | 1 \leq i \leq m\}$ and $B = \{\beta_j | 1 \leq j \leq n\}$ of the minimal polynomials of α and β. Let $V \subseteq E$ be the linear span of $A \cup B$ over F. Then V is a G-module over F and in the action of G on V there exists orbits A and B with $|A| = m$, $|B| = n$ and $(m, n) = 1$. We show by induction on $|G|$ that if $\alpha \in A$ and $\beta \in B$, then $\alpha + \beta$ lies in an orbit of size mn, unless $\text{ch}(F) = p$ and (a), (b) and (c) hold. This will clearly prove the theorem when applied to $\lambda \beta$ in place of β.

Let $H = G_\alpha$ and $K = G_\beta$, the stabilizers in G of α and β. Then $|G:H| = m$, $|G:K| = n$ and since $(m, n) = 1$, a standard argument yields $|G:H \cap K| = mn$ and H and K act transitively on B and A respectively. It follows that G is transitive on $A \times B$ and thus all elements of V of the form $\alpha_i + \beta_j$ are conjugate under the action of G. Suppose that $\alpha + \beta$ does not have exactly mn conjugates. Then not all $\alpha_i + \beta_j$ are distinct and we may assume that $\alpha + \beta = \alpha_a + \beta_b$, where

Received by the editors June 6, 1969.

638
DEGREES OF SUMS IN A SEPARABLE FIELD EXTENSION

639

α ≠ α₀ or β ≠ β₀. Then α − α₀ = β₀ − β ≠ 0 and the subspaces \(W_1 \) and \(W_2 \) of \(V \), spanned by \(A \) and \(B \) respectively, intersect nontrivially. Set \(U = W_1 \cap W_2 \) and observe that \(W_1, W_2 \) and \(U \) are all \(G \)-invariant spaces.

We remark at this point that if \(\text{ch}(F) \nmid |G| \), an easy contradiction could be obtained using the fact that \(W_1 \) and \(W_2 \) are homomorphic images of the permutation modules determined by the actions of \(G \) on \(A \) and \(B \). In this case, the modules would be completely reducible and since \(HK = G \), it is not hard to see that they can have only the principal module as a common constituent. It would follow that \(G \) acts trivially on \(U \) and thus fixes \(α - α₀ \). A contradiction results since \(α = α₀ \) for some \(g \in G \) and the order of this element is prime to \(\text{ch}(F) \).

It does not appear that this approach will lead to a full proof of the theorem and we continue along a different route.

It may be assumed that \(G \) acts faithfully on \(V \) or else the inductive hypothesis may be applied to \(G/N \) where \(N \) is the kernel of the action, and the result follows immediately. Suppose now that there is a subgroup \(G₀ < G \) which acts so that the orbits \(A₀ \) and \(B₀ \) of \(α \) and \(β \) under \(G₀ \) satisfy \(m₀ \mid m, n₀ \mid n, α₀ ∈ A₀ \) and \(β₀ ∈ B₀ \), where \(m₀ = |A₀| \) and \(n₀ = |B₀| \). Then \((m₀, n₀) = 1 \) and since \(α + β = α₀ + β₀ \), the number of conjugates of \(α + β \) under \(G₀ \) is \(< m₀n₀ \). Therefore, induction applies and \(\text{ch}(F) = p \), a prime, and by (a), \(p \mid m₀n₀ \) or \(p < \min(m₀, n₀) \). Since \(m₀ \mid m \) and \(n₀ \mid n \), (a) holds for \(m \) and \(n \). Similarly, (b) and (c) for \(m₀ \) and \(n₀ \) imply the corresponding statements for \(m \) and \(n \). We may assume then that no such subgroup \(G₀ \) exists.

Now, \(G \) permutes the set of cosets of \(U \) in \(W_1 \) and is transitive on the set of those cosets which contain elements of \(A \). All of these, therefore, contain equal numbers of elements of \(A \). We have \(α, α₀ ∈ U + α \) and if \(A₀ = A \cap (U + α) \), then \(|A₀| \nmid |m| \). Let \(G₀ \) be the stabilizer of the coset \(U + α \) in \(G \). Clearly, \(H ⊆ G₀ \) and hence \(G₀ \) is transitive on \(B \). We claim that \(G₀ \) is transitive on \(A₀ \). If \(αᵢ ∈ A₀ \), then for some \(g ∈ G \), \(αᵢ = αᵢ \). Thus \((U + α)ᵢ = U + αᵢ = U + α \) and so \(g ∈ G₀ \). This establishes transitivity and by the preceding paragraph, we cannot have \(G₀ < G \). Therefore \(G \) stabilizes \(U + α \) and hence \(A ∈ U + α \). By similar reasoning, \(B ⊆ U + β \). Now, \(βᵢ = uᵢ + β \) for some \(uᵢ ∈ U \). Summing over \(βᵢ ∈ B \), we obtain \(\sum βᵢ = \sum uᵢ + nβ \). Thus \(nβ = u + γ \), where \(u ∈ U \) and \(γ = \sum βᵢ \) is fixed by \(G \). Let \(N < G \) be the kernel of the action of \(G \) on \(A \). Then \(N \) fixes all elements of \(W_1 ⊇ U \) and thus \(N \) fixes \(nβ \). If \(\text{ch}(F) \nmid n \), then \(N \) fixes \(β \) and hence fixes all \(βᵢ = uᵢ + β \). Thus \(N \) acts trivially on \(V \), the span of \(A ∪ B \). Therefore, \(N = 1 \) and \(G \) is isomorphic to a subgroup of the symmetric group on \(A \). Thus \(|G||m! \) and \(n|m! \).
Since $n > 1$, this shows that the hypotheses of (c) cannot occur if $\text{ch}(F) \mid n$ and thus (c) is proved.

Now suppose that $\text{ch}(F) \ni mn$. By interchanging A and B in the above argument, we obtain $|G|n!$ and all prime divisors of $|G|$ are $\leq \min(m, n)$. If $\text{ch}(F) = 0$ or $\text{ch}(F) = p$, a prime $> \min(m, n)$, then $\text{ch}(F) \mid |G|$. If m or n is a prime power, we may suppose that $m = q^e$ and let Q be a Sylow q-subgroup of K. Then $|K:K \cap H| = q^e$ so $K = (K \cap H)Q$ and it follows that Q is transitive on A. Thus under any of the assumptions: $\text{ch}(F) = 0$, $\text{ch}(F) = p > \min(m, n)$ or $m = q^e$, there exists a subgroup $L \subseteq K$ which is transitive on A and such that $\text{ch}(F) \mid |L|$. The proof will be complete if a contradiction follows from the existence of such an L.

We have seen that $n\beta = u + \gamma$ where $u \in U$ and γ is fixed by G. As $U \subseteq W_1$, we have $u = \sum \xi_i \alpha_i$, where $\xi_i \in F$ and α_i runs over A. Now if $x \in L \subseteq K$, we have

\[
\beta = \beta^x = \frac{1}{n} \sum \xi_i \alpha_i^x + \frac{1}{n} \gamma.
\]

Now set $\delta = \sum \alpha_i$, and observe that since L is transitive on A, we have $\sum_{x \in L} \alpha_i^x = (|L|/m)\delta$. Now, summing (*) over L, we obtain

\[
|L| \beta = \frac{|L|}{mn} \sum \xi_i \delta + \frac{|L|}{n} \gamma.
\]

Note that division by m and n in the above equations makes sense in V since $\text{ch}(F) \mid mn$. Since γ and δ are fixed by G and $\text{ch}(F) \mid |L|$, it follows that β is fixed by G. This is a contradiction since $\beta \neq \beta_b$ and the proof is complete.

Now let G be any finite group and suppose that V is any faithful finite-dimensional G-module over a field K. Suppose that $u, v \in V$ are permuted by G into orbits of sizes m and n respectively and that $u + v$ lies in an orbit of size k. Then there exist fields $E \supseteq F \supseteq K$, with E a finite separable extension of F, and elements $\alpha, \beta \in E$ with $d\alpha = m$, $d\beta = n$ and $d(\alpha + \beta) = k$.

The construction is as follows. Let $e = \dim_K(V)$ and let X_1, X_2, \ldots, X_e be indeterminates. Set $R = K[X_1, \ldots, X_e]$ and let E be the quotient field of R. Now fix a basis for V and identify this basis with the X_i so that V is identified with the linear span of the X_i in R. Now it is clear that each element of G determines an automorphism of R and hence of E. Let F be the fixed field of G in E and let α and β be the elements of E corresponding to u and v. These elements clearly have the desired properties.
It follows that to establish the best possible improvement of the present theorem with conditions given in terms of \(m, n \) and \(\text{ch}(F) \), it suffices to consider only group representations. It is possible that the theorem could be improved by dropping the possibility \(\rho < \min(m, n) \) in (a). Some limitations on possible improvements are given by the following examples for \(m = 3 \) and \(n = 4 \).

Example 1. \(\text{Ch}(K) = 2 \). Let \(G = A_4 \), the alternating group on four symbols. Let \(V^* \) be a four dimensional vector space over \(GF(2) \) and let \(G \) permute a basis, \(\{ w, x, y, z \} \), in the natural manner. Let \(V_0 = \{ 0, w+x+y+z \} \) and let \(V = V^*/V_0 \). The image of \(w \) in \(V \) has four conjugates under \(G \) and the image of \(w+x \) has three conjugates. The sum of these elements has four conjugates.

Example 2. \(\text{Ch}(K) = 3 \). Let \(V \) be a four dimensional vector space over \(K = GF(3) \), with basis \(\{ w, x, y, z \} \). Let \(G \) be the group generated by the elements \(\rho, \sigma, \tau \in \text{GL}(V) \) whose matrices are

\[
\rho = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \sigma = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}, \quad \tau = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}.
\]

Then \(G \) is the direct product of the subgroups \(\langle \rho, \sigma \rangle \) of order 6 and \(\langle \tau \rangle \) of order 2. The orbit of \(w \) under \(G \) is \(\{ w, w+x, w-x \} \) and the orbit of \(y \) under \(G \) is \(\{ y, y+x, z, z+x \} \). However, the orbit of \(w+y \) is \(\{ w+y, w+y+x, w+y-x, w+z, w+z+x, w+z-x \} \), which has six elements.

Reference

University of Chicago, Chicago, Illinois 60637