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1. Introduction

Despite the pretentious working title, our aspiration here is not to explain the
Geometry of Numbers (GoN) but rather how to apply GoN techniques and results
to prove representation theorems for quadratic forms, and to do so in a rather
general algebraic context.

2. G-Lattices

An ideal I in a ring R is odd if it is coprime to 2R.

Theorem 1. Let (R, | |) be a normed Dedekind domain with fraction field K, let
q(x) = q(x1, . . . , xn) be a nondegenerate quadratic form over R, and let I be an odd
ideal of R which is coprime to Disc q. We suppose:
• The base change of q to K is similar to a Pfister form.
• The base change of q to R/I is isotropic.
a) There is an R-sublattice ΛI ⊂ Rn such that:
(i) We have Rn/ΛI

∼= (R/I)
n
2 and thus χ(Rn/ΛI) = I

n
2 .

1
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(ii) We have q(v) ≡ 0 (mod I) for all v ∈ ΛI .
b) The R-module ΛI is free iff I

n
2 is principal.

Proof. a) Step 1: We suppose I = pe is an odd prime power. Then k := R/p is a
field of characteristic different from 2. Let Rp be the completion of R at p; then
Rp is a nondyadic CDVR with fraction field Kp, and since m is prime to Disc q,
the base change q̂ of q to Rp is nonsingular. Since the reduction of q̂ modulo p
is isotropic, by Hensel’s Lemma so is q̂. Thus q̂/Kp

is universal and similar to a
Pfister form, hence is itself an isotropic Pfister form. Every isotropic Pfister form

is hyperbolic, so q̂Kp
∼=Kp

⊕n
2
i=1 H. Since q̂ is nonsingular, it follows that q̂ ∼=Rp⊕n

2
i=1 H (e.g. [Sc, Thm. 1.6.13]), and thus q/R/(m)

∼=
⊕n

2
i=1 H. If the ith copy of the

hyperbolic plane is the free R/I-module with basis ei, fi, put M = ⟨e1, . . . , en
2
⟩R/I .

Let φ : Rn → (R/I)n be the canonical map, and let ΛI = φ−1(M). Then ΛI is an
R-submodule of ΛI with finite length quotient, so it is an R-lattice in Kn. Clearly
χ(Rn/ΛI) = I

n
2 , and by construction, q(v) ≡ 0 (mod m) for all v ∈ ΛI , so this

completes the proof of Theorem 1 in this case.
Step 2: Suppose I = pe11 · · · perr . For 1 ≤ i ≤ r, put Ii = peii . By Step 1, for 1 ≤ i ≤ r

there is a sublattice Λi ⊂ Rn such that χ(Rn/Λi) = I
n
2
i and q|Λi ≡ 0 (mod Ii). Put

ΛI =
∩r

i=1 Λi. Then ΛI is a sublattice of Rn; by the Chinese Remainder Theorem
χ(Rn/ΛI) =

∏r
i=1 χ(R

n/Λi) = I
n
2 and q(v) ≡ 0 (mod I) for all v ∈ ΛI .

b) This follows easily from the fact that Rn/ΛI
∼= (R/I)

n
2 . �

Remark 2.1: a) Let q = q(x1, . . . , xn) be a Pfister form over a field K. Then: (i) q
must be principal, i.e., must K-represent 1; and n must be a power of 2. Observe
that every nondegenerate form is similar to a principal form: if q K-represents
a ∈ K×, then 1

aq is principal.
b) The hypotheses exclude the (trivial) n = 1 case: the base change of q to R/(m)
is assumed to be isotropic and (since m is prime to disc q) nondegenerate, and this
requires at least two variables.
c) A nondegenerate binary quadratic form overK is a Pfister form iff itK-represents
1. Thus every nondegenerate binary form is similar to a Pfister form.
c) A nondegenerate quaternary form is similar to a Pfister form iff its discriminant
is 1. Indeed, by rescaling we may assume q K-represents 1 and thus we have a
diagonalization q ∼= ⟨1, a, b, c⟩. Setting abc = disc q = 1, we find that as square
classes in k, c ∼= ab and thus q ∼= ⟨1, a, b, ab⟩.
d) As k increases, the Pfister forms become sparser among all nondegenerate (2k)-
ary quadratic forms. There are many beautiful characterization theorems for Pfister
forms – for instance, a form is a Pfister form iff the base change to its generic
splitting field is hyperbolic – but, so far as I know, starting with k = 3 there is no
concrete description of k-fold Pfister forms which is any simpler than the definition:

q ∼=
k⊗

i=1

⟨1, ai⟩.

3. Normed Domains

Now we give the formalism of elementwise norms and ideal norms on an integral
domain R. This material was first introduced in [FID] and then used in [ADCI].

The first four subsections are reproduced verbatim from [ADCI]; the last two
subsections are “new”, although in truth they seem rather routine.
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3.1. Elementwise Norms.

A norm on a ring R is a function | · | : R → N such that
(N0) |x| = 0 ⇐⇒ x = 0,
(N1) ∀x, y ∈ R, |xy| = |x||y|, and
(N2) ∀x ∈ R, |x| = 1 ⇐⇒ x ∈ R×.

A normed ring is a pair (R, | · |) where | · | is a norm on R. A nonzero ring
admitting a norm is necessarily a domain. We denote the fraction field by K.

Let R be a domain with fraction field K. We say that two norms | · |1, ·| · |2
on R are equivalent – and write | · |1 ∼ |·|2 if for all x ∈ K, |x|1 < 1 ⇐⇒ |x|2 < 1.

Remark 3.1: Let (R, | · |) be a normed domain with fraction field K. By (N1)
and (N2), | · | : (R•, ·) → (Z+, ·) is a homomorphism of commutative monoids.
It therefore extends uniquely to a homomorphism on the group completions, i.e.,

| · | : K× → Q>0 via |xy | =
|x|
|y| . This map factors through the group of divisibility

G(R) = K×/R× to give a map K×/R× → Q>0.

Example 3.2: The usual absolute value | · |∞ on Z (inherited from R) is a norm.

Example 3.3: Let k be a field, R = k[t], and let a ≥ 2 be an integer. Then
the map f ∈ k[t]• 7→ adeg f is a non-Archimedean norm | · |a on R and the norms
obtained for various choices of a are equivalent. As we shall see, when k is finite,
the most natural normalization is a = #k. Otherwise, we may as well take a = 2.

Example 3.4: Let R be a discrete valuation ring (DVR) with valuation v : K× → Z
and residue field k. For any integer a ≥ 2, we may define a norm on R, | · |a : R• →
Z>0 by x 7→ av(x). (Note that these are the reciprocals of the norms x 7→ a−v(x)

attached to R in valuation theory.) Using the fact that G(R) = K×/R× ∼= (Z,+)
one sees that these are all the norms on R. That is, a DVR admits a unique norm
up to equivalence.

Example 3.5: Let R be a UFD. Then Prin(R) is a free commutative monoid on the
set ΣR of height one primes of R [B-CA, VII.3.2]. Thus, to give a norm map on R
it is necessary and sufficient to map each prime element π to an integer nπ ≥ 2 in
such a way that if (π) = (π′), nπ = nπ′ .

3.2. Ideal norms.

For a domain R, let I+(R) be the monoid of nonzero ideals of R under multiplica-
tion and I(R) be the monoid of nonzero fractional R-ideals under multiplication.

An ideal norm on R is a nondegenerate homomorphism of monoids | · | : I+(R) →
(Z>0, ·). We extend the norm to the zero ideal by putting |(0)| = 0. In plainer
language, to each nonzero ideal I we assign a positive integer |I|, such that |I| =
1 ⇐⇒ I = R and |IJ | = |I||J | for all ideals I and J .
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3.3. Finite Quotient Domains.

A commutative ring R has the property of finite quotients (FQ) if for all nonzero
ideals I of R, the ring R/I is finite [BW], [CL70], [LeMo].

Obviously any finite ring satisfies (FQ). On the other hand, it can be shown that
any infinite ring satisfying property (FQ) is necessarily a domain. We define an
finite quotient domain to be an infinite integral domain satisfying (FQ) which
is not a field. A finite quotient domain is a Noetherian domain of Krull dimension
one, hence it is a Dedekind domain iff it is integrally closed.

Example 3.6: The rings Z and Fp[t] are finite quotient domains. From these many
other examples may be derived using the following result.

Proposition 2. Let R be a finite quotient domain with fraction field K.
a) Let L/K be a finite extension, and let S be a ring with R ⊂ S ⊂ L. Then, if not
a field, S is a finite quotient domain.
b) The integral closure R̃ of R in K is a finite quotient domain.
c) The completion of R at a maximal ideal is a finite quotient domain.

Proof. Part a) is [LeMo, Thm. 2.3]. In particular, it follows from part a) that R̃ is

a finite quotient domain. That R̃ is a Dedekind ring is part of the Krull-Akizuki
Theorem. Part c) follows immediately from part a) and [CL70, Cor. 5.3]. �

Let R be a finite quotient domain. For a nonzero ideal I of R, we define |I| = #R/I.
It is natural to ask whether I 7→ |I| gives an ideal norm on R.

Proposition 3. Let I and J be nonzero ideals of the finite quotient domain R.
a) If I and J are comaximal – i.e., I + J = R – then |IJ | = |I||J |.
b) If I is invertible, then |IJ | = |I||J |.
c) The map I 7→ |I| is an ideal norm on R iff R is integrally closed.

Proof. Part a) follows immediately from the Chinese Remainder Theorem. As for
part b), we claim that the norm can be computed locally: for each p ∈ ΣR, let |I|p
be the norm of the ideal IRp in the local finite norm domain Rp. Then

|I| =
∏
p

|I|p.

To see this, let I =
∩n

i=1 qi be a primary decomposition of I, with pi = rad(qi). It
follows that {q1, . . . , qn} is a finite set of pairwise comaximal ideals, so the Chinese
Remainder Theorem applies to give

R/I ∼=
n∏

i=1

R/qi.

Since R/qi is a local ring with maximal ideal corresponding to pi, it follows that
|qi| = |qiRpi |, establishing the claim.
Using the claim reduces us to the local case, so that we may assume the ideal
I = (xR) is principal. In this case the short exact sequence of R-modules

0 → xR

xJ
→ R

xJ
→ R

(x)J
→ 0
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together with the isomorphism
R

J

·x→ xR

xJ
does the job.
c) If R is integrally closed (hence Dedekind), every ideal is invertible so this is an
ideal norm. The converse is [BW, Thm. 2]. �

In all of our applications, R is either an S-integer ring in a global field or a com-
pletion of such at a height one prime. By the results of this section, the map
I 7→ |I| = #R/I is an ideal norm on these rings. We will call this norm canonical.
We ask the reader to verify that the norm of Example 1.1 is canonical, as are the
norms | · |#k of Examples 1.2 and 1.3 when the field k is finite.

3.4. Localization. Let R be a Dedekind domain endowed with an ideal norm | · |.
Let R′ be an overring of R, i.e., a ring intermediate between R and its fraction
field K: let ι : R ↪→ S be the inclusion map. Then the induced map on spectra
ι∗ : SpecR′ → SpecR is also an injection, and S is completely determined by the
image W := ι∗(SpecR′). Namely [LM, Cor. 6.12]

R′ = RW :=
∩

p∈W

Rp.

This allows us to identify the monoid I(RW ) of ideals of RW as the free submonoid
of the free monoid I(R) on the subset W of SpecR and thus define an overring

ideal norm | · |W on RW as the composite map I(RW ) → I(R)
|·|→ Z+.

Remark 3.7: As above, we single out the following properties of | · |W :

• Every ideal I ∈ R may be uniquely decomposed as WII
′ where WI is divisi-

ble by the primes of W and I ′ is prime to W , and we have

|I|W = |WII
′|S = |I ′|S = |I ′|.

• For all ideals I, |I|W ≤ |I|.

Theorem 4. Let R be a Dedekind domain with fraction field K, | · | an ideal norm
on R, W ⊂ ΣR and RW =

∩
p∈W Rp the corresponding overring. Let q(x) ∈ R[x] be

a quadratic form, and suppose that E ∈ R>0 is a constant such that for all x ∈ Kn,
there exists y ∈ Rn such that |q(x − y)| ≤ E. Then for all x ∈ Kn, there exists
yW ∈ Rn

W such that |q(x− yW )|W ≤ E.

3.5. Extended Norms.

Suppose | · | is a norm on the integrally closed domain R with fraction field K.
Let L/K be a finite field extension, and let S be the integral closure of R in L. Let
NL/K : L → K be the norm map in the sense of field theory. Since R is integrally
closed, NL/K(S) ⊂ R. Consider the composite map

| · |S = | · | ◦NL/K : S → N.

Proposition 5. a) The map | · |S : S → N is a norm function on S.
b) If R is a Dedekind domain and | · | is an ideal norm on S, then S is a Dedekind
domain and | · |S is an ideal norm on S.
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c) If R is a finite-quotient domain with canonical norm | |, then S is a finite-
quotient domain and | |S is its canonical norm. Moreover, since R is assumed to
be integrally closed, it is a Dedekind domain and thus so is S, and the canonical
norms | · | and | · |S are ideal norms.

The proof is straightforward and left to the reader.

3.6. Finite Length Modules, Lattices and Covolumes.

Let R be a Dedekind domain with fraction field K. Recall that a finitely gen-
erated R-module is projective iff it is torsionfree [CA, Thm. 451].

Let M be a finite length R-module: that is, M admits a composition series

0 = M0 ⊂ M1 ⊂ . . . ⊂ MN = M

with successive quotientsMi+1/Mi simpleR-modules. The simpleR-moduleMi/Mi−1

is isomorphic to R/pi for a unique nonzero prime ideal pi of R. Following Serre,

we define the ideal χ(M) =
∏N

i=1 pi: note that the Jordan-Hölder Theorem ensures
that χ(M) is is independent of the choice of composition series. Note that the
length of M and χ(M) can be computed locally.

By an R-lattice in Kn we mean a finitely generated R-submodule Λ ⊂ Kn such
that the natural map Λ⊗R K → Kn is a K-vector space isomorphism.

If Λ1 ⊂ Λ2 ⊂ Kn are two R-lattices, then Λ2/Λ1 is a finite length R-module, so
χ(Λ2/Λ1) is defined. But moreover, observe that any two R-lattices Λ1,Λ2 ⊂ Kn

are commensurable in the sense that there exists a ∈ R• such that aΛ1 ⊂ Λ2.
Thus we may define χ(Λ1/Λ2) to be the fractional R-ideal χ(Λ2/aΛ1)a

−1; it is easy
to check that this is independent of the choice of a (c.f. [CL, § III.1]).

Now let | · | be an ideal norm on R. For a finite length R-module M we define

|M | = |χ(M)|,
and for any R-lattice Λ ⊂ Kn we define its covolume

Covol Λ = |χ(Rn/Λ)|.

4. Hermite Constants

4.1. The Hermite Invariant of a Quadratic Form.

Let R be a Dedekind domain of characteristic not 2, with fraction field K, and
let | · | be an ideal norm on R. We use this structure to carry over one of the core
notions from GoN to this abstract algebraic context, the Hermite constant.

For n ∈ Z+, let Qn(R) be the set of all nondegenerate n-ary quadratic forms
q(t) = q(t1, . . . , tn) ∈ R[t] = R[t1, . . . , tn].

1 Similarly define Qn(K) to be the non-
degenerate n-ary quadratic forms with coefficients in the fraction field K.

1Identifying a quadratic form with its Hessian matrix, we may naturally view Qn(R) as a

Zariski open subspace of affine
n(n+1)

2
-space over R. This pleasant geometric remark is doubtless

useful for something, but we will not need it here.
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For any q ∈ Qn(K), we define the Hermite invariant

γ(q) =
infv∈(Rn)• |q(v)|

|disc q| 1
n

.

Let Hn be the subgroup of GLn(K) generated by GLn(R) and the homotheties K×.
Two quadratic forms q1, q2 ∈ Qn(K) are H-equivalent if there exists m ∈ Hn such
that q2(t) = q1(mt). It is immediate from the definition that H-equivalent forms
have the same Hermite invariant.

We define the n-dimensional Hermite constant

γn(R) = sup
q∈Q(K,n)

γ(q).

Remark: q ∈ Qn(K) is isotropic iff γ(q) = 0. Thus in considerations involving
Hermite constants γn(R) we may always restrict to anisotropic forms.

It is natural and useful to make the following generalization: for any nonempty
Sn ⊂ Qn(K), put

γ(R,Sn) = sup
q∈Sn

γ(q).

In particular, let Qn(K)+ be the subset of totally positive definite forms, i.e.,
forms which are positive definite with respect to every ordering of K. Then we put

γ+
n (R) = γ(R,Qn(K)+) = sup

q∈Qn(K)+

infv∈(Rn)• |q(v)|
|disc q| 1

n

.

Example: The constant γ+
n (Z) is the Hermite constant that appears in the classical

geometry of numbers and is often simply denoted by γn.

Notice that our definition allows γn(R) = +∞. This motivates the following key
definition: an ideal norm | | on a Dedekind domain R is of Hermite type if for
all n ∈ Z+, supn γn(R) < ∞.

Even when γn(R) = ∞, there will be some subsets Sn ⊂ Qn(K) for which γ(R,Sn)
is finite – e.g., when Sn is finite! – so let us say that the norm | · | is Sn-finite when
γ(R,Sn) < ∞.

It is convenient to be able to make K-linear changes of variables, so let us agree
to only consider subsets Sn ⊂ Qn(K) which are GLn(K)-stable, i.e., for q(t) ∈ Sn

and m ∈ GLn(K), q(mt) ∈ Sn.

For q ∈ Qn(K) we may also define the isotropic Hermite invariant

γI(q) =
infv∈Rn | q(v)̸=0 |q(v)|

|disc q| 1
n

.

For anisotropic q, γI(q) = γ(q); for q isotropic, γ(q) = 0 while γI(q) ≥ |disc q|−1
n .
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We may also define the isotropic Hermite constant

γn,I(R) = sup
q∈Q(K,n)

γI(q).

Example 4.1: Let R = Z and q(x, y) = xy. Then γI(q) = 2, so γ2,I(Z) ≥ 2. In fact
we have equality, as the following result of H. Blaney shows.

Theorem 6. (Blaney [Bl48]) For all n ∈ Z+, we have γn,I(Z) ≤ 2n−1.

However we will not further consider the isotropic Hermite invariant here.

Conjecture 7. Let R be a Dedekind domain and | · | a Hermite type norm on R.
a) For W ⊂ MaxSpecR, let RW =

∩
p∈W Rp. Then the overring norm | · |W on

RW is of Hermite type.
b) For L/K a finite field extension, let S be the integral closure of R in L. Then
the extended norm | · |S on S is of Hermite type.

Remark 4.2: Calling this a “conjecture” is premature: I haven’t yet thought much
about it or even tried to prove it (although somewhat similar results in the case of
overring norms are given in [ADCI]). My feeling is rather that this is an appealingly
clean, general result, so it would certainly be nice if it were true.

Moreover, using Theorems 15 and 17, we see that Conjecture 7 has the following
appealing consequences.

Theorem 8. If Conjecture 7 holds, then the canonical norm on a Hasse domain
is of Hermite type.

Remark 4.3: It seems very likely to me that the conclusion of Theorem 8 holds
independently of Conjecture 7. In fact, I will be mildly surprised if Theorem 8 is
not already known to the experts in this area. For instance it is known that for any
totally real number field K and all n ∈ Z+, the positive Hermite constant γ+

n (ZF )
is finite: this follows from a theorem of Icaza.

Theorem 9. Let k be a field with char(k) ̸= 2, and let C/k be an integral, normal
affine algebraic curve. If Conjecture 7 holds, then the coordinate ring k[C] admits
a norm of Hermite type.

4.2. Almost metric norms.

A norm | · | on a ring R is metric if for all x, y ∈ R, |x + y| ≤ |x| + |y|. A
norm is ultrametric if for all x, y ∈ R, |x+ y| ≤ max |x|, |y|.

Example 4.4: The standard norm (Euclidean absolute value) on Z is metric.

Example 4.5: For any field k and any a ≥ 2, on the ring R = k[t] the norm
f ∈ R 7→ adeg f is ultrametric: indeed, for f, g ∈ R,

|f + g| = adeg(f+g) ≤ amaxdeg f,deg g = max adeg f , adeg g = max |f |, |g|.
Nonexample: Let R be a discrete valuation ring which is not a field, with valuation
v : R• → Z, v(0) = −∞. Then for any a ≥ 2 and x ∈ R, putting |x| = av(x) gives
a norm on R. But beware: this norm is not ultrametric nor even metric. Indeed,
let π be a uniformizing element x = π2 − 1, y = 1. Then

av(x+y) = av(π
2) = a2 > 1 + 1 = av(π

2−1) + av(1).
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Notice in particular that our definition of the norm attached to a discrete valuation
is the reciprocal of the usual definition, and thus the metric properties are lost.

In fact among all normed rings, examples of metric norms – and still more, ul-
trametric norms – seem to be quite rare. We get a slightly larger class of examples
by relaxing the metric condition, as follows.
Let | · | be a norm on a ring R. Define

A(R) = inf{A ∈ R>0 | ∀x, y ∈ R, |x+ y| ≤ A(|x|+ |y|)},
C(R) = inf{A ∈ R>0 | ∀x, y ∈ R, |x+ y| ≤ Cmax |x|, |y|}.

The following result connects some simple facts about these quantities.

Lemma 10. a) If A(R) < ∞, then for all x, y ∈ K, |x+ y| ≤ A(R)(|x|+ |y|).
b) If C(R) < ∞, then for all x, y ∈ K, |x+ y| ≤ C(R)max |x|, |y|).
c) We have A(R) ≤ C(R) ≤ 2A(R).
d) In particular, A(R) < ∞ ⇐⇒ C(R) < ∞.

Proof. . . . �
We call a norm almost metric if A(R) < ∞ (equivalently by Lemma 10, if C(R) <
∞). Note that a norm is metric if A(R) ≤ 2 and ultrametric iff C(R) = 1.

Theorem 11. Let K0 denote either Q or Fp(t). Let K/K0 be a finite separable
extension of degree d. Let S be a finite, nonempty set of places of K containing all
Archimedean places (if any), and let R be the ring of S-integers of K. TFAE:
(i) #S = 1. (ii) The unit group R× is finite.
(iii) The canonical norm function x ∈ R• 7→ #R/(x) is almost metric.
(iv) C(R) = 2d.

Proof. . . . �
Corollary 12. Let R be an S-integer ring in a number field K.
a) The canonical norm on R is almost metric iff
(i) K = Q and R = Z, or
(ii) K is imaginary quadratic and R = ZK is the full ring of integers.
b) In case (i) above, C = 2. In case (ii) above, C = 4.

4.3. Euclidean norms.

For a normed Dedekind domain (R, | · |), we define the Euclideanity

E(R) = sup
x∈K

inf
y∈R

|x− y|.

As usual, we say that | · | is a Euclidean norm on R if for all x ∈ K there exists
y ∈ R with |x − y| < 1. Thus in particular R is Euclidean if E(R) < 1 and is not
Euclidean if E(R) > 1. Because of the supremum in the definition of E(R), the
case E(R) = 1 is ambiguous: a priori it is possible for a ring with E(R) = 1 to be
Euclidean, but in every example I know with E(R) = 1, the norm is not Euclidean.
In any case, we really will want to use the stronger condition E(R) < 1 in our work
below, so this distinction is not really relevant for us.

As is well-known, in a Euclidean ring every ideal is generated by each element
of minimal norm, so a Euclidean ring is a PID.
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Example 4.6: Let R = Z endowed with the standard absolute value. Then E(R) =
1
2 , so Z is Euclidean.

Example 4.7: Let k be any field, R = k[t], and let a ≥ 2 be an integer. En-
dow R with the nom |f |a = adeg f . Then E(R) = 1

a , so R is Euclidean.

Note that we may have E(R) = ∞; we say R is E-finite if E(R) < ∞.

Lemma 13. Let R be a PID with fraction field K, and let | · | be a metric norm on
R. Let L/K be a finite separable field extension, and let S be the integral closure of
R in L, endowed with its extended norm. Then S is an E-finite Dedekind domain.

Proof. Let n = [L : K]. It is a standard result in algebraic number theory that S is a
Dedekind domain (this does not use the hypothesis of separability) and that S ∼= Rn

(this does!). Let σ1, . . . , σn : L ↪→ K be the n-distinct K-algebra embeddings into
an algebraic closure, so for x ∈ L, |x| = |

∏n
i=1 σi(x)|. Let x1, . . . , xn be an R-basis

for S, hence also a K-basis for L. Therefore, for any x ∈ L, there are unique
α1, . . . , αn ∈ L such that x =

∑
i αixi. Fix ϵ > 0, and choose for all i an element

βi ∈ R such that |αi − βi| ≤ E(R) + ϵ. Then

|x−
n∑

i=1

βixi| ≤
n∑

i=1

|αi − βi||xi| ≤ (E(R) + ϵ)
n∑

i=1

|xi|.

Thus S is E-finite. �

4.4. An Abstract Hermite Theorem.

Theorem 14. Let (R, | · |) be an almost metric normed ring with E(R) < 1.
a) Suppose A(R)E(R)2 < 1. Then for all n ≥ 2,

γn(R) ≤
(

A(R)

1−A(R)E(R)2

)n−1
2

.

b) Suppose C(R)E(R)2 < 1. Then for all n ≥ 2,

γn(R) ≤ C(R)
n−1
2 .

c) If R is ultrametric, γn(R) ≤ 1 for all n ∈ Z+.

Proof. The greater part of the argument involves deriving the inequality (1). Com-
bining this with |x + y| ≤ A(R)(|x| + |y|) we deduce part a); combining it with
|x+ y| ≤ C(R)max |x|, |y|, we deduce part b).

Since E(R) < 1, R is Euclidean and thus a PID, so Hermite’s Lemma applies.
Let q =

∑
ij aijtitj : Kn → K be an anisotropic quadratic form. By Hermite’s

Lemma, after making a unimodular change of variables we may assume that the
minimum of q on Rn is attained at the first standard basis vector e1.

Let φ : Kn → Kn be the K-linear map given by e1 7→ e′1 = e1, ej 7→ e′j = ej− a1j

a11

for 2 ≤ j ≤ n, so e1 is orthogonal to the subspace ⟨e′2, . . . , e′n⟩. Note also that
detφ = 1. Let

q′(t) = q(φ(t)) = a11t
2
1 + q2(t2, . . . , tn).



GEOMETRY OF NUMBERS EXPLAINED 11

Then disc q2 = disc q′

a11
= disc q

a11
. Now for λ1, . . . , λn ∈ R, write

w = (λ1 +
a12
a11

λ2 + . . .+
a1n
a11

λn)e1 + λ2e
′
2 + . . .+ λne

′
n = γe1 + z,

say. Suppose z is chosen so as to be minimal for q2 on
⊕n

i=2 Re′i. Then

|q(z)| = |q2(λ2, . . . , λn)| ≤ γn−1(R)|disc q2|
1

n−1 = γn−1(R)|a11|
−1
n−1 |disc q|

1
n−1 .

Let ϵ > 0 be small enough so that E(R) + ϵ < 1. By definition of E(R), there is
λ1 ∈ R with |γ| ≤ E(R) + ϵ < 1. Thus we have

(1) min(q) = |a11| ≤ |q(w)| = |γ2a11 + q2(λ2, . . . , λn)|.
a) By definition of A(R), we have

|a11| ≤ |γ2a11 + q2(λ2, . . . , λn)| ≤ A(R)
(
|γ2||a11|+ |q2(λ2, . . . , λn)|

)
≤ A(R)(E(R) + ϵ)2|a11|+A(R)γn−1(R)|a11|

−1
n−1 |disc q|

1
n−1 .

Since this inequality holds for all sufficiently small ϵ, it also holds for ϵ = 0:

|a11| ≤ A(R)E(R)2|a11|+A(R)γn−1(R)|a11|
−1
n−1 |disc q|

1
n−1 .

Multiplying through by |a11|
1

n−1 gives

|a11|
n

n−1 ≤ A(R)E(R)2|a11|
n

n−1 +A(R)γn−1(R)|disc q|
1

n−1 ,

and thus
|a11|n

|disc q|
≤

(
A(R)

1−A(R)E(R)2

)n−1

γn−1(R)n−1.

This implies

γn(R)n ≤
(

A(R)

1−A(R)E(R)2

)n−1

γn−1(R)n−1

and thus

γn(R) ≤
(

A(R)

1−A(R)E(R)2

)n−1
n

γn−1(R)
n−1
n .

Using γ1(R) = 1, an easy induction argument gives

γn(R) ≤
(

1

1−A(R)E(R)2

)n−1
2

,

completing the proof of part a). As for part b), starting again from (1) we get

|a11| ≤= |γ2a11 + q2(λ2, . . . , λn)| ≤ C(R)max(|γ|2|a11|, |q2(λ2, . . . , λn)|)
and thus (inserting and then removing an ϵ > 0 as above) we get

|a11| ≤ C(R)max(E(R)2|a11|, γn−1(R)|a11|
−1
n−1 |disc q|

1
n−1 ).

But by our hypothesis, |a11| > C(R)E(R)2|a11|, so we must have

|a11| ≤ C(R)γn−1(R)|a11|
−1
n−1 |disc q|

1
n−1 ).

Thus

|a11|
n

n−1 ≤ C(R)γn−1(R)|disc q|
1

n−1

and hence
|a11|n

|disc q|
≤ Cn−1γn−1

n−1(R).
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Taking nth roots gives

γn(R) ≤ C
n−1
n γ

n−1
n

n−1 .

Exactly as in part a), an easy induction argument gives γn(R) ≤ C
n−1
2 .

c) Since | · | is ultrametric iff C(R) = 1, this follows immediately from part b). �

Corollary 15. (Hermite, 1850) For all n ∈ Z+, we have γn(Z) ≤
(
4
3

)n−1
2 .

Proof. Since E(Z) = 1
2 , A(Z) = 1, A(Z)E(Z)2 < 1, and Theorem 14a) applies. �

Remark: Indeed γ2(Z) = 2√
3
, so the bound of Theorem 14a) can be attained.

Corollary 16. Let R = Z[1+
√
−3

2 ] be the ring of integers of the imaginary quadratic

field K = Q(
√
−3). Then for all n ∈ Z+, we have

γn(Z) ≤
(
36

5

)n−1
2

.

Proof. For the ring of integers ZK of an imaginary quadratic field K we have

E(ZK) =
|m|+ 1

4
, ZK = Z[

√
−m],

E(ZK) =
(|m|+ 1)2

16m
, ZK = Z[

1 +
√
−m

2
].

By Lemma 10 and Theorem 11, A(R) ≤ C(R) = 4. Since A(R)E(R)2 < 1, Theorem
14a) applies. �

Remark: Rather disappointingly, it turns out that R = Z and R = Z[ 1+
√
−3

2 ] are
the only two S-integer rings to which the hypotheses of Theorem 14 apply!

Corollary 17. (Gerstein [Ge73], Quebbemann) Let k be a field of characteristic
different from 2. Let a ≥ 2 be an integer. Endow R = k[t] with the norm |f |a =
adeg f . Then γn(k[t]) ≤ 1 for all n ∈ Z+.

Proof. Since E(R) = 1
a , C(R) = 1, C(R)E(R)2 < 1, and Theorem 14c) applies. �

Remark 4.8: A field k of characteristic not 2 admits an ordering iff for all n ∈ Z+

the quadratic form qn = ⟨1, . . . , 1⟩ = t21 + . . . + t2n is anisotropic. Such a field k
is necessarily infinite, and then an easy specialization argument shows that any
anisotropic form q over k remains anisotropic upon base extension to k[t]. So let
k be a field admitting an ordering – e.g. k = R or any of its subfields. Then for
all n ∈ Z+, |disc qn| = 1 and m(qn) = 1, so γ(qn) = 1 and thus γn(k[t]) = 1. This
shows that the bound of Corollary 17 is best possible without further restrictions
on k. On the other hand, if k = Fq then every quadratic form in at least 5 variables
over k[t] is isotropic, and thus γn(Fq[t]) = 0 for all n ≥ 5.

Theorem 18. (Samuel [Sa71]) Suppose that X is a curve of genus zero. Then
S = k[X] is Euclidean with respect to the extended norm iff the projective closure
X of X is isomorphic to P1 and the gcd of the degrees of the points at infinity is 1.

If L ∼= k(t) and X \ X contains a k-rational point then S is isomorphic to a
localization of k[t]. And conversely: thus if for instance k admits a degree 2 and a
degree 3 field extension, then we get an ultrametric Euclidean affine ring S which
is not simply a localization of k[t]. For all such rings, Theorem 14c) applies: we get
γn(S) ≤ 1 for all n ∈ Z+.
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4.5. The Main Theorem.

Theorem 19. Let R be a Dedekind domain of characteristic different from 2,
with fraction field K, and let | · | be a norm on R of Hermite type. Let q(t) =
q(t1, . . . , tn) ∈ R[t] be an anisotropic quadratic form. Let d be an odd element of R
coprime to disc q. We suppose:
• q/K is similar to a Pfister form, and
• q/R/(d) is isotropic.
Let S be any GLn(K)-stable subset of Q(K,n) containing q.
Then for all ϵ > 0, there exists v ∈ (Rn)• and k ∈ R such that

q(v) = kd, 0 < |k| ≤ γ(S)|disc q| 1
n .

Proof. . . . �

Remark 4.13: Of course Theorem 19 becomes more or less useful according to
how much one knows about Hermite constants over R. It has been stated in a form
which gives a large degree of flexibility: for instance, over Z the known information
about Hermite constants is quite different for definite forms versus indefinite forms,
and the statement of Theorem 19 allows this to be taken into account.

Remark 4.14: Immediately from the definitions, for anisotropic q we have

γ(S)|disc(q)| 1
n ≥ 1.

On the other hand, it is natural to separate out three cases: if γ(S)|disc q| 1
n < 2,

we say (q,S) is subcritical; if γ(S)|disc q| 1
n = 2, we say (q,S) is critical; and

when γ(S)|disc q| 1
n > 2, we say (q,S) is supercritical. The subcritical case is the

most auspicious for Diophantine applications. Indeed:

Corollary 20. Let R be a Dedekind domain, with Hermite type ideal norm | · |. Let
q(t) = q(t1, . . . , tn) ∈ R[t] be an anisotropic quadratic form such that q/K is similar
to a Pfister form. Let S is a GLn(K)-stable subset containing q such that (q,S) is
subcritical.
a) Then for every odd element d of R coprime to disc(q) such that q/R/(d) is

isotropic, q R-represents d up to a unit: there exists v ∈ Rn and u ∈ R× such
that q(v) = ud.
b) Suppose R is a finite quotient domain. If n = 2, then q/R/(d) is isotropic iff
−disc(q) is a square modulo d. If n > 2, then qR/(d) is always isotropic.

4.6. Hermite Constants Over Totally Real Number Rings.

Let K be a totally real number field, and let R = ZK be its ring of integers,
endowed with the canonical norm. Let q(t)/R be a totally definite quadratic form.
In this case it is easy to see that q(v) actually achieves a minimum on (Rn)•, so
the ϵ in Theorem 19 may be removed.

Here we present some results – entirely due to other people! – on the positive
Hermite constants γ+

n (ZK).
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Theorem 21. (Icaza [Ic97]) Let K be a totally real number field of degree m, and
with discriminant ∆K . Let ZK be the ring of integers of K. For all n ∈ Z+,

γ+
n (ZK) ≤ 4mV

−2m
n

n |∆K |,

where Vn is the volume of the unit ball in Euclidean n-space.

Remark 4.15: In fact Icaza proves a result about Hermite constants for an arbitrary
number field K, but when K has complex places her definition of the Hermite
constant is different from ours.

Theorem 22. ([BCIO01, Thms. 3.2, 3.4, 3.6])

a) For K = Q(
√
2), we have

γ+
2 (ZK) =

4

2
√
6− 3

= 2.1063945 . . . .

b) For K = Q(
√
3), we have

γ+
2 (ZK) = 4.

c) For K = Q(
√
5), we have

γ+
2 (ZK) =

4√
5
= 1.78885438 . . . .

Theorem 23. (Pohst-Wagner [PW09])

a) For K = Q(
√
6), we have

γ+
2 (ZK) = 5.

b) For K = Q(
√
13), we have

γ+
2 (ZK) =

√
1476 + 144

√
91

175
= 4.0353 . . .

c) For K = Q(
√
21), we have

γ+
2 (ZK) =

16

3
.

Theorem 24. Let R = Z[ 1+
√
5

2 ] = ZQ(
√
5), a PID. Let ρ be an odd prime element

of R which is prime to 5.
a) The following are equivalent:

(i)
(

−1
ρ

)
= 1, i.e., −1 is a nonzero square in R/(ρ).

(ii) There exist x, y ∈ R and u ∈ R× such that x2 + y2 = uρ.
b) The following are equivalent:

(i)
(

−3
ρ

)
= 1, i.e., −3 is a nonzero square in R/(ρ).

(ii) There exist x, y ∈ R and u ∈ R× such that x2 + xy + y2 = uρ.

Proof. . . . �

Remark 4.16: The implication (i) =⇒ (ii) of Theorem 24 is proved in [De02] by
“pushing down to Z” and applying the Convex Body Theorem. Having Theorem
22c) at our disposal enabled us to give a morally similar, but much quicker, proof.
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Theorem 25. Let R = Z[
√
3] = ZQ(

√
3), a PID. Let ρ be an odd prime element of

R which is prime to 3. TFAE:

(i)
(

−3
ρ

)
= 1, i.e., −3 is a nonzero square in R/(ρ).

(ii) There exist x, y ∈ R and u ∈ R× such that x2 + xy + y2 = uρ.

5. Linear Forms, Vinogradov’s Lemma and Brauer-Reynolds

There are contexts in which one can prove results qualitatively similar to Theorem
19 but with the Hermite constant input replaced by information about systems of
linear forms. For instance, successful applications of linear forms techniques to the
representation of integers by quadratic forms over Z appear in [BrRe51], [Mo66],
[GoN0]. As usual, we wish to abstract and (if possible) extend these classical results
so as to hold over a suitable class of normed rings.

The results in this section are especially preliminary. In particular, a paper of
T. Cochrane [Co87] is highly relevant and useful to this goal, but we have not yet
had the chance to absorb and include his results here.
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