
FIELD THEORY

PETE L. CLARK

Contents

About these notes 2
0.1. Some Conventions 3
1. Introduction to Fields 4
2. Some examples of fields 5
2.1. Examples From Undergraduate Mathematics 5
2.2. Fields of Fractions 6
2.3. Fields of Functions 9
2.4. Completion 10
3. Field Extensions 13
3.1. Introduction 13
3.2. Some Impossible Constructions 16
3.3. Subfields of Algebraic Numbers 17
3.4. Distinguished Classes 19
4. Normal Extensions 20
4.1. Algebraically closed fields 20
4.2. Existence of algebraic closures 21
4.3. The Magic Mapping Theorem 24
4.4. Conjugates 25
4.5. Splitting Fields 26
4.6. Normal Extensions 26
4.7. Isaacs’ Theorem 28
5. Separable Algebraic Extensions 29
5.1. Separable Polynomials 29
5.2. Separable Algebraic Field Extensions 32
5.3. Purely Inseparable Extensions 34
5.4. Structural Results on Algebraic Extensions 35
6. Norms, traces and discriminants 37
6.1. Dedekind’s Lemma on Linear Independence of Characters 37
6.2. The Characteristic Polynomial, the Trace and the Norm 38
6.3. The Trace Form and the Discriminant 40
7. The primitive element theorem 41
8. Galois Extensions 43
8.1. Introduction 43
8.2. Finite Galois Extensions 45
8.3. An Abstract Galois Correspondence 47
8.4. The Finite Galois Correspondence 50

Thanks to Asvin Gothandaraman and David Krumm for pointing out errors in these notes.

1



2 PETE L. CLARK

8.5. The Normal Basis Theorem 52
8.6. Hilbert’s Theorem 90 54
8.7. Infinite Algebraic Galois Theory 56
8.8. A Characterization of Normal Extensions 57
9. Solvable Extensions 57
9.1. Cyclotomic Extensions 57
9.2. Cyclic Extensions I: Kummer Theory 62
9.3. The equation tn − a = 0 64
9.4. Cyclic Extensions II: Artin-Schreier Theory 68
9.5. Cyclic Extensions III: Witt’s Theory 68
9.6. Abelian Extensions of Exponent n: More Kummer Theory 68
9.7. Solvable Extensions I: Simple Solvable Extensions 68
9.8. Solvable Extensions II: Solvability by Radicals 68
10. Computing Galois Groups 68
11. Structure of Transcendental Extensions 68
11.1. Transcendence Bases and Transcendence Degree 68
11.2. Applications to Algebraically Closed Fields 69
11.3. An Axiomatic Approach to Independence 71
11.4. More on Transcendence Degrees 75
12. Linear Disjointness 77
12.1. Definition and First Properties 77
12.2. Intrinsic Nature of Linear Disjointness 79
12.3. Linear Disjointness and Normality 81
12.4. Linear Disjointness and Separability 82
13. Derivations and Differentials 85
13.1. Derivations 85
13.2. Differentials 89
14. Applications to Algebraic Geometry 89
15. Ordered Fields 89
15.1. Ordered Abelian Groups 89
15.2. Introducing Ordered Fields 92
15.3. Extensions of Formally Real Fields 95
15.4. The Grand Artin-Schreier Theorem 98
15.5. Sign Changing in Ordered Fields 102
15.6. Real Closures 103
15.7. Artin-Lang and Hilbert 105
15.8. Archimedean and Complete Fields 107
15.9. The Real Spectrum 112
References 113

About these notes

The purpose of these notes is to give a treatment of the theory of fields. Some as-
pects of field theory are popular in algebra courses at the undergraduate or graduate
levels, especially the theory of finite field extensions and Galois theory. However, a
student of algebra (and many other branches of mathematics which use algebra in a
nontrivial way, e.g. algebraic topology or complex manifold theory) inevitably finds
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that there is more to field theory than one learns in one’s standard “survey” alge-
bra courses.1 When teaching graduate courses in algebra and arithmetic/algebraic
geometry, I often find myself “reminding” students of field-theoretic facts that they
have not seen before, or at any rate not in the form I wish to use them.

I also wish to fill in some gaps in my own knowledge. Especially, I have long
wished to gain a deeper understanding of positive characteristic algebraic geometry,
and has become clear that the place to begin study of the “pathologies”2 of alge-
braic geometry in characterstic p is the study of finitely generated field extensions
in positive characteristic.

These notes are meant to be comprehensible to students who have taken a basic
graduate course in algebra. In theory one could get away with less – the exposi-
tion is mostly self-contained. As algebraic prerequisites we require a good working
knowledge of linear algebra, including tensor products. The reader should also be
comfortable with – and fond of – groups and rings. Such a benevolent familiarity
is used much more than any specific results of group or ring theory. Our approach
is sufficiently abstract and streamlined that it is probably inappropriate for most
undergraduates. In particular, more often than not our approach proceeds from
the general to the specific, and we make no apologies for this.

0.1. Some Conventions.

By convention, all of our rings are associative and have a multiplicative unity,
called 1. Again by convention, a homomorphism of rings necessarily carries 1 to 1.

These notes contain many exercises, including some which ask for proofs of stated
results. In general I am not at all opposed to the idea of a text giving complete
details for all of its arguments.3 However, it is in the nature of this particular
subject that there are many more results than proof techniques, to the extent that
giving complete proofs of all results would create a lengthy repetitiveness that may
discourage the reader to read the proofs that we do give.

As a rule, exercises that ask for proofs of stated results are meant to require no
new ideas beyond what was (even recently) exposed in the text. A reader who feels
otherwise should contact me: there may be an unintended gap in the exposition.
On the other hand, if exercises are given at all, it certainly spruces things up to
have some more challenging and interesting exercises. I have also not hesitated to
give exercises which can in principle be solved using the material up to that point
but become much easier after later techniques are learned.

At some point I fell victim to the disease of not liking the look of a paragraph in
which only a few words appear on the last line. Because of this, in the exercises I
have sometimes omitted the words “Show that”. I hope the meaning remains clear.

1I make no claim that this phenomenon is unique to g field theory.
2The term was used by Mumford, but with evident affection.
3In fact I agree with Robert Ash that the prevailing negative reputation of such texts is

undeserved: the royal road to a particular destination may or may not exist, but it seems perverse
to claim that it ought not to exist.
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1. Introduction to Fields

A field is a commutative ring in which each nonzero element has a multiplicative
inverse. Equivalently, a field is a commutative ring R in which the only ideals are
(0) and R itself.

So if F is a field, S is a ring, and ϕ : F → S is a homomorphism of rings,
then since the kernel of ϕ is an ideal of F , ϕ is either injective (if its kernel is 0)
or identically the zero map (if its kernel is F ). Moreover, the latter case implies
that 1S = ϕ(1F ) = 0, which happens iff S is the zero ring. So any homomorphism
from a field into a nonzero ring – in particular into any field or integral domain –
is injective. Thus if ϕ : F → K is a homomorphism between fields, we may equally
well speak of the field embedding ϕ.

Variations on the definition: In older terminology, a field could be non-commutative,
i.e., any ring in which each nonzero element has a two-sided multiplicative inverse.
We now call such things “division rings” or “division algebras.” One also sometimes
encounters non-associative division algebras, e.g. Cayley’s octonions.

The two branches of mathematics in which general fields play a principal role are
field theory (of course) and linear algebra. Most of linear algebra could be devel-
oped over a general division algebra rather than over a general field. In fact for the
most part the theory is so similar that it is not really necessary to consider division
algebras from the outset: one can just check, if necessary, that a certain result which
is true for vectors spaces over a field is also true for left modules over a division
algebra. On the other hand, when one studies things like roots of polynomials and
lattices of finite degree extensions, one immediately finds that non-commutative
division algebras behave in quite different and apparently more complicated ways.

Example 1.1. There are exactly two complex numbers z such that z2 = −1: z = i
and z = −i. In general, any nonzero polynomial P (t) with coefficients in a field
can have no more solutions than its degree. But in Hamilton’s quaternion algebra
H there are clearly at least three solutions: i2 = j2 = k2 = −1, and in fact there
are uncountably many: a quaternion squares to −1 iff it is of the form xi+ yj+ zk
with x2 + y2 + z2 = 1.

Example 1.2. Let K/Q be a quartic field (i.e., a field extension of Q which has
dimension 4 as a Q-vector space). Then there are at most three intermediate sub-
fields Q ( F ( K. (More precisely there is either zero, one or three such fields, and
the first case happens “most of the time.”) However, any noncommutative division
algebra B/Q of degree 4 as a Q-vector space has infinitely many nonisomorphic
quadratic subfields.

The study of division algebras is closely related to field theory – via Brauer groups
and Galois cohomology – so that one can put one’s understanding of a field F and
its finite extensions to excellent use in studying noncommutative division algebras
over F . In fact, notwithstanding the above two examples, the finite dimensional,
central division algebra over a field F are significantly easier to understand than
finite dimensional extension fields of F : e.g. we understand quaternion algebras
over Q far better than quartic number fields.
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2. Some examples of fields

2.1. Examples From Undergraduate Mathematics.

Example 2.1. First of all there is the field of real numbers R. One also encounters
the complex numbers C = {a + bi | a, b ∈ R, i2 = −1} and the rational numbers
Q = {ab | a ∈ Z, b ∈ Z \ {0}}.

Example 2.2. For a prime p, the ring Fp = Z/pZ of integers modulo p is a field.
In fact it is enough to show that it is an integral domain, since any finite integral
domain must be a field: if a is a nonzero element of a finite integral domain,
there must exist 0 < i < j such that ai = aj, and then by cancellation we get
1 = aj−i = aj−i−1a. To check that Fp is an integral domain, suppose that x, y are
nonzero elements in Fp such that 0 = xy. Equivalently, we have integers x, y not
divisible by p but such that p | xy. This contradicts the uniqueness of factorization
of integers into primes, i.e., the “Fundamental Theorem of Arithmetic.”

Nonexample 2.3. The ring of integers Z/nZ is not a field unless n is prime: if
n = n1 ·n2 with n1, n2 > 1, then (n1 (mod n)) · (n2 (mod n)) = 0 (mod n) exhibits
zero divisors.

Let us reflect on this a bit. Any subring of an integral domain is again an integral
domain (if the larger ring has no nonzero divisors of zero, neither does the smaller
ring). In particular, any subring of a field must be a domain. Suppose n ∈ Z+ is
not prime. Then, since Z/nZ is not a domain, no ring which contains Z/nZ as a
subring can be a domain. This leads to the concept of characteristic: a ring is said
to have characteristic n if it admits Z/nZ as a subring, and characteristic zero if it
does not have characteristic n for any positive integer n. Equivalently, a ring has
characteristic n > 0 iff n is the least positive integer such that adding 1 to itself
n times in the ring yields 0, and has characteristic zero if there is no such integer.
We see therefore that any integral domain – and in particular any field – must have
characteristic 0 or characteristic a prime number p.

Exercise 2.1. Let R be a finite ring. Show that R has finite characteristic, and
that the characteristic divides #R.

Example 2.4. Suppose there is a field F4 with four elements. Like all fields, it
has distinct elements 0 and 1. Moreover, by the preceding exercise, it must have
characteristic 2, so 1 + 1 = 0. This leaves two further elements unaccounted for:
x and y. The nonzero elements of any field form a group under multiplication, so
in this case the group would have order 3 and therefore be cyclic. In particular x
has order 3, hence so does x2, so x2 is equal to neither 0, 1 or x, and therefore
x2 = y = x−1 and y2 = x = y−1. Also x + y cannot equal x or y; if x + y = 0,
then x = −y = y since −1 = 1 in F4. Therefore we must have x + y = 1, i.e.,
y = x − 1 = x + 1 = x2. We have thus uniquely worked out the addition and
multiplication table for our putative field of order four, and one can check directly
that all the field axioms are satisfied: there is, indeed, a field of order four. There is
a unique such field up to isomorphism. Finally, as suggested by our analysis above,
the map which fixes 0 and 1 and interchanges x and y is an automorphism of the
field. One can think of it as the map a ∈ F4 7→ a2.

Nonexample 2.5. Suppose F is a field of order 6. By Exercise 2.1, F must have
characteristic 2 or characteristic 3. Suppose it has characteristic 2. Then, by
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Sylow’s Theorem, there exists x ∈ (F,+) of order 3: 3x = 0. But also 2x = 0, so
x = 3x− 2x = 0, contradiction.

Exercise 2.2. Let F be a finite field. Show that #F cannot be divisible by two
distinct primes p, q. (Hint: suppose the characteristic is p. Then there exists a ∈ Z+

such that pa | #F, #F
pa is divisible by a second prime q 6= p and gcd(pa, #F

pa ) = 1.

By elementary number theory – “Bézout’s Lemma” – there exist integers x, y such
that xpa + y#F

pa = 1. Now argue as above.)

Therefore the order of a finite field F must be a prime power pf . In particular, F
contains Z/pZ as its prime subring (i.e., the subring generated by one).

Exercise 2.3. Give a second proof that a finite field F must have prime power
order: as above, F contains a unique subfield Fp of prime order. Argue that F is a
finite-dimensional vector space over Fp of dimension f = logp #F.

Exercise 2.4. The next largest non-prime prime powers are 8 and 9. Try to
contruct finite fields of these orders from “first principles”, as we did with the case
of order 4 above.

We will see later that for every prime power pa there is a finite field F of order pf ,
that any two finite fields of order pf are isomorphic, and that the automorphism
group of a finite field of order pf is cyclic of order f , generated by the “Frobenius
map” x 7→ xp.

2.2. Fields of Fractions. If R is an integral domain, then one can define a field
F whose elements are viewed as fractions a

b with a, b ∈ R, b 6= 0. Formally speaking

one considers ordered pairs (a, b) ∈ R2, b 6= 0 and introduces the equivalence
relation (a, b) ∼ (c, d) ⇐⇒ ad = bc, i.e., exactly the same construction that one
uses to define the rational numbers in terms of the integers. The field F is called
the field of fractions, (or, sometimes, “quotient field”) of the integral domain R.

Exercise 2.5. (Functoriality of the field of fractions) Let ϕ : R→ S be an injective
homomorphism of integral domains. Show that ϕ extends uniquely to a homomor-
phism from the fraction field F (R) of R to the fraction field F (S) of S.

Exercise 2.6. (Universal property of the field of fractions) Let R be an integral
domain with fraction field F and let K be a field. For any injective homomorphism
ϕ : R→ K, there exists a unique extension to a homomorphism F → K.

Exercise 2.7. Let R be an integral domain with field of fractions F (R). Show:
#R = #F (R).

Thus any method which produces a supply of integral domains will also produce a
supply of fields (of course distinct integral domains may have isomorphic fraction
fields, a trivial example being Z and Q itself; there are in fact uncountably many
isomorphism classes of integral domains with fraction field Q).

Proposition 2.6. If R is an integral domain, then the univariate polynomial ring
R[t] is also an integral domain. Moreover, if F is the fraction field of R, then
the fraction field of R[t] is F (t), the field of all quotients of polynomials with F -
coefficients.

Exercise 2.8. Prove Proposition 2.6.
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Example 2.7. Applying the Proposition with R = F a field, we get a field F (t) of
rational functions in F . E.g., the field C(t) is the field of meromorphic functions
on the Riemann sphere (see the next section). Moreover, for any field F , F [t] is
a domain, so F [t1, t2] := F [t1][t2] is also an integral domain. The fraction field is
easily seen to be F (t1, t2), i.e., the fraction field of F [t1, . . . , tn] is F (t1, . . . , tn) the
field of rational functions in n indeterminates.

Although successive applications of Proposition 2.6 will yield polynomial rings in
only finitely many indeterminates, nothing stops us from considering larger polyno-
mial rings: let T = {ti} be any set of indeterminates, and R any commutative ring.
One can consider the polynomial ring R[T], defined as the union (or, if you like, di-
rect limit) of polynomial rings R[S] where S ⊂ T is a finite subset. In other words,
we consider the ring of polynomials in an arbitrary infinite set S of indeterminates,
but any given polynomial involves only finitely many indeterminates. One can
again show that if R is an integral domain, so is R[T]. The corresponding fraction
field R(T) is the field of all quotients of polynomials in all these indeterminates.

Exercise 2.9. Let F be a field and T a nonempty set of indeterminates. Show that
the cardinality of the rational function field F (T) is max(ℵ0,#F,#T).

Another way of manufacturing integral domains is to start with a commutative
ring R and take the quotient by a prime ideal p. Then we can get a field by (if
necessary, i.e., if p is not maximal) taking the field of fractions of R/p. For example
with R = Z we get the finite fields Fp.

Example 2.8. Let R = F [T ] and p a nonzero prime ideal. Then, since R is a PID,
p = (f(t)), where f(t) is an irreducible polynomial. Moreover, assuming f(t) 6= 0,
p is maximal, so without having to take quotients we get a field

K = F [t]/(f(t)),

whose dimension as an F -algebra is the degree of f .

An integral domain R is finitely generated (over Z) if there exist n ∈ Z+ and
elements α1, . . . , αr ∈ R such that the least subring of R containing all the αi’s is
R itself. Another way of saying this is that the natural map

Z[T1, . . . , Tn]→ R, Ti 7→ αi

is surjective. In other words, an integral domain is finitely generated iff it is, for
some n, the quotient of the ring Z[T1, . . . , Tn] by some prime ideal p.

Proposition 2.9. For a field F , the following are equivalent:
a) There exist α1, . . . , αn ∈ F so that the only subfield of F containing all the αi’s
is F itself.
b) F is the fraction field of Z[x1, . . . , xn]/p for some prime ideal p.

Exercise 2.10. Prove Proposition 2.9.

A field satisfying the equivalent conditions of Proposition 2.9 is said to be finitely
generated. Applying part b) and Exercise 2.7 we see that any finitely generated
field is finite or countably infinite. In particular the fields R, C are not finitely
generated. Conversely, a countable field need not be finitely generated: if T is
a countably infinite set of indeterminates, then by Exercise 2.9 the field Q(T) is
countable. Moreover it is both plausible and true that Q(T) is not finitely gener-
ated, but we lack the tools to prove this at the moment: we will return to this later
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on in the context of the concept of transcendence degree.

One can also speak of finite generation in a relative sense:

Proposition 2.10. For a subfield f ⊂ F , the following are equivalent:
a) There exist elements α1, . . . , αn ∈ F such that the only subfield of F containing
f and the αi’s is F itself.
b) F is isomorphic to the fraction field of f [x1, . . . , xn]/p for some prime ideal p.

Exercise 2.11. Prove Proposition 2.10.

If f is a subfield of F and α1, . . . , αn ∈ F , we write f(α1, . . . , αn) for the smallest
subfield of F containing f and the αi’s. The notation is sensible because this field

can be described concretely as the set of all rational expressions P (α1,...,αn)
Q(α1,...,αn) for

P,Q ∈ k[t1, . . . , tn]. (In particular there is a unique such smallest subfield.)

So for instance one can speak of fields which are finitely generated over the complex
numbers C, and such fields are especially important in algebraic geometry.

Proposition 2.11. Let F be a field.
a) If F has characteristic 0, there is a unique homomorphism ι : Q→ F .
b) If F has characteristic p, there is a unique homomorphism ι : Fp → F .

Proof. For any ring R, there exists a unique ring homomorphism ι : Z→ R, which
takes the integer n to n times the multiplicative identity in R. For R = F a field,
the map ι is an injection iff F has characteristic 0. So if F has characteristic 0, ι is
injective, and by Exercise 2.5 it extends uniquely to a homomorphism ι : Q → F .
Any homomorphism from Q to F must restrict to the canonical injection on Z and
therefore be ι. If F has characteristic p > 0, then ι factors through to give a map
ι : Fp → F . The uniqueness of ι can be seen in any number of ways: we leave it to
the reader to find an explanation that she finds simple and convincing. �

It follows that Q (resp. Fp) is the unique minimal subfield of any field F of charac-
teristic 0 (resp. p > 0). We refer to Q (resp. Fp) as the prime subfield of F . Note
that since there are no nontrivial automorphisms of either Q or Fp (this follows by
applying the proposition with F = Q or F = Fp), the prime subfield sits inside F
in an especially canonical way.

Exercise 2.12. Let K be a field and k its prime subfield. Show that the concepts
“K is finitely generated” and “K is finitely generated over k” coincide.

Exercise 2.13. For any field F , there exists a set of indeterminates T and a prime
ideal p of Z[T] such that F is isomorphic to the fraction field of Z[T]/p.

If F is infinitely generated (i.e., not finitely generated over its prime subfield) then
the set T in Exercise 2.13 will of course have to be infinite. In such a case this
“presentation” of F is not, in truth, so useful: e.g., with certain limited exceptions
(to be discussed!) this is not a very insightful way of viewing the complex field C.

Exercise 2.14. Let R be a commutative ring, ι : R → S an injective ring homo-
morphism, and α ∈ S. Show that there is a unique minimal subring of S containing
R and α, namely the set of all polynomials P (α), P ∈ R[t]. This subring is accord-
ingly denoted R[α].
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2.3. Fields of Functions.

Let U be a domain – i.e., a nonempty connected open subset – of the complex
plane. In complex analysis one studies the set Hol(U) of all functions holomorphic
(a.k.a. analytic) on all of U and also the larger set Mer(U) of all meromorphic
functions on U , i.e., functions which are holomorphic on the complement of a dis-
crete set X = {xi} and such that for each xi there exists a positive integer ni such
that znif is holomorphic at xi. Under the usual pointwise addition and multiplica-
tion of functions, Hol(U) is a ring (a subring of the ring of all continuous C-valued
functions on U). Similarly, one can view Mer(U) as a ring in a natural way.

Theorem 2.12. Let U be a domain in the complex plane.
a) Hol(U) is a domain.
b) Mer(U) is a field.
c) Mer(U) is the field of fractions of Hol(U).

Proof. a) A consequence of the principle of analytic continuation is that the zero
set of a not-identically-zero holomorphic function is discrete in U . For 0 6= f, g ∈
Hol(U), the zero set of fg is the union of the zero sets of f and g so is again discrete
and thus certainly a proper subset of U .
b) Because 0 6= f ∈ Hol(U) has a discrete zero set {xi} and for each xi, there exists

a positive integer ni such that f
zni extends to a continuous nonzero function at xi,

it follows that 1
fi

is meromorphic.

c) This lies deeper: it is a consequence of Weierstrass’ factorization theory, in
particular of the fact that for any discrete subset X = {xi} of U and any sequence
of positive integers {ni} there exists a holomorphic function on U with zero set X
and order of vanishing ni at xi. �

Exercise 2.15. Show: Mer(C) is not finitely generated over C.

More generally, if M is a connected complex manifold, there is a ring Hol(M) of
“global” holomorphic functions onM and a field Mer(M) of meromorphic functions.
It need not be the case that Mer(M) is the fraction field of Hol(M).

Example 2.13. Take M = C ∪ {∞} to be the Riemann sphere. Then the only
holomorphic functions on M are the constant functions, whereas Mer(M) = C(z),
the rational functions in z.

In various branches of geometry one meets many such “fields of functions”: a very
general example, for the highly trained reader, is that if X is an integral (reduced
and irreducible) scheme, then the ring of all functions regular at the generic point
η is a field. If X itself is a scheme over a field k, then this field is written k(X) and
called the field of rational functions on X. For example, the field of rational
functions on the complex projective line P1/C is the rational function field C(t).
This is essentially the same example as the Riemann sphere above, but couched in
more algebraic language.

In general, one must restrict to functions of a rather special kind in order to get a
field of functions. Using the ideas of the previous subsection, it seems fruitful to
first consider rings R of functions on a topological space X. Then we want R to be
a domain in order to speak of fraction field F (R) of “meromorphic functions” on X.
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Suppose X is a topological space and consider the ring R = R(X,C) of all continu-
ous functions f : X → C. A moment’s thought indicates that for the “reasonable”
topological spaces one considers in geometry, R will not be a domain. The question
comes down to: do there exist functions f1, f2 : X → C neither of which is zero on
all of X but such that the product f1 · f2 is identically zero?

Here are some easy observations. First, if X is not connected, the answer is cer-
tainly yes: write X = Y1 ∪ Y2 where Yi are disjoint open sets. Take f1 to be the
characteristic function of Y1 an f2 = 1− f1 to be the characteristic function of Y2.

In fact R is not a domain even if X is the Euclidean plane: let D1, D2 be two
disjoint closed disks, say with centers zi and radii equal to 1. Certainly there exist
continuous functions fi : X → C such that fi(zi) = 1 and fi(z) = 0 if z lies outside
of Di. Indeed it is well-known that fi may be chosen to be infinitely differentiable,
and the argument generalizes to all manifolds and indeed to paracompact Hausdorff
spaces (the key point being the existence of suitable partitions of unity).

On the other hand, suppose the space X is irreducible: that is, if Y1, Y2 are two
proper closed subsets of X then Y1 ∪ Y2 6= X. Then, applying this to Yi = f−1

i (0),
we get that the zero set of f1f2 is Y1 ∪ Y2 6= X, so R(X,C) is a domain, and one
can take its fraction field, which consists of functions which are defined on some
dense (equivalently, nonempty!) open subset of X. If you have never studied al-
gebraic geometry, you will doubtless be thinking, “What kind of crazy topological
space would be irreducible?” However, the Zariski topology on a smooth, connected
algebraic variety over (say) the complex field C is irreducible.

2.4. Completion.

None of the constructions of fields we have discussed so far give rise to either R or
C in a reasonable way. These fields are uncountable, and from a purely algebraic
perspective their structure is quite complicated. The right way to think about them
is via a mixture of algebra and topology, e.g. one thinks of R as the completion of
the field of rational numbers with respect to the standard absolute value.

An absolute value on a field K is a real-valued function x→ ||x|| satisfying:

(AV1) ||x|| ≥ 0 for all x ∈ K, with equality iff x = 0.
(AV2) ||xy|| = ||x||||y|| for all x, y ∈ K.
(AV3) ||x+ y|| ≤ ||x||+ ||y|| for all x, y ∈ K.

It is immediate that an absolute value gives rise to a metric on K, via d(x, y) =

||x− y||. We can therefore complete the metric space to get a metric space K̂ with

a canonically embedded, dense copy of K. The key point is that K̂ also has a
canonical field structure.

In brief, we consider the set C of Cauchy sequences in K. This becomes a ring
under the operations of pointwise addition and multiplication. (It is far from being
a domain, having many zero divisors and idempotent elements.) Inside this ring we
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have c, the collection of sequences converging to 0. It is not hard to check that c is
in fact an ideal of C, so that we may form the quotient C/c. Best of all, this quotient
ring is a field: indeed, a nonzero element of the quotient may be represented by
a Cauchy sequence x• in K which does not converge to 0. It follows that there
are only finitely many indices n such that xn = 0: otherwise a subsequence of x•
converges to 0 and a Cauchy sequence with a convergent subsequence is itself con-
vergent to the same limit as the subsequence. Consider then the sequence y• which
is defined by yn = xn if xn = 0 and yn = x−1

n otherwise. The product sequence
x•y• has all sufficiently large terms equal to 1, so differs from the constant sequence
1 (the identity element of C) by a sequence which has only finitely many nonzero
terms, so in particular lies in c. Therefore the class of y• in C/c is the inverse of x•.

We denote C/c by K̂ and call it the completion of K with respect to || ||. There

exists a natural embedding K ↪→ K̂ – namely we map each element of K to the
corresponding constant sequence – and a natural extension of the norm on K to
a norm on K̂, namely ||x•|| = limn→∞ ||xn||, with respect to which ι : K ↪→ K̂ is

an isometry of normed spaces in which the image of K in K̂ is dense. For more
details, the reader is invited to consult [NTII, Chapter 2].

Example 2.14. The completion of Q with the standard Archimedean absolute value
||pq || = |

p
q | is the real field R.

Remark 2.1. It is sometimes suggested that there is a circularity in this construc-
tion, in that the definition of completion refers to a metric and the definition of a
metric refers to the real numbers.4 But one should not worry about this. On the
one hand, from our present point of view we can consider the reals as being already
constructed and then it is a true, non-tautologous statement that the metric com-
pletion of the rationals is the reals. But moreover, a careful look at the construction
in terms of equivalence classes of Cauchy sequences shows that one absolutely can
construct the real numbers in this way, just by being careful to avoid referring to
the real numbers in the course of the completion process. In other words, the real
numbers can be defined as the quotient of the ring of Cauchy sequences of rational
numbers (where the definition of Cauchy sequence uses only the metric as defined
on rational numbers) by the maximal ideal of sequences converging to zero. After
one constructs the real numbers in this way, one notes that the Q-valued metric on
Q extends to an R-valued metric on R: no problem.

Example 2.15. If k is any field, then defining ||0|| = 0 and ||x|| = 1 for all x 6= 0
gives an absolute value on k. The induced metric is the discrete metric and therefore
k is, in a trivial way, complete and locally compact. This absolute value (and any
other absolute value inducing the discrete topology) is called trivial; such absolute
values are usually either explicitly or implicitly excluded from consideration.

Example 2.16. ||ab || = pordp(b)−ordp(a), where for an integer a, ordp(a) denotes the
largest power of p dividing a. (To get the degenerate cases to work out correctly,
we set ordp(0) = ∞ and p−∞ = 0.) The induced metric on Q is called the p-adic
metric: in this metric, a number is close to zero if, after cancelling common factors,
its numerator is divisible by a high power of p. Since the induced topology has no

4In particular, Bourbaki’s General Topology refrains from making any reference to real numbers
or metric spaces for many hundreds of pages until the reals can be rigorously constructed.
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isolated points, the completeness of the metric would contradict the Baire category
theorem, hence the completion is an uncountable field, called Qp, the field of p-adic
numbers.

Example 2.17. Let k be any field and K = k(t). Any element r(t) ∈ K can be

written as ta P (t)
Q(t) where P (0)Q(0) 6= 0 for a uniquely determined integer a. Define

||r(t)||∞ := e−a. (There is no particular reason to use the number e = 2.718 . . .;
any real number greater than 1 would serve as well.)

Exercise 2.16. Show: || ||∞ gives an absolute value on K(t).

An element r(t) ∈ K(t) is close to 0 iff it is divisible by a high power of t.

Exercise 2.17. Show: the completion of K(t) with respect to || ||∞ is isomor-
phic to the Laurent series field K((t)), whose elements are formal power series∑∞
n=n0

ant
n with n0 ∈ Z, an ∈ f . (Hint: It is enough to show that the norm || ||∞

extends to all of K((t)) and that K(t) is dense in K((t)) in the induced topology.)

Exercise 2.18. Show: the fields Qp are locally compact in their natural topology.
Show: K((t)) is locally compact iff K is finite.

Remark 2.2. If k is a field complete with respect to an absolute value | | and V
is a finite-dimensional vector space over k, then viewing V ∼= kdimV gives V the
canonical structure of a topological space – i.e., we can endow it with the product
topology, and this topology is independent of the choice of basis. In particular, if k
is locally compact, so is V . Moreover it has the canonical structure of a uniform
space, and if k is complete then so is V . In particular, if k ↪→ l is a field embedding
such that l is finite-dimensional as a k-vector space, then l is a complete uniform
space and is locally compact iff k is. This implies that any finite extension of the
fields R, Qp or Fp((t)) have a canonical locally compact topology.

Theorem 2.18. (Classification of locally compact valued fields) Let || || be a non-
trivial valuation on a field K. The following are equivalent:
(i) The metric topology on K is locally compact.
(ii) Either (K, || ||) = R or C; or the induced metric is complete and non-
Archimedean and the residue field is finite.
(iii) K is a finite extension of R, of Qp or of Fp((t)).

Proof. See [NTII, Theorem 5.1]. �

There are more elaborate ways to construct complete fields. For instance, suppose
R is a domain and p is a prime ideal of R. Then in commutative algebra one learns
how to complete R with respect to p, getting a homomorphism R→ R̂ in which R̂
is a domain, the image pR̂ is the unique maximal ideal of R̂, and R̂ is complete with
respect to a canonical uniform structure. We can then take the fraction field to get
a complete field K̂. Let us just mention one simple example to give the flavor: let
f be a field and R = f [x1, . . . , xn] and p = (x1, . . . , xn). Then the completion is

R̂ = f [[x1, . . . , xn]], the ring of formal power series in the indeterminates x1, . . . , xn,
and its quotient ifeld is f((x1, . . . , xn)), the field of formal Laurent series in these
indeterminates, i.e., the set of all formal sums

∑
I aIx

I where I = (i1, . . . , in) ∈ Zn
is a multi-index, aI ∈ k, xI = xi1 · · ·xin , and the set of indices I in which at least
one ij is negative and aI 6= 0 is finite.
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Such fields arise in algebraic and analytic geometry: C((x1, . . . , xn)) is the field
of germs of meromorphic functions at a nonsingular point P on an n-dimensional
analytic or algebraic variety.

Exercise 2.19. Show: the field k((x1, x2)) is properly contained in k((x1))((x2)).

3. Field Extensions

3.1. Introduction.

Let K be a field. If ι : K → L is a homomorphism of fields, one says that L
is an extension field of K. As a matter of psychology, it often seems more con-
venient to think of L as “lying above K” rather than K as embedding into L. We
often write L/K instead of ι : K → L, notwithstanding the fact that the latter
notation hides important information, namely the map ι.5

Much of field theory is devoted to an understanding of the various extension fields
of a given field K. Since any field K has extensions of all sufficiently large cardi-
nalities – K(T) for any large enough set T – one obviously cannot literally hope
to understand all field extensions of K. However there are two important classes
(sets!) of field extensions that one can at least hope to understand: the first is the
class of all finitely generated field extensions of K, and the second is the class of
all algebraic field extensions of K.

If L/K is a field extension, then L is a K-algebra and in particular a vector space
over K. Therefore it has a well-determined (but possibly infinite) dimension, de-
noted by [L : K]. One says that the extension L/K is finite if [L : K] <∞, i.e., if
L is a finite-dimensional K-vector space. For instance, one has [C : R] = 2 < ∞,
so C/R is a finite field extension.

Warning: The term “finite field extension” is ambiguous: it could presumably
also refer to an extension of fields L/K in which L and K are both finite fields. In
practice, one should expect the term to have the former meaning – i.e., the finite-
ness refers to the degree of the extension, and not to either field – but be prepared
to seek clarification if necessary.

As an immediate application we can rederive the fact that the order of a finite
field is necessarily a prime power. Namely, let F be a finite field, and let Fp be
its prime subfield. Since F is finite, it is certainly finite-dimensional over Fp (any
infinite dimensional vector space over any field is infinite), say of dimension d. Then
F as an Fp-vector space is isomorphic to Fdp, so its cardinality is pd.

Theorem 3.1. (Degree multiplicativity in towers) Let F ⊂ K ⊂M be field exten-
sions. Then we have

[M : F ] = [M : K][K : F ].

Proof. Let {bi}i∈I be an F -basis for K and {aj}j∈J be a K-basis for M . We claim
that {aibj}(i,j)∈I×J is an F -basis for M . This suffices, since then [K : F ] = #I,
[M : K] = #J , [M : F ] = #(I × J) = #I ×#J .

5Beware: the notation L/K has nothing to do with cosets or quotients!
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Let c ∈ M . Then there exist αj ∈ K, all but finitely many of which are zero,
such that c =

∑
j∈J αjaj . Similarly, for each j ∈ J , there exist βij ∈ F , all but

finitely many of which are zero, such that αj =
∑
i,j βijbj , and thus

c =
∑
j∈J

αjaj =
∑

(i,j)∈I×J

βijaibj ,

so that {aibj} spans K as an F -vector space. Now suppose the set {aibj} were
linearly dependent. By definition, this means that there is some finite subset S ⊂
I × J such that {aibj}(i,j)∈S is linearly dependent, and thus there exist βij ∈ F ,
not all zero, such that ∑

(i,j)∈S

(βijbj)ai = 0.

Since the ai’s are K-linearly independent elements of M , we have that for all i,∑
βijbj = 0, and then similarly, since the bj ’s are linearly independent elements of

K we have βij = 0 for all j. �

Remark 3.1.2: In general the degree [L : K] of a field extension is a cardinal number,
and the statement of Theorem 3.1 is to be interpreted as an identity of (possibly in-
finite) cardinals. On the other hand, when M/K and K/F are finite, the argument
shows that M/F is finite and the result reduces to the usual product of positive
integers. Moreover the finite case is the one that is most useful.

Let L/K be an extension of fields and α ∈ L. We say that α is algebraic over K
if there exists some polynomial P (t) = tn+an−1t

n+ . . .+a1t+a0 ∈ K[t] such that
P (α) = 0. If α is not algebraic over K it is said to be transcendental over K. A
complex number which is algebraic over Q is called an algebraic number.

Examples 3.1.3: i is algebraic over R since it satisfies the equation i2 + 1 = 0.
It is also algebraic over Q for the same reason. Indeed for any a ∈ Q, a

1
n is al-

gebraic over Q. This is almost tautological, since by a
1
n , one generally means any

complex number α such that αn = a, so α satisfies tn − a = 0.

The following exercise gives less trivial examples.

Exercise 3.1. Let a
b ∈ Q. Show cos(abπ) and sin(abπ) are algebraic.

Exercise 3.2. a) Show that the set of all algebraic numbers is countably infinite.
b) More generally, let K be any infinite field and L/K be any field extension. Show
that the cardinality of the set of elements of L which are algebraic over K is equal
to the cardinality of K.

So “most” real or complex numbers are transcendental. This was observed by Can-
tor and stands as a famous early application of the dichotomy between countable
and uncountable sets. Earlier Liouville had constructed particular transcendental
numbers, like

∑∞
n=1 10−n!: an application of the Mean Value Theorem shows that a

number which is “too well approximated” by rational numbers cannot be algebraic.
It is of course a different matter entirely to decide whether a particular, not obvi-
ously algebraic, number which is given to you is transcendental. Let us say only
that both e and π were shown to be transcendental in the 19th century; that there
were some interesting results in transcendence theory in the 20th century – e.g.
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eπ and 2
√

2 are transcendental – and that to this day the transcendence of many
reasonable looking constants – e.g. πe, ζ(3) =

∑∞
n=1

1
n3 – is much beyond our reach.

The problem of determining whether particular numbers are transcendental, al-
though certainly of interest, has little to do with modern field theory. (Rather it is
part of the theory of Diophantine approximation, a branch of number theory.)

Exercise 3.3. (Universal property of polynomial rings): Let ι : R→ S be a homo-
morphism of commutative rings, and let α1, . . . , αn be elements of S. There is a
unique R-algebra homomorphism Φ : R[t1, . . . , tn]→ S which takes ti 7→ αi.

Now let L/K be a field extension and α ∈ L. By Exercise 3.1.6 there is a unique
K-algebra homomorphism Φ : K[t] → L, t 7→ α. Let I be the kernel of Φ. Since
K[t]/I embeds in L, it is a domain, so I is a prime ideal. Since K[t] is a principal
ideal domain, there are only two choices:

Case 1: I = 0, i.e., Φ embeds K[t] into L. This means precisely that α satisfies
no polynomial relations with K-coefficients, so occurs iff α is transcendental over K.

Case 2: I = (P (t)) is generated by a single irreducible polynomial P (t). Since
the units of K[t] are precisely the nonzero elements of K, it follows that there is a
unique monic polynomial P (t) (i.e., with leading coefficient 1) that generates I. We
call this the minimal polynomial of α. Evidently for Q ∈ K[t] we have Q(α) = 0
⇐⇒ P (t) | Q(t). In particular P (α) = 0, so that α is algebraic, and moreover
Φ induces an embedding K[t]/(P (t)) ↪→ L. If P has degree d, then we say α is
algebraic of degree d; moreover, a K-basis for the left-hand side is 1, t, . . . , td−1, so
[L : K] = d = deg(P ).

Let us summarize:

Theorem 3.2. Let L/K be a field extension and α ∈ L.
a) TFAE:
(i) α is algebraic of degree d over K.
(ii) The K-vector space K[α] is finite, of degree d.
(iii) The K-vector space K(α) is finite, of degree d.
b) If α is algebraic of degree d, then K[α] = K(α) ∼= K[t]/(P (t)), where P (t) ∈ K[t]
is the unique monic polynomial of degree d such that P (α) = 0.
c) If α is transcendental over K, then K[t] ∼= K[α] ( K(α) ∼= K(t).

It follows that the set of all rational expressions P (π)
Q(π) with P,Q ∈ Q[t] is isomorphic

to the rational function field Q(t)! In other words, there is no genuinely algebraic
distinction to be made between “fields of numbers” and “fields of functions.”

A field extension L/K is algebraic if every α ∈ L is algebraic over K.

Corollary 3.3. A finite extension L/K of fields is algebraic.

Proof. We go by contraposition: suppose that L/K is transcendental, and let α ∈ L
be transcendental over K. Then by Theorem 3.2c) we have

[K(α) : K] ≥ [K[α] : K] = [K[t] : K] = ℵ0,
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so

[L : K] = [L : K(α)][K(α) : K] ≥ ℵ0.

�

The converse does not hold: many fields admit infinite algebraic extensions. A
detailed analysis of algebraic field extensions is still ahead of us, but it is easy to
see that the extension Q[

⋃
n≥2 2

1
n ] is an infinite algebraic extension, since it contains

subextensions of arbitrarily large finite degree.

Exercise 3.4. (Direct limits) Let (I,≤) be a directed set: recall that this means
that I is partially ordered under ≤ and for any i, j ∈ I there exists k ∈ I with i ≤ k
and j ≤ k. A directed system of sets is a family of sets {Xi}i∈I together with
maps ι(i, j) : Xi → Xj for all i ≤ j satisfying the natural compatibility conditions:
(i) ιi,i = 1Xi and (ii) for all i ≤ j ≤ k, ι(i, k) = ι(j, k) ◦ ι(i, j). By definition, the
direct limit limI X is the quotient of the disjoint union

∐
i∈I Xi by the equivalence

relation (x,Xi) ∼ (ι(i, j)x,Xj) for all i ≤ j.
a) Show that there are natural maps ιi : Xi → limI Xi. State and prove a universal
mapping property for the direct limit.
b) Suppose that the maps ι(i, j) are all injective. Show that the maps ιi : Xi →
limI Xi are all injective. Explain why in this case limI Xi is often informally re-
ferred to as the “union” of the Xi’s.
c) In any concrete category C – i.e., a category whose objects are sets, for which
the set of all morphisms from an object A to an object B is a subset of the set of all
functions from A to B, and for which composition and identity of morphisms coin-
cide with the usual notions of functions – one has the notion of a directed system
{Ai} of objects in C, i.e., we have sets Ai indexed by the directed set (I,≤) and for
all i ≤ j, the function ι(i, j) : Ai → Aj is a morphism in C. Give a definition of the
direct limit limI Ai in this more general context. Show that the direct limit exists in
the following categories: monoids, groups, commutative groups, rings, commutative
rings, fields.
d) Give an example of a concrete category in which directed limits do not necessarily
exist.6

e) Show that a field extension L/K is algebraic iff it is the direct limit of its finite
subextensions.

3.2. Some Impossible Constructions.

The results we have derived so far do not look very deep to modern eyes, but
they were recognized in the 19th century to imply negative solutions to several
of the longest standing open problems in mathematics. Namely, the Greeks were
interested in constructibility of quantities using a compass and a straightedge.
We recall the basic setup: one starts out with two distinct points in the plane,
which we may as well view as being a unit distance apart. We have at our disposal
an unmarked straightedge, so that given any two points we may construct the line
passing through them, and a compass, such that given any previously constructed
point P1 and any previously constructed pair of points P2, P3, we may draw a
circle whose center is P1 and whose radius is the distance between P2 and P3. Let

6Suggestion: impose some finiteness condition on one of the above categories.
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us say that a positive real number α is constructible if we can after a finite se-
quence of steps construct points P, P ′ with distance α (more precisely, α times
the unit distance we started with), and let us agree that a negative number α is
constructible iff |α| is constructible. Despite the severely constrained toolkit, the
supply of constructible numbers is in some sense rather large.

Exercise 3.5. a) Show: the constructible numbers form a subfield of R.
b) Show: if α > 0 is constructible, then so is

√
α.

c) Conclude: the field of constructible numbers has infinite degree over Q.

Now let us look more closely: a constructible number is built up in a sequence
of steps: α1 = 1, α2, . . .αn = α corresponding to a tower of fields F1 = Q,
F2 = F1(α2), . . ., Fn = Fn−1(αn). To get from Fi to Fi+1 = Fi(αi), we are either
intersecting two lines – which corresponds to solving a linear equation with coeffi-
cients in Fi−1, so Fi = Fi−1 – or intersecting a line defined over Fn−1 with a circle
whose coefficients lie in Fi−1 which yields solutions in either Fi−1 or a quadratic
extension of Fi−1 – or we are intersecting two circles with equations defined over
Fi−1, which leads to solutions over at worst a quadratic extension of a quadratic
extension of Fi−1. (Note quadratic, not quartic: any two distinct circles intersect
in at most two points, and thus the common intersection can also be expressed as
the intersection of a line and a circle.)

Thus any constructible number α lies in a field which is at the top of a tower
of quadratic field extensions, so [Q(α) : Q] is a power of 2. The impossibility of
three classically sought after constructions follows easily.

First we cannot double the cube: given a cube with sides of our unit length,
we cannot construct a cube whose volume is twice that of the given cube, because
the length of a side would be 3

√
2, and [Q( 3

√
2) : Q] = 3. Similarly we can construct

angles that we cannot trisect; in particular, we can construct an angle of 60 degrees

(i.e., we can construct cos 60o = 1
2 and sin 60o =

√
3

2 ), but we cannot construct
cos 20o since it satisfies an irreducible cubic polynomial over Q. Finally, we cannot
square the circle i.e., construct a square whose area is that of a unit circle, for
that would involve constructing a side length of

√
π and π is not even algebraic!

3.3. Subfields of Algebraic Numbers. Let L/K be an arbitrary extension of
fields. Consider the set ClL(K) of all elements of L which are algebraic over K. For
example, when K = Q, L = C we are examining the set of all algebraic numbers,
which is certainly a proper subset of C.

Proposition 3.4. The set ClL(K) is a subfield of K.

We often refer to ClL(K) as the algebraic closure of K in L.

Let us this result in a more general context, that of integral extensions of do-
mains. The generalized proof is not much harder and will be extremely useful for
any student of algebra. So: let R be a domain and S a domain which extends R,
i.e., there is an injective homomorphism R → S. We say that α ∈ S is integral
over R if α satisfies a monic polynomial with R-coefficients:

∃ an−1, . . . , a0 ∈ R | αn + an−1α
n−1 + . . .+ a1α+ a0 = 0.

We say that the extension S/R is integral if every element of S is integral over R.



18 PETE L. CLARK

Note that if R and S are fields, α ∈ S is integral over R is by definition pre-
cisely the same as being algebraic over R. The next result in fact revisits the basic
finiteness property of algebraic elements in this more general context.

Theorem 3.5. Let R ⊂ T be an inclusion of rings, and α ∈ T . TFAE:
(i) α is integral over R.
(ii) R[α] is finitely generated as an R-module.
(iii) There exists an intermediate ring R ⊂ S ⊂ T such that α ∈ S and S is finitely
generated as an R-module.
(iv) There exists a faithful R[α]-submodule M of T which is finitely generated as
an R-module.

Proof. (i) =⇒ (ii): If α is integral over R, there exist a0, . . . , an−1 ∈ R such that

αn + an−1α
n−1 + . . .+ a1α+ a0 = 0,

or equivalently

αn = −an−1α
n−1 − . . .− a1α− a0.

This relation allows us to rewrite any element of R[α] as a polynomial of degree at
most n− 1, so that 1, α, . . . , αn−1 generates R[α] as an R-module.
(ii) =⇒ (iii): Take T = R[α].
(iii) =⇒ (iv): Take M = S.
(iv) =⇒ (i): Let m1, . . . ,mn be a finite set of generators for M over R, and express
each of the elements miα in terms of these generators:

αmi =

n∑
j=1

rijmj , rij ∈ R.

Let A be the n× n matrix αIn − (rij); then recall from linear algebra that

AA∗ = det(A) · In,
where A∗ is the “adjugate” matrix (of cofactors). If m = (m1, . . . ,mn) (the row
vector), then the above equation implies 0 = mA = mAA∗ = m det(A) · In. The
latter matrix equation amounts to mi det(A) = 0 for all i. Thus •det(A) = •0 on
M , and by faithfulness this means det(A) = 0. Since so that α is a root of the
monic polynomial det(T · In − (aij)). �

Lemma 3.6. Let R ⊂ S ⊂ T be an inclusion of rings. If α ∈ T is integral over R,
then it is also integral over S.

Proof. If α is integral over R, there exists a monic polynomial P ∈ R[t] such that
P (α) = 0. But P is also a monic polynomial in S[t] such that P (α) = 0, so α is
also integral over S. �

Lemma 3.7. Let R ⊂ S ⊂ T be rings. If S is finitely generated as an R-module and
T is finitely generated as an S-module then T is finitely generated as an R-module.

Proof. If α1, . . . , αr generates S as an R-module and β1, . . . , βs generates T as an
S-module, then {αiβj}{1 ≤ i ≤ r, 1 ≤ j ≤ s} generates T as an R-module: for
α ∈ T , we have

α =
∑
j

bjβj =
∑
i

∑
j

(aijαi)βj ,

with bj ∈ S and aij ∈ R. �
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Corollary 3.8. (Transitivity of integrality) If R ⊂ S ⊂ T are ring extensions such
that S/R and T/S are both integral, then T/R is integral.

Proof. For α ∈ S, let αn + bn−1α
n−1 + . . . + b1α + b0 = 0 be an integral de-

pendence relation, with bi ∈ S. Thus R[b1, . . . , bn−1, α] is finitely generated over
R[b1, . . . , bn−1]. Since S/R is integral, R[b1, . . . , bn−1] is finite over R. By Lemma
3.7, R[b1, . . . , bn−1, α] is a subring of T containing α and finitely generated over R,
so by Theorem 3.5, α is integral over R. �

Corollary 3.9. If S/R is a ring extension, then the set IS(R) of elements of S
which are integral over R is a subring of S, the integral closure of R in S.
Thus R ⊂ IS(R) ⊂ S.

Proof. If α ∈ S is integral over R, R[α1] is a finitely generated R-module. If α2 is
integral over R it is also integral over R[α1], so that R[α1][α2] is finitely generated
as an R[α1]-module. By Lemmma 3.7, this implies that R[α1, α2] is a finitely
generated R-module containing α1 ± α2 and α1 · α2. By Theorem 3.5, this implies
that α1 ± α2 and α1α2 are integral over R. �

If R ⊂ S such that IS(R) = R, we say R is integrally closed in S.

Proposition 3.10. Let S be a ring. The operator R 7→ IS(R) on subrings of R is
a closure operator in the abstract sense, namely it satisfies:
(CL1) R ⊂ IS(R),
(CL2) R1 ⊂ R2 =⇒ IS(R1) ⊂ IS(R2).
(CL3) IS(IS(R)) = IS(R).

Proof. (CL1) is the (trivial) Remark 1.1. (CL2) is obvious: evidently if R1 ⊂ R2,
then every element of S which satisfies a monic polynomial with R1-coefficients
also satisfies a monic polynomial with R2-coefficients. Finally, suppose that α ∈ S
is such that αn + an−1α

n−1 + . . . + a1α + a0 = 0 for ai ∈ IS(R). Then each ai
is integral over R, so R[a1, . . . , an] is finitely generated as an R-module, and since
R[a1, . . . , an, α] is finitely generated as an R[a1, . . . , an]-module, applying Lemma
3.7 again, we deduce that α lies in the finitely generated R-module R[a1, . . . , an, α]
and hence by Theorem 3.5 is integral over R. �

Proposition 3.11. Let R ⊂ S be an integral extension. If R is a field, so is S.

Proof: Let L be the fraction field of S. If 0 6= α ∈ S is integral over R, then by
Theorem 3.5, R[α] is a finite-dimensional R-submodule of L, so it is a subfield, i.e.,
is equal to R(α). So R(α) = R[α] ⊂ S, meaning that S contains α−1.

3.4. Distinguished Classes.

Here is an organizing principle for classes of field extensions due to S. Lang.

A class C of field extensions is distinguished if it satisfies these two properties:

(DC1) (Tower meta-property) For a tower M/K/F , then M/F ∈ C iff M/K ∈ C
and K/F ∈ C.
(DC2) (Base change meta-property) Let K/F be an element of C, let L/F be any
extension such that K and L are contained in a common field. Then LK/L ∈ C.
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We note that (DC1) and (DC2) imply the following

(DC3) (Compositum meta-property) Let K1/F and K2/F be elements of C with
K1,K2 contained in a common field. Then K1K2/F ∈ C.

Indeed, applying (DC2) we get that K1K2/K2 ∈ C. Since also K2/F ∈ C, ap-
plying (DC1) we get that K1K2/F ∈ C.

Exercise 3.6. a) Show: the class of all finite degree extensions is distinguished.
b) Show: the class of all algebraic extensions is distinguished.

Some examples of distinguished classes of extensions to come later: finitely gener-
ated extensions, separable algebraic extensions, purely inseparable algebraic exten-
sions, solvable extensions, purely transcendental extensions.

Some nonexamples of distinguished classes of extensions to come later: normal ex-
tensions, Galois extensions, inseparable extensions, abelian extensions, not-necessarily-
algebraic separable extensions.

4. Normal Extensions

4.1. Algebraically closed fields.

Let F be a field. A polynomial f ∈ F [t] is split if every irreducible factor has
degree 1. If f ∈ F [t] is a polynomial and K/F is a field extension, we say f splits
in K if f ∈ K[t] is split.

Proposition 4.1. Let F be a field. The following are equivalent:
(i) There is no algebraic extension K ) F .
(ii) There is no finite degree extension K ) F .
(iii) There is no finite degree monogenic extension F (α) ) F .
(iv) If f ∈ F [t] is irreducible, then f has degree 1.
(v) If f ∈ F [t] is nonconstant, then f has a root in F .
(vi) Every polynomial f ∈ F [t] is split. A field satisfying these equivalent conditions
is called algebraically closed.

Proof. (i) =⇒ (ii) =⇒ (iii) is immediate.
¬ (iv) =⇒ ¬ (iii): if f ∈ F [t] is an irreducible polynomial of degree d > 1 then
K := F [t]/(f) is a finite degree monogenic extension of f of degree d > 1.
¬ (v) =⇒ ¬ (iv): Suppose f is nonsconstant and admits no root in F . Write
f = f1 · · · fm as a product of irreducible polynomials; since linear polynomials have
roots in F , no fi has degree 1.
(iv) ⇐⇒ (v) ⇐⇒ (vi) is easy and familiar.
¬ (i) =⇒ ¬ (iv): If K ) F is a proper algebraic extension, let α ∈ K \ F , and let
f ∈ F [t] be the minimal polynomial of α over F , so f is irreducible. By assumption
f is also split, so it has degree 1 and is thus of the form t − α, contradicting the
fact that α /∈ F . �

Theorem 4.2. (Fundamental Theorem of Algebra)
The complex field C is algebraically closed.

Because the existence of a nonconstant f ∈ C[t] without a root in C leads to
absurdities in many areas of mathematics, there are many different proofs, e.g.
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using degree theory or complex analysis. It is often held that “fundamental theorem
of algebra” is a misnomer, in that the result concerns a structure – the complex
numbers – whose definition is in part analytic/topological. We do not dispute this.
Nevertheless the true algebraist hankers for an algebraic proof, and indeed this is
possible. We may, in fact, view Theorem 4.2 as a special case of the following result,
whose proof requires Galois theory so must be deferred until later.

Theorem 4.3. (Artin-Schreier) Suppose K is a field with the following properties:
(i) There do not exist n ∈ Z+ and x1, . . . , xn ∈ K such that −1 = x2

1 + . . . + x2
n.

(ii) Every polynomial P ∈ K[t] of odd degree has a root in K.
(iii) For any x ∈ K×, exactly one of x and −x is a square in K.
Then K[

√
−1] = K[t]/(t2 + 1) is algebraically closed.

Exercise 4.1. Show: Theorem 4.3 implies Theorem 4.2.

Proposition 4.4. Let L/K be a field extension, and let ClK(L) be the algebraic
closure of K in L: that is, the set of all elements of L that are algebraic over K.
Then ClK(L) is algebraically closed.

Proof. Put K := ClK(L). By Proposition 4.1, if K is not algebraically closed then
there is a monogenic finite degree extension K(α) ) K. Because α is algebraic over
K and K is algebraic over K, we have by Corollary 3.8 that α is algebraic over K.
Let f ∈ F [t] be the minimal polynomial of α. By Proposition 4.1, as a polynomial
over L[t] we have

f(t) = (t− α1)(t− α2) · · · (t− αd)
for some α1, . . . , αd ∈ L. Indeed each αi is algebraic over K so lies in K. Moreover
the α1, . . . , αd are the only roots of f in L, and thus for some i we have α = αi ∈ K,
a contradiction. �

Corollary 4.5. The field Q of all algebraic numbers is algebraically closed.

Proof. Since Q is the algebraic closure of Q in C, this follows from Theorem 4.2
and Proposition 4.4. �

Let K be a field. An algebraic closure of K is a field extension K/K that is both
algebraic and algebraically closed. It follows from Proposition 4.1 an algebraic
closure of K is precisely a maximal algebraic extension of K, i..e., an algebraic
extension that is not properly contained in any other algebraic extension of K.

Exercise 4.2. Let K/F be an algebraic field extension. Let L/K be a field exten-
sion. Show: L is an algebraic closure of K iff L is an algebraic closure of F .

4.2. Existence of algebraic closures.

In this section we will show that every field admits at least one algebraic closure, a
basic but nontrivial result.

How might one try to prove this? Probably we can agree to start with the fol-
lowing easy result.

Lemma 4.6. Let F be a field, and let f1, . . . , fn ∈ F [t] be nonconstant polynomials,
of degrees d1, . . . , dn.
a) There is a finite degree field extension K/F such that each fi has a root in K.
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Moreover, we can choose K so as to get [K : F ] ≤
∏n
i=1 di.

b) There is a finite degree field extension K/F such that each fi splits in K. More-
over, we can choose K so as to get [K : F ] ≤

∏n
i=1 di!.

Proof. a) Let M be a field, and let f ∈M [t] be a polynomial of degree d. Let g be
an irreducible factor of f , say of degree d′ ≤ d. Then M [t]/(g) is a field extension
of M of degree d′ ≤ d in which g (and hence also f) has a root. By applying
this procedure successively to f1, . . . , fn we generate a tower of field extensions
F ⊂M1 ⊂ . . . ⊂Mn such that for all 1 ≤ i ≤ n, the polynomials f1, . . . , fi all have
a root in Mi and [Mi : F ] ≤ d1 · · · di, so we may take K := Mn.
b) Let M be a field, and let h ∈M [t] be a polynomal of degree d. Applying part a)
to h, there is a field extension M1/M of degree at most d in which h has a root α1

and thus we get a factorization h(t) = (t − α1)h2(t) ∈ M1[t]. We apply part a) to
h2 and get a field extension M2/M1 of degree at most d− 1 in which h2 has a root
α2 and thus we get a factorization h(t) = (t− α1)(t− α2)h3(t). Continuing in this
manner, we end up with a field extension Mn of degree at most d! in which h splits.
Applying this procedure successively to the polynomials f1, . . . , fn over the field F
we get a field extension K of degree at most

∏n
i=1 di! in which each fi splits. �

Exercise 4.3. Let d1, . . . , dn ∈ Z+.
a) Show: there are (necessarily irreducible) polynomials f1, . . . , fn ∈ Q[t] such that
if K/Q is a number field (i.e., a finite degree field extension) such that each fi has
a root in K then

∏n
i=1 deg fi | [K : Q].

b) Show: there are (necessarily irreducible) polynomials f1, . . . , fn ∈ Q[t] such that
if K/Q is a number field in which each fi splits, then

∏n
i=1 di! | [K : Q].

(Hint/warning: this is most naturally done using basic algebraic number theory.)

Theorem 4.7. Every field K can be embedded in an algebraically closed field L.
Thus every field has at least one algebraic closure, namely ClL(K).

Proof. Step 1: Let R = K[T] be a polynomial ring over K indexed by a set of
indeterminates tf that are in bijection with the nonconstant polynomials f ∈ K[t].
Consider the ideal I of R generated by all polynomials of the form f(tf ). We
claim that I is proper: if not, there is a finite subset {f1, . . . , fn} and elements
g1, . . . , gn ∈ R such that

g1f1(tf1) + . . .+ gnfn(tfn) = 1.

By Lemma 4.5, there is a finite degree field extension F/K such that each fi(t) has
a root αi ∈ F . If we evaluate tf1 = α1, . . . , tfn = αn in the above equation, we get
0 = 1: contradiction. So we may choose a maximal ideal m ⊃ I. Thus K1 := R/m
is a field exetnsion of F in which each tf is a root of f . Thus K1/K is a field
extension in which each nonconstant polynomial f ∈ K[t] has a root.
Step 2: The natural question here is whether K1 is algebraically closed. The
remainder of the proof consists of a clever evasion of this question! Namely, we
apply the construction of Step 1 to K1, getting a field extension K2 in which each
polynomial with coefficients in K1 has a root in K2, and so forth: we generate a
sequence of field extensions

K ⊂ K1 ⊂ . . . ⊂ Kn ⊂ . . . .
The union L =

⋃
nKn is a field, and any nonconstant polynomial P ∈ L[t], having

only finitely many nonzero coefficients lies in Kn[t] for sufficiently large n, thus has
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a root in Kn+1 and therefore also in L. So L is algebraically closed, and then by
Proposition 4.4 the algebraic closure of K in L is an algebraic closure of K. �

Theorem 4.7 lies among the most important results in all of field theory. So we
pause to discuss several aspects of it.

First, the proof of Theorem 4.7 used the Axiom of Choice (AC) in a somewhat
disguised way: in the assertion that a proper ideal in a ring is contained in a max-
imal ideal. In fact the statement that every proper ideal in a commutative ring is
contained in a maximal ideal implies (AC). So it is natural to wonder whether the
existence of an algebraic closure of any field implies (AC). Indeed not: it would be
enough to use that every proper ideal is contained in a prime ideal: this gives us a
domain, and we can take the fraction field. The assertion that every proper ideal
in a commutative ring is contained in a prime ideal is known to be equivalent to
the Ultrafilter Lemma (UL), which does not imply (AC).

It seems to be an open problem whether the existence of an algebraic closure of
every field implies (UL): cf. http://mathoverflow.net/questions/46566. How-
ever, it is known that (AC) is required for Theorem 4.7 to hold in the sense that
there is a model of Zermelo-Fraenkel set theory in which not every field admits an
algebraic closure [Je, Thm. 10.13].

The proof of Theorem 4.7 comes from E. Artin by way of Lang [LaFT]. It is
unnecessarily (though helpfully) slick in several respects. The use of polynomial
rings is a crutch to avoid some mostly set-theoretic unpleasantries: later we wil
see that an algebraic closure of F is essentially the direct limit of all finite degree
normal field extensions K/F : here the essentially means that we want each K/F
to appear exactly once up to F -isomorphism. It just happens that the easiest way
to do that is to realize each K inside a fixed algebraically closed field containing F !
But by the time the reader has made it to the end of this section, she may consider
trying to construct this direct limit directly.

Finally, as we pointed out, the proof constructs an extension K1/K such that
every nonconstant f ∈ K[t] has a root in K1 and then nimbly evades the question
of whether K1 contains an algebraic closure of K. It turns out that the answer to
this is affirmative. We break this up into two steps. First:

Proposition 4.8. Let L/K be a field extension. Suppose every nonconstant f ∈
K[t] splits in L. Then the algebraic closure of K in L is algebraically closed.

Proof. Let K be the algebraic closure of K in L. Suppose K is not algebraically
closed: then by Proposition 4.1 there is a field extension M/K and an element
α ∈ M \K that is algebraic over K. By Corollary 3.8 we have that α is algebraic
over K, so has a minimal polynomial f ∈ K[t]. By assumption f splits in K, and
since f(α) = 0 one of the factors of f must be t− α and thus α ∈ K. �

As for the second step: we will record the answer now, but we will need to know
more of the structure theory of algebraic field extensions in order to prove it.

Theorem 4.9. (Gilmer [Gi68]) Let L/K be a field extension. If every nonconstant
f ∈ K[t] has a root in L, then every nonconstant f ∈ K[t] splits in L.
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Exercise 4.4. Let K be a field, and let f ∈ K[t] be a monic polynomial of degree
d ≥ 1. Let K be an algebraic closure of K. Over K, f splits:

f(t) = (t− α1) · · · (t− αd).

We say f is separable if the α1, . . . , αd are distinct elements of K.
a) Conceivably the above definition depends on the choice of K. However, let f ′ be
the (formal) derivative of f : the unique K-linear endomorphism of K[t] such that
(tn)′ = ntn−1. Show: f is separable iff gcd(f, f ′) = 1.
b) Let K be a field and n ∈ Z+. If K has positive characteristic p, assume that
gcd(n, p) = 1. Let a ∈ K be arbitrary. Show: the polynomial tn − a is separable.
c) Deduce: if K is a field and n ∈ Z+ is prime to the characteristic of K if it
is positive, then there is a field extension L/K containing n different nth roots of
unity: i.e., distinct z1, . . . , zn such that zni = 1 for all 1.
d) Deduce: no finite field is algebraically closed.

Exercise 4.5.
a) Show: if K is a field and K is an algebraic closure, then #K = max(ℵ0,#K).
b) Show: there are algebraically closed fields of all infinite cardinalities.

4.3. The Magic Mapping Theorem.

Theorem 4.10. (Magic Mapping Theorem) Let F be a field. Let K/F be an
algebraic field extension, and let L/F be a field extension with L algebraically closed.
Then there is an F -algebra homomorphism ϕ : K ↪→ L.

Proof. Consider the partially ordered set whose elements are are pairs (M,ϕ) where
M is a subextension of K/F and ϕ : M → L is an F -algebra homomorphism. We
say that (M1, ϕ1) ≤ (M2, ϕ2) if M1 ⊂M2 and the restriction of ϕ2 to M1 is ϕ1. In
this partially ordered set, any chain has an upper bound given by taking the union of
the elements of the chain. So by Zorn’s Lemma there is a maximal element (M,ϕ).
We claim that M = K. If not, let α ∈ K \M , and consider the field extension
M(α)/M . Let f ∈ M [t] be the minimal polynomial of α, so M(α) ∼= M [t]/(f).
We view L as an M -algebra via ϕ, and thus we may view f ∈ L[t]. Since L is
algebraically closed, there is a root in L, say α. There is a unique M -algebra
homomorphism M(α) → L that maps α to α: it is unique because M(α) = M [α]
is generated as an M -algebra by α, and it exists because M(α) ∼= M [t]/(f(t)) so
the unique M -algebra map M [t] → L that carries t to α has f(t) in its kernel. It
follows that M = K. �

Corollary 4.11. (“Uniqueness” of Algebraic Closure) Let F1 and F2 be two alge-
braic closures of a field F . Then there is an F -algebra isomorphism ϕ : F 1 → F2.

Proof. We may apply the Magic Mapping Theorem with K = F1 and L = F2 to
get an F -algebra homomorphism ϕ : F1 ↪→ F2. Then F2/ϕ(F1)) is an algebraic
extension of an algebraically closed field, so it cannot be proper: we have F2 = ϕ(F1)
and thus ϕ is an F -algebra isomorphism. �

Note that we speak of “‘uniqueness’ of the algebraic closure” rather than “unique-
ness of the algebraic closure.” This is because we have shown that the algebraic
closure of F is unique up to F -algebra isomorphism, but given two algebraic clo-
sures of F there is in general no canonical F -algebra isomorphism between them.
If ϕ,ψ : F1 ↪→ F2 are two F -algebra isomomorphisms, then ψ−1 ◦ϕ is an F -algebra
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automorphism of F1, and conversely: the ambiguity in the choice of isomorphism
is precisely measured by the group GF := Aut(F 1/F ). This group is called the
absolute Galois group of F and is in general a very large, interesting group. In
fact, we should not speak of “the” absolute Galois group of F (though we will: it
is traditional to do so): it is well-defined up to isomorphism, but switching from
one isomorphism F1 → F2 to another gives rise to an inner automorphism (i.e., a
conjugation) of G. More on this later.

Remark 4.1. There are models of Zermelo-Fraenkel set theory – i.e., without (AC)
– in which a field F can admit non-F -isomorphic algebraic closures.

Corollary 4.12. Let K1/F and K2/F be two algebraic field extensions. If ϕ :
K1 → K2 is any F -algebra embedding and Ki is any algebraic closure of Ki, then
ϕ extends to an isomorphism K1 → K2.

Exercise 4.6. Prove Corollary 4.12.

4.4. Conjugates.

Let K/F be an algebraic field extension. We say that elements α, β ∈ K are con-
jugate over F if α and β have the same minimal polynomial over F . If α ∈ K \F
has degree d ≥ 2 – i.e., [K(α) : K] = d or equivalently the degree of the minimal
polynomial of α is d – then the number of conjugates of α is at least 2 and at most d.

If K/F is an algebraic extension and F is any algebraic closure of F , then as
we know there is an F -algebra homomorphism ι : K ↪→ F . If α ∈ K and f ∈ F [t]
is the minimal polynomial of α, then f splits in F . We call the roots of f in F
the conjugates of α. Notice that the set of conjugates is defined only in terms of
the minimal polynomial, which lies in F , so it is independent of the choice of ι. If
α ∈ F then of course α is the only conjugate of α, whereas if α /∈ F then once again
if α has degree d then the set of conjugates of α has size at least 2 and at most d.

For the remainder of this section we fix an algebraic closure F of F and only
consider algberaic extensions K/F that are subextensions of F/F (again, every
algebraic extensions occurs this way up to F -algebra isomorphism). From this per-
spective, being conjugate over F is an equivalence relation on F . Moreover, if σ
is an F -algebra automorphism of F , then for all α ∈ F , we have that σ(α) is a
conjugate of α: indeed, for every polynomial f ∈ F [t], we have

f(α) = 0 ⇐⇒ f(σ(α)) = 0

and thus α and σ(α) have the same minimal polynomial. Conversely, if α, β ∈ F
are conjugate over F , then there is an F -algebra automorphism σ of F such that
σ(α) = β. Indeed, let f ∈ F [t] be the common minimal polynomial of α and β.
Then the field extensions F (α) and F (β) are both isomorphic to F [t]/(f(t)), so
there is an isomorphism

F (α)→ F (β),

which by Corollary 4.12 extends to an automorphism of F .

Remark 4.2. Recall that if a group G acts on a set X, we say that two elements
x, y ∈ X are conjugate if there is g ∈ X such that gx = y. As we just saw, the
terminology of conjugate elements of F is compatible with this: two elements of F
are conjugate iff they are conjugate under the action of Aut(F/F ).



26 PETE L. CLARK

4.5. Splitting Fields.

It follows from Proposition 4.8 that if K/F is an algebraic field extension such
that every nonconstant f ∈ F [t] splits in K, then K is an algebraic closure of F .
This view on algebraic closure opens the door to a natural and important general-
ization: we go from “all polynomials” to “some polynomials.”

Let F be a field, and let S ⊂ F [t] be a set of nonconstant polynomials. A splitting
field for (F,S) is a field extension K/F satisfying the following properties:

(SF1) Every fi ∈ S splits in K.
(SF2) No proper subextension of K satisfies (SF1), i.e., if F ⊂ K ′ ⊂ K and every
fi ∈ S splits in K ′, then K ′ = K.

Exercise 4.7. Suppose K/F is a splitting field for (F,S), and K ′ is an F -algebra
isomorphic to K. Show: K ′ is also a splitting field for (F,S).

Theorem 4.13. (Existence and “Uniqueness” of Splitting Fields) Let F be a field
and S ⊂ F [t] a set of nonconstant polynomials.
a) Any algebraic closure F contains a unique splitting field for S, namely the subfield
of F obtained by adjoining to F all roots αij of all polynomials Pi ∈ S.
b) Splitting fields are unique up to F -algebra isomorphism.

Proof. It is no problem to see that the recipe of part a) does indeed construct
a splitting field for F and S: clearly every polynomial in S splits in F (αij) and

conversely any subfield of F in which all the polynomials in F split must contain
all the αij ’s. One way to see the uniqueness up to isomorphism is to reduce to the
case of uniqueness up to isomorphism of algebraic closures. Namely, let K1,K2 be
two splitting fields for F and S. It is easy to see that (SF2) implies that Ki/F is
algebraic, so let Ki be an algebraic closure of Ki. Since Ki is algebraic over F , Ki is
equally well an algebraic closure of F , so by Corollary 4.11 there exists an F -algebra
isomorphism Φ : K1 → K2. Then Φ(K1) is a subfield of K2 which is a splitting
field for F and S, and we just saw that each algebraic closure contains a unique
splitting field, so Φ(K1) = K2 and Φ : K1 → K2 is an F -algebra isomorphism. �

Exercise 5.2.2: Show that the field K = Q[ζ3,
3
√

2] discussed in §5.1 is the splitting
field of F, {t3 − 2}. Conclude that if L ⊂ C is such that L 6= K, then L is not
isomorphic to K.

4.6. Normal Extensions.

Lemma 4.14. Let F be an algebraic closure of F , let K be a subextension of F/F ,
and let σ : K ↪→ F be an F -algebra embedding. The following are equivalent:
(i) σ(K) ⊂ K.
(ii) σ(K) ⊃ K.
(iii) σ(K) = K.

Proof. Certainly (iii) implies both (i) and (ii). We will show (i) =⇒ (iii), and it
will be clear how to modify the argument so as to obtain (ii) =⇒ (iii).
(i) =⇒ (iii): Let α ∈ K, and let S be the set of F -conjugates of α that lie in
K. We observe that S is a finite set containing α. For β ∈ K, we have that β is a
conjugate of α iff σ(β) is a conjugate of α, so the set of F -conjugates of α that lie in
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σ(K) is precisely σ(S). By hypohesis we have σ(S) ⊂ S; since both are finite sets
of the same cardinality we must have σ(S) = S and thus α ∈ σ(S) ⊂ σ(K). �

Theorem 4.15. Let K/F be an algebraic field extension. Let F be an algebraic
closure of K (hence also of F ). The following are equivalent:
(i) For every F -algebra embedding σ : K ↪→ F we have σ(K) = K.
(ii) K/F is the splitting field of a subset S ⊂ F [t].
(iii) Every irreducible polynomial f ∈ F [t] with a root in K splits in K.
(iv) For all α ∈ K, if β ∈ F is an F -conjugate of α, then β ∈ K.
An extension K/F satisfying these properties is called normal.

Proof. (i) ⇐⇒ (iv): We saw above that for α ∈ K and β ∈ F , β is a conjugate of
α in F iff there is an F -algebra homomorphism σ : K ↪→ F such that σ(α) = β. It
follows that as we range over all F -algebra homomorphisms σ : K ↪→ F , we have
that

⋃
σ σ(K) is the set of all conjugates of all elements of K. Condition (iv) holds

iff the set of all conjugates of all elements of K is just K itself iff
⋃
σ σ(K) = K iff

σ(K) ⊂ K for all σ iff σ(K) = K for all σ(K): condition (i).
(iii) ⇐⇒ (iv) is immediate.
(ii) ⇐⇒ (iv): Condition (ii) can be rephrased by saying that K is generated by
adjoining to F a subset S of F that is stable under conjugation. Thus if (iv) holds,
then (ii) holds with S = K. Conversely, suppose that K is obtained by adjoining to
F a set S that is stable under conjugation, and let x ∈ K. Then x = f(α1, . . . , αn) is
a rational function in elements α1, . . . , αn ∈ S with F -coefficients. Every conjugate
of x in F is of the form σ(x) for some F -automorphism σ of F , and then

σ(x) = f(σ(α1), . . . , σ(αn)) ∈ K,
since S is closed under conjugation. �

Corollary 4.16. Let K/F be a normal algebraic field extension. Let L/K be any
field extension and let σ : L→ L be any automorphism. Then σ(K) = K.

Proof. Let L be an algebraic closure of L. By Corollary 4.11, we may extend σ
to an automorphism σ : L → L. Let K = ClL(K), the unique algebraic closure

of K contained in L. Since K/F is algebraic, K is also an algebraic closure of F .
Since σ(K) is also an algebraic closure of K contained in L, by the aforementioned
uniqueness we have σ(K) = K. By Theorem 4.15 we have σ(K) = K. �

Exercise 4.8. Suppose K/F is finite of degree at most 2. Show: K/F is normal.

Example 4.17. For each n ≥ 3, the extension K = Q[ n
√

2]/Q is a non-normal
extension of degree n. Indeed, let ζn = e2πi/n; then the other roots of tn − 2 in
C are ζkn ·

n
√

2 with 0 ≤ k < n, which are not even real numbers unless k = 0 or
k = n

2 . So tn − 2 does not split over K. In this case, any extension of K which

is normal over Q must contain all the roots of tn − 2, hence must contain n
√

2 and
ζn. Therefore the smallest normal extension is the splitting field of tn− 2, which is
M = Q[ n

√
2, ζn].

Example 4.18. Suppose F has characteristic p > 0. Suppose a ∈ F is such that
f(t) = tp

n − a ∈ F [t] is irreducible. Let K = F [t]/(f(t)), and write α for the coset
of t+ (f(t)): thus αp

n

= a. Then as an element of K[t] we have f(t) = (t− α)p
n

.
That is, despite the fact that f has degree pn, α is conjugate in F only to itself.
Thus K/F is a normal extension.
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Exercise 4.9. Show: a direct limit of normal extensions is normal.

Exercise 4.10. Show: if K/F is normal and L/K is normal, then L/F need not
be normal. (Thus normality does not satisfy the tower meta-property.)

Exercise 4.11. a) Let L/F be an extension and K1,K2 be subextensions. Show:
K1 ∩K2 is again an extension field of F .
b) As above, but with any collection of intermediate field extensions {Ki}i∈I .

Proposition 4.19. Let L/F be an extension and {Ki}i∈I/F a collection of alge-
braic subextensions. If each Ki/F is normal, then so is the intersection K =

⋂
iKi.

Proof. Using Exercise 5.3.7, we may replace Ki by ClKi(F ) and L by ClL(F ) and
thus assume that all field extensions are algebraic. Let P ∈ F [t] be an irreducible
polynomial. If P has a root in K, P has a root in each Ki, hence Ki contains a
splitting field for F . Splitting fields are unique inside any given algebraic extension,
so this means that each Ki contains the common splitting field for (F, P ), hence K
contains it, so P splits in K. �

Let K/F be any field extension. As above, K/F is certainly normal. Since the
intersection of any family of normal subextensions of K is normal, it follows that
there is a unique smallest subextension L, F ⊂ K ⊂ L ⊂ K, such that L/F is
normal. If we define a normal closure of an extension K/F to be an extension
L/K which is normal over F and such that no proper subextension is normal over F ,
then we just constructed a normal closure, by intersecting all normal subextensions
inside an algebraic closure of K. This shows that any normal closure of K/F is
algebraic over K, and by the usual tricks with uniqueness up to F -isomorphism
of algebraic closure one can show that the normal closure of an extension is also
unique up to F -isomorphism.

Proposition 4.20. Let K/F be finite of degree n. Then the degree of the normal
closure M of K/F (inside any algebraic closure K) is at most n!

Proof. Put F = F0. Write K = F (α1, . . . , αd) and for 1 ≤ i ≤ d, put Ki =
F (α1, . . . , αi) and di := [Ki : Ki−1]. An argument almost identical to that of
Lemma 4.6b) yields a field extensionM/K containing all the conjugates of α1, . . . , αd
and such that [M : F ] =

∏d
i=1 di!. Thus the normal closure of K/F has degree at

most
∏d
i=1 di!. Now

n = [K : F ] =

d∏
i=1

[Ki : Ki−1] =

d∏
i=1

di.

It follows that
∏d
i=1 di! ≤ n!: for intance take sets S1, . . . , Sd of cardinalities

d1, . . . , dd. Then
∏d
i=1 di! is the number of bijections of S :=

∏n
i=1 Si that pre-

serve each coordinate, while (d1 · · · dn)! is the number of bijectiions of S. �

4.7. Isaacs’ Theorem.

The goal of this section is to prove the following result of Isaacs.

Theorem 4.21. (Isaacs [Is80]) Let F be a field. For an algebraic extension K/F ,
let P(K) be the set of polynomials f ∈ F [t] having a root in K. Then for algebraic
extensions K1/F , K2/F , the following are equivalent:
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(i) The F -algebras K1 and K2 are isomorphic.
(ii) We have P(K1) = P(K2).

Exercise 4.12. a) Show: Isaacs’ Theorem implies that a field extension L/F that
contains a root of every nonconstant f ∈ F [t] contains an algebraic closure of F .
b) Deduce Gilmer’s Theorem (Theorem 4.9).

5. Separable Algebraic Extensions

Let K/F be an algebraic field extension. We have already explored one desirable
property for K/F to have: normality. Normality can be expressed in terms of
stability under F -homomorphisms into any extension field, and also in terms of
irreducible polynomials: every irreducible polynomial in F [t] with a root in K[t]
must split. There is another desirable property of an algebraic extension L/K called
separability. In some sense it is dual to normality, but this is hard to believe at
first because there is a large class of fields F for which all algebraic extensions K/F
are separable, including all fields of characteristic 0. (For that matter, there are
fields for which every algebraic extension is normal, like R and Fp.) Like normality,
separability can also be expressed in terms of polynomials and also in terms of
embedding conditions. We begin with a study of polynomials.

5.1. Separable Polynomials.

A nonconstant polynomial P ∈ F [t] is separable if over an algebraic closure F ,
P (t) splits into distinct linear factors. Equivalently, if P has degree n, then there
are n distinct elements α1, . . . , αn ∈ F such that P (αi) = 0 for all i. Note that both
of these conditions are easily seen to be independent of the chosen algebraic closure.

Exercise: let F be a field and K/F be any extension. Show that a polynomial
P ∈ F [t] is separable as a polynomial over F iff it is separable when viewed as a
polynomial over K.

Lemma 5.1. Let F be a field of characteristic p > 0 and α ∈ F× \F×p. Then for
all n ≥ 1, the polynomial tp

n − α is irreducible.

Proof. We shall prove the contrapositive: suppose that for some n ∈ Z+ the poly-
nomial tp

n −α is reducible; we will show that α is a pth power in F . We may write
tp
n − α = f(t)g(t), where f(t) and g(t) are nonconstant monic polynomials. Let

K/F be an extension field containing a root β of tp
n − α, so that in K[t] we have

tp
n

− α = tp
n

− βp
n

= (t− β)p
n

.

Since K[t] is a UFD and f(t) and g(t) are monic, we therefore have f(t) = (t− β)r

for some 0 < r < pn. Write r = pms with gcd(p, s) = 1. Note that m < n. Then

f(t) = (tp
m

− βp
m

)s,

so that the coefficient of tp
m(s−1) is −sβpm . This lies in F and – since s 6= 0 in F

– we conclude βp
m ∈ F . Thus

α = (βp
m

)p
n−m
∈ F p

n−m
∈ F p

since m < n. �
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Over any field F it is no trouble to come up with a polynomial that is not sepa-
rable: t2. What is of more interest is whether there is an inseparable irreducible
polynomial in F [t]. Note that some authors define a polynomial to be separable if
all its irreducible factors are separable and others only discuss in/separability for
irreducible polynomials. Although these conventions certainly “work” as well, I find
the current definition to be more convenient and more thematic. First, Exercise XX
shows that with this definition, separability is faithfully preserved by base exten-
sion. Since the way one will check whether an irreducible polynomial is separable is
by considering it over the algebraic closure, where of course it is a product of sep-
arable (linear!) polynomials, our definition seems simpler. Moreover, in the theory
of algebras one does meet reducible polynomials: for any nonconstant P ∈ F [x],
we may consider the finite-dimensional F -algebra AP = F [x]/(P (x)). Then our
definition makes it true that P is separable iff AP is a separable algebra, i.e.,
an algebra which is semisimple and remains semisimple after arbitrary base change.

In general it is far from obvious whether the field extension obtained by adjoin-
ing a root of an irreducible polynomial is normal. Fortunately, it is much easier to
determine whether a polynomial, especially an irreducible polynomial, is separable.

Exercise 5.1. Let k be a field.
a) Show: there is a unique k-linear endomorphism f 7→ f ′ of k[t] such that for all
n ∈ N we have (tn)′ = ntn−1.
b) Show: for all f, g ∈ k[t] we have (fg)′ = f ′g + fg′.
c) Show: for all f, g ∈ k[t] we have (f(g(t)))′ = f ′(g(t))g′(t).
d) Suppose k has characteristic 0. Show: if deg(f) = n ≥ 1, then deg(f ′) = n− 1.
Deduce that {f ∈ k[t] | f ′ = 0} = k.
e) Suppose k has characteristic p > 0. Show:

{f ∈ k[t] | f ′ = 0} = k[tp].

Proposition 5.2. (Derivative Criterion)
Let f ∈ F [t] be a nonconstant polynomial.
a) The polynomial f is separable iff gcd(f, f ′) = 1.
b) If f is irreducible, it is separable iff f ′ 6= 0.
c) An irreducible polynomial is always separable in characteristic 0. In characteris-
tic p > 0, an irreducible polynomial is inseparable iff there exists g ∈ F [t] such that
f(t) = g(tp).

Proof. a) Let d ∈ F [t] be a greatest common divisor of f and f ′. This means that

{αf + βf ′ mod α, β ∈ F [t]} = {γd | γ ∈ F [t]}.
If K/F is any field extension, it follows that

{αf + βf ′ mod α, β ∈ K[t]} = {γd | γ ∈ K[t]},
so d is again a greatest common divisor of f and f ′ in K[t]. Moreover, if F is an
algebraic closure of F and K is an algebraic closure of K, then the Magic Mapping
Theorem gives an F -algebra homomorphism F ↪→ K, so f ∈ F [t] is separable iff
f ∈ K[t] is separable. Thus both of the conditions of part a) are stable under
replacing F by an extension field, so we may assume that F is algebraically closed
and thus f is split. If f is not separable, then for some α ∈ F we have

f = (t− α)2g
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and thus
f ′ = (t− α)2g′ + 2(t− α)g = (t− α)h

so (t − α) | gcd(f, f ′). Conversely, if f is separable, then for every root α of f we
have

f = (t− α)g with g(α) 6= 0,

so
f ′ = (t− α)g′ + g,

so f ′(α) = g(α) 6= 0 and thus (t− α) - f ′. Thus gcd(f, f ′) = 1.
b) If f is irreducible, then since gcd(f, f ′) | f , if gcd(f, f ′) 6= 1 then gcd(f, f ′) = f
so f | f ′. Since deg(f ′) < deg(f), this occurs if and only if f ′ = 0.
c) This follows from part b) and the previous exercise. �

Lemma 5.3. Let F be a field of characteristic p > 0, a ∈ Z+, and α ∈ F×. TFAE:
(i) There exists β ∈ F such that βp = α.
(ii) The polynomial P (t) = tp

r − α is reducible over F .

Proof. Because the polynomial tp − α is inseparable, it has a unique root in an
algebraic closure F , namely an element β such that βp = α. We must show that
the reducibility of P (t) is equivalent to this β lying in F . Moreover, let γ be an
element of F such that γp

a

= α. Then P (t) = (t − γ)p
a

, so that the element γ is

unique; moreover, since (γp
a−1

)p = α and α has a unique pth root in F , we must

have γp
a−1

= β. That (i) implies (ii) is now easy: if β ∈ F , then we may write
P (t) = (t− β)p so P is irreducible over F .

Conversely, assume that P (t) is reducible over F , i.e., there exist 0 < i < pr

such that (t − γ)i ∈ F [t]. The coefficient of ti−1 in this polynomial is −iγ, so if
i is prime to p this implies that γ ∈ F , hence β ∈ F which gives (i). So we may
therefore assume that i = pb · j where 1 ≤ b ≤ a − 1 and gcd(p, j) = 1. Then

(tp
b − γp

b

)j ∈ F [t], and arguing as before we get that γp
b ∈ F , and therefore

β = (γp
b

)p
a−b ∈ F . �

A field F is perfect if every irreducible polynomial over F is separable. It follows
immediately from Prop XXc) that every field of characteristic 0 is perfect. In other
words, the entire discussion of separability is nonvacuous only in positive charac-
teristic, so for the remainder of this section we assume that all fields are of positive
characteristic. Unless otherwise specified, p shall always denote a prime number
which is the characteristic of the field(s) in question.

If F has characteristic p > 0, we consider the Frobenius homomorphism

f : F → F, x 7→ xp.

Let F p = f(F ) be the image, a subfield of F .

Proposition 5.4. a) A field of characteristic p > 0 is perfect iff the Frobenius
homomorphism is surjective: F p = F .
b) Therefore finite fields and algebraically closed fields are perfect.

Proof. Assume F p = F , and let P (t) =
∑
i ait

pi be an irreducible inseparable
polynomial. We can then write ai = bpi and then

P (t) =
∑
i

(bi)
p(ti)p = (

∑
i

bit
i)p = Q(t)p,
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hence P (t) is not irreducible after all. Therefore F is perfect. Inversely, if the
Frobenius homomorphism is not surjective, then there exists some α ∈ F which
is not a pth power, and then by Lemma XX the inseparable polynomial tp − α is
irreducible, so F is not perfect. This gives part a). As for part a), like any field
homomorphism, the Frobenius map is injective, and an injective map from a finite
set to itself is necessarily surjective. If F is algebraically closed, then for any α ∈ F
the polynomial tp − α has a root in F , i.e., α ∈ F p. �

For any positive integer a, we may consider the pa, the map which takes α 7→ αp
a

,
which can also be described as the ath power of the Frobenius map. We write
F p

a

= pa(F ). If F is not perfect then we get an infinite descending chain of proper
subfields

F ) F p ) F p
2

) . . .

Indeed, if α ∈ F \ F p, then αp
a−1 ∈ F pa−1 \ F pa . This gives another proof that an

imperfect field is infinite.

Exercise X.X.X: Let F be a field of characteristic p, with an algebraic closure
F . Define F 1/p = {β ∈ F | βp ∈ F}.
a) Show that F 1/p is a subextension of F/F .
b) Similarly define a tower of subextensions

F ⊂ F 1/p ⊂ F 1/p2 ⊂ . . . F 1/pa ⊂ . . . ⊂ F ,
and show that if F is imperfect, all these inclusions are strict.
c) Define F 1/p∞ =

⋃∞
a=1 F

1/pa . Show that F 1/p∞ is perfect and is the intersection

of all perfect subextensions of F . It is called the perfect closure of F .

Purely inseparable polynomials: Say that a polynomial P (t) ∈ F [t] is purely
inseparable if there exists exactly one α ∈ F such that P (α) = 0. As above, there
are certainly purely inseparable polynomials over F – (t − α)n for any α ∈ F and
n ∈ Z+ – and what is of interest is the purely inseparable irreducible polynomials,
which by the discussion thus far clearly can only exist in characteristic p > 0.

Proposition 5.5. Let F be a field of characteristic p > 0. The irreducible, purely
inseparable monic polynomials P (t) ∈ F [t] are precisely those of the form tp

a − α
for some a ∈ Z+ and some α ∈ F \ F p.

Proof. By Lemma XX, any polynomial of the form tp
a − α for α ∈ F \ F p is

irreducible. Conversely, let P (t) be a purely inseparable polynomial. By XXXXX,
there exists a polynomial P2(t) such that P (t) = P2(tp). Since P is irreducible, so is
P2. If there exist distinct α, β ∈ F such that P2(α) = P2(β) then there are unique

and distinct elements α
1
p , β

1
p in F such that P (α

1
p ) = P (β

1
p ) = 0, contradicting the

pure inseparability of α. Therefore P2 must itself be irreducible purely inseparable,
and an evident inductive argument finishes the proof. �

Exercise XX: Show that the polynomial t6−x over the field F3[x] is irreducible and
inseparable but not purely inseparable.

5.2. Separable Algebraic Field Extensions.

Let F be a field and P (t) an irreducible, inseparable polynomial over F of de-
gree d > 1. Consider the finite field extension K = F [t]/(P (t)) of F . It exhibits
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some strange behavior. First, the only F -algebra embedding σ : K → K is the
inclusion map. Indeed, such embeddings correspond bijectively to the assignments
of t ∈ K to a root α of P in K, and by assumption there are less than d such
elements. It follows that the group Aut(K/F ) of F -algebra automorphisms of F
has cardinality smaller than d.

For an extension K/F , the separable degree [K : F ]s is the cardinality of the set
of F -algebra embeddings σ : K → F .

Exercise: Show that the separable degree may be computed with respect to em-
beddings into any algebraically closed field containing F .

Theorem 5.6. The separable degree is multiplicative in towers: if L/K/F is a
tower of finite field extensions, then [L : F ]s = [L : K]s[K : F ]s.

Proof. Let σ : F ↪→ C be an embedding of F into an algebraically closed field. Let
{σi}i∈I be the family of extensions of σ to K, and for each i ∈ I let {τij}j∈Ji be
the family of extensions of σi to L. Each σi admits precisely [L : K]s extensions to
embeddings of L into C: in particular, the cardinality of Ji is independent of i and
there are thus precisely [L : K]s[K : F ]s F -algebra embeddings τij overall. These
give all the F -algebra embeddings L ↪→ C, so [L : F ]s = [L : K]s[K : F ]s. �

Corollary 5.7. Let K/F be a finite degree field extension. Then

[K : F ]s ≤ [K : F ].

In particular, the separable degree is finite.

Proof. We employ dévissage: break up K/F into a finite tower of simple extensions.
Each simple extension has finite degree and by Theorem 5.6 the degree is multi-
plicative in towers. We are therefore reduced to the case K = F (α) ∼= F [t]/(P (t)),
where P (t) is the minimal polynomial for α. In this case the result is clear, since
an F -algebra homomorphism of F [t]/(P (t)) into any field M is given by sending
the image of t to a root of P (t) in M , and the degree [K : F ] polynomial has at
most [K : F ] roots in any field. �

In the situation of the proof of Corollary 5.7 we can say more: the separable degree
[F (α) : F ]s is equal to the number of distinct roots of the minimal polynomial P (t)
of α. In particular it is equal to the degreee of the field extension iff P (t) is a
separable polynomial. Let us record this result.

Proposition 5.8. For K/F a field extension and α ∈ K algebraic over F , TFAE:
(i) The minimal polynomial of α is a separable polynomial.
(ii) [F (α) : F ]s = [F (α) : F ].

More generally:

Theorem 5.9. For a finite degree field extension K/F , TFAE:
(i) Every element of K is separable over F .
(ii) [K : F ]s = [K : F ].
A field extension satisfying these equivalent conditions is said to be separable.

Proof. (i) =⇒ (ii): We may write K/F as a finite tower of simple extensions:

F = F0 ⊂ . . . ⊂ Fn = K
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such that for all i we have Fi+1 = Fi(αi+1). Since αi+1 is separable over F , it is
separable over Fi: indeed, the minimal polynomial for αi+1 over the extension field
divides the minimal polynomial over the ground field. Therefore Proposition 5.8
applies and [Fi+1 : Fi]s = [Fi+1 : Fi] for all i. Since both the separable degree and
the degree are multiplicative in towers, we conclude [K : F ]s = [K : F ].
(ii) =⇒ (i): Seeking a contradiction, we suppose that there exists α ∈ K which is
not separable over F . By Proposition 5.8, it follows that [F (α) : F ]s < [F (α) : F ].
Now applying Theorem 5.6 and Corollary 5.7 we get

[K : F ]s = [K : F (α)]s[F (α) : F ]s < [K : F (α)][F (α) : F ] = [K : F ].

�

Corollary 5.10. Finite degree separable extensions are a distinguished class of field
extensions: that is, they satisfy (DC1) and (DC2) of §3.4 and thus also (DC3).

Exercise: Prove Corollary 5.10.

Theorem 5.11. Let L/F be an algebraic field extension. TFAE:
(i) Every finite subextension of L/F is separable.
(ii) Every irreducible polynomial P ∈ F [t] which has a root in L is separable.
(iii) L is obtained by adjoining to F a set of roots of separable polynomials.
An extension satisfying these equivalent properties is called a separable algebraic
extension.

Exercise: Prove Theorem 5.11.

Corollary 5.12. Algebraic separable extensions are a distinguished class of field
extensions.

Exercise: Prove Corollary 5.12.

Corollary 5.13. For a family {Ki/F}i∈I of algebraic field extensions inside a
common algebraically closed field M , TFAE: (i) For all i ∈ I, Ki/F is a separable
algebraic field extension.
(ii) The compositum

∏
iKi is a separable algebraic field extension.

Exercise: Prove Corollary 5.13.

Corollary 5.13 has the following important consequence: for any field extension
K/F , there exists a unique maximal separable algebraic subextension SepClK(F ),
the separable closure of F in K.

5.3. Purely Inseparable Extensions.

Theorem 5.14. For an algebraic field extension K/F , TFAE:
(i) There is only one F -algebra embedding K ↪→ K.
(ii) Every irreducible polynomial P ∈ F [t] with a root in K is purely inseparable.
(iii) K is obtained by adjoining to F roots of purely inseparable polynomials.
(iv) The separable closure of K in F is F .

Exercise: Prove Theorem 5.14. An extension satisfying the conditions of Theorem
5.14 is purely inseparable.

Exercise:
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a) Show that finite degree purely inseparable extensions form a distinguished class.
b) Show that the purely inseparable algebraic extensions form a distinguished class
which is closed under composita.

In light of Exercise X.Xb), for any algebraic field extension K/F we may define
the purely inseparable closure of F in K to be the largest subextension of K
which is purely inseparable over F .

Exercise X.X.X: Show that the purely inseparable closure of F in an algebraic
closure F is the perfect closure F 1/p∞ .

Corollary 5.15. Let K/F be a purely inseparable extension of finite degree. Then
[K : F ] is a power of p.

Proof. One may reduce to the case of a simple extension K = F [α], and then α is
purely inseparable over F so has minimal polynomial of the form tp

a − α for some
a ∈ Z+. �

Corollary 5.16. A purely inseparable extension is normal.

Proof. This follows immediately from condition (i) of Theorem 5.14. �

The flavor of these results is that many formal properties are common to both
separable and purely inseparable extensions. The exceptions to this rule are the
following: first, purely inseparable extensions are always normal, whereas this is
most certainly not the case for separable extensions. A more subtle difference is
expressed in Theorem XX: if K/F is not purely inseparable, then it must have a
nontrivial separable subextension. However, if K/F is not separable, that does not
mean that it has a nontrivial purely inseparable subextension.

Example [Mo96, p. 48]: Let k be a field of characteristic 2, F = k(x, y) (ratio-
nal function field), u a root in F of the separable irreducible quadratic polynomial
t2 + t+x, S = F (u) and K = S(

√
uy). Clearly K/S is purely inseparable and S/F

is separable. But there is no nontrivial purely inseparable subextension of K/F .
Equivalently, we will show that if a ∈ K, a2 ∈ F , then already a ∈ F . An F -basis
for K is 1, u,

√
uy, u

√
uy. If a2 ∈ F , write

a = α+ βu+ γ
√
uy + δu

√
uy, α, β, γ, δ ∈ F.

Since a2 ∈ F , the coefficient of u = 0, i.e.,

β2 + (γ + δ)2y + δ2xy = 0.

If δ = 0 then β2 + γ2y = 0, so γ = 0 since y is not a square in F . But then β = 0
and a ∈ F . If δ 6= 0, then

x =
β2 + (γ + δ)2y

δ2y
= (

γ

δ
+ 1)2 + (

β

δ
)2y,

so that x ∈ F 2(y), which is not the case. So δ = 0 and a ∈ F .

5.4. Structural Results on Algebraic Extensions.

Proposition 5.17. Suppose an algebraic extension K/F is both separable and
purely inseparable. Then K = F .
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Proof. For such an extension, let α ∈ K. Then the minimal polynomial of α over F
is both separable and purely inseparable. The only such polynomials have degree
one, i.e., α ∈ F . �

Proposition 5.18. For any algebraic field extension K/F , the extension K/SepClK(F )
is purely inseparable.

Proof. Since SepClK(F ) is the maximal separable subextension of K/F , there can-
not be a proper nontrivial separable extension of K/SepClK(F ), so it is purely
inseparable. �

In general this result is not valid the other way around: an algebraic field extension
K/F need not be separable over its purely inseparable closure. Indeed, in the
example of the previous section the purely inseparable closure Fi was F and K/F
was not separable. The following two results give more information on when K is
separable over Fi.

Theorem 5.19. For an algebraic extension K/F , let Fs and Fi be, respectively,
the separable and purely inseparable closures of F in K. TFAE:
(i) K = FsFi.
(ii) K is separable over Fi.

Proof. (i) =⇒ (ii): K is obtained by adjoining to Fi roots of separable polynomials
with coefficients in F , hence by polynomials with coefficients in Fs.
(ii) =⇒ (i): If K/Fi is separable, then K/FiFs is separable. Similarly, since K/Fs
is inseparable, K/FiFs is inseparable. By Proposition 5.17, K = FiFs. �

Corollary 5.20. The equivalent conditions of Theorem 5.19 hold when K/F is
normal. In particular they hold for F/F , giving F = F sepF 1/p∞ .

Proof. Let α ∈ K \ F i. Then α is not purely inseparable over F , i.e., the minimal
polynomial P of α has at least one other distinct root, say β, in an algebraic
closure. But since K/F is normal, β ∈ F . By the Extension Theorem, there
exists an F -algebra automorphism s of L such that s(α) = β. This shows that the
set of elements in F which are fixed by every automorphism of L/F is precisely
F i. Let Q be the minimal polynomial of α over F i, and let α1, . . . , αr be the
distinct roots of Q in F . Since the group G of automorphisms of K/F i acts on the
αi’s by permutations, the separable polynomial R(t) =

∏r
i=1(t − αi) is invariant

under G, i.e., it lies in F i[x]. This shows that K/Fi is obtained by adjoining roots
of separable polynomials and is therefore separable. The second sentence of the
Corollary follows immediately from the first. �

Corollary 5.21. For a finite extension K/F , [K : F ]s = [SepClK(F ) : F ]. In
particular [K : F ]s | [K : F ].

Proof. We have [K : F ]s = [K : SepClK(F ) : F ]s[SepClK(F ) : F ]s. But the
separable degree of a purely inseparable extension is 1, so the conclusion follows. �

For a finite extension K/F one may therefore define the inseparable degree
[K : F ]i of a finite extension to be [K : F ]/[K : F ]s = [K : SepClK(F )].

A field is separably closed if it admits no proper separable algebraic field ex-
tension.
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Proposition 5.22. The separable closure of a field in any algebraically closed field
is separably closed.

Exercise: Prove Proposition 5.22.

One often writes F sep for a separable closure of F . Like the algebraic and nor-
mal closures, this extension is unique up to non-canonical F -algebra isomorphism.

Corollary 5.23. Let K/F be a normal algebraic extension. Then the separable
closure F s of F in K is also normal.

Proof. For any embedding σ of K into F , the image σ(F s) lies in K (by normality
of K) and is evidently also a separable subextension of K/F . Therefore we must
have σ(F s) = F s. �

Corollary 5.24. A field F is perfect iff its separable closure is algebraically closed.

Proof. If F is perfect then all algebraic extensions are separable, so the result
is clear. Inversely, suppose that F is not perfect, so there exists α ∈ F \ F p
and a corresponding purely inseparable field extension F [α1/p]/F defined by the
irreducible inseparable polynomial P = tp − α. By Theorem 5.11, only a separable
irreducible polynomial can acquire a root in a separable field extension, so the
polynomial P remains irreducible over the separable closure of F . �

6. Norms, traces and discriminants

6.1. Dedekind’s Lemma on Linear Independence of Characters.

Theorem 6.1. (Dedekind’s Lemma) Let M be a monoid and K a field. The set
X(M,K) of all monoid homomorphisms M → K× is linearly independent as a
subset of the K-vector space KM of all functions from M to K.

Proof. By definition, a subset of a vector space is linearly independent iff every
nonempty finite subset is linearly independent. So it’s enough to show that for
all N ∈ Z+, every N -element subset of X(M,K) is linearly independent in KM .
We show this by induction on N . The base case, N = 1, is immediate: the only
one element linearly dependent subset of KM is the zero function, and elements
of X(M,K) are nonzero at all values of M . So suppose N ≥ 2, that every N − 1
element subset of X(M,K) is linearly independent, and let χ1, . . . , χN be distinct
elements of X(M,K). Let α1, . . . , αN ∈ K be such that for all x ∈M , we have

(1) α1χ1(x) + . . .+ αNχN (x) = 0.

Our goal is to show that α1 = . . . = αN = 0. Since χ1 6= χN , there is m ∈M such
that χ1(m) 6= χN (m). Substituting mx for x in (1), we get that for all x ∈M ,

(2) α1χ1(m)χ1(x) + α2χ2(m)χ2(x) + . . .+ αNχN (m)χN (x) = 0.

Multiplying (2) by χ1(m)−1 and subtracting this from (1), we get

(3) ∀x ∈M, α2

(
χ2(m)

χ1(m)
− 1

)
χ2(x) + . . .+ αN

(
χN (m)

χ1(m)
− 1

)
χN (x) = 0.

By induction, χ2, . . . , χN are linearly independent, so αN

(
χN (m)
χ1(m) − 1

)
= 0 and thus

αN = 0. Thus (1) gives a linear dependence relation among the N − 1 characters
χ1, . . . , χN−1, so by induction α1 = · · · = αN−1 = 0. �
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6.2. The Characteristic Polynomial, the Trace and the Norm.

Let L/K be a field extension of degree n <∞. For x ∈ L, the map x• : L→ L given
by y ∈ L 7→ xy is an endomorphism of L as a K-vector space. That is, for all α ∈ K
and y1, y2 ∈L, we have x(αy1 + y2) = x(αy1 + y2) = αxy1 + xy2 = α(xy1) + (xy2).
We may therefore analyze the element x ∈ L using tools of linear algebra.

Choose a K-basis b1, . . . , bn for L. With respect to such a basis, the linear trans-
formation x• is represented by an n× n matrix, say M(x).

Example: Take K = R, L = C, and the basis (1, i). Let x = a + bi. Then
x • 1 = a · 1 + b · i and x • i = −b · 1 + a · i. Therefore

M(x) =

[
a −b
b a

]
.

Example: if x lies inK, thenM(x) = mi,j is simply the scalar matrix diag(x, . . . , x).
Note that Proposition 6.2 below gives a generalization of this simple observation.

We define the characteristic polynomial of x:

Px(t) = det(tIn −M(x)) =

n∏
i=1

(t− λi).

Similarly we define the trace

TrL/K(x) = tr(M(x)) =

n∑
i=1

mi,i =

n∑
i=1

λi

and the norm

NL/K(x) = det(M(x)) =

n∏
i=1

λi.

Proposition 6.2. Let L/K/F be a tower of field extensions with m = [K : F ] and
n = [L : K]. Let x1, . . . , xm be a basis for K/F and y1, . . . , yn a basis for L/K.
a) For any element α ∈ K, if M is the matrix representing x• ∈ EndF (K) with
respect to {x1, . . . , xm}, the matrix representation of x• ∈ EndF (L) with respect to
the basis {xiyj}1≤i≤m,1≤j≤n, reverse lexicographically ordered, is the block diagonal
matrix diag(M, . . . ,M), i.e., n blocks, each equal to M . It follows that:
b) Let f(t) be the characteristic polynomial of α• ∈ EndF (K) and g(t) be the
characteristic polynomial of x• ∈ EndF (L). Then g(t) = f(t)[L:K].
c) NL/F (x) = NK/F (x)[L:K].
d) TrL/F (x) = [L : K] TrK/F (x).

Proof. We have αxi =
∑m
k=1mkixk and hence αxiyj =

∑m
k=1mki(xkyj). This

establishes part a). The remaining parts follow easily by standard linear algebraic
considerations. �

Corollary 6.3. Let L/F be a finite degree field extension. Let α be an element of
L, let f(t) be the minimal polynomial of α over F , and let g(t) be the characteristic
polynomial of α• ∈ EndF (L). Then g(t) = f(t)[L:F (α)].
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Proof. Put K = F (α). The minimal polynomial f of α over F is the characteristic
polynomial of x• ∈ EndF (K). So the result follows from Proposition 6.2. �

Proposition 6.4. Let L/K/F be a tower of finite degree field extensions. Then:
a) TrK/F : K → F is an F -linear map.
b) For all x, y ∈ K, NK/F (xy) = NK/F (x)NK/F (y).

c) For all c ∈ F and x ∈ K, NK/F (cx) = c[K:F ]NK/F (x).

Proof. Parts a) and b) are standard properties of the trace and determinant of any
F -linear map. Part c) follows by applying part b) and observing that for c ∈ F ,
NK/F (c) is the determinant of the scalar matrix diag(c, . . . , c), i.e., c[K:F ]. �

The following key result identifies the eigenvalues of α• in field-theoretic terms.

Theorem 6.5. Let K/F be a field extension of degree n <∞ and separable degree
ns. Put pe = n

ns
= [K : F ]i. Let K be an algebraic closure of K. Let α ∈ K and

let f(t) be the characteristic polynomial of α• ∈ EndF (K). Let τ1, . . . , τns be the
distinct F -algebra embeddings of K into K. Then

f(t) =

ns∏
i=1

(t− τi(α))p
e

.

It follows that

(4) NK/F (α) = (

ns∏
i=1

τi(α))p
e

and

(5) TrK/F (α) = pe
m∑
i=1

τi(α).

Proof. Put L = F [α]. Let d = [L : F ], ds = [L : F ] and di = [L : F ]i. Let
σ1, . . . , σds be the distinct F -algebra homomorphisms from L into F . For each
1 ≤ i ≤ ds, σi extends to ns

ds
F -algebra homomorphisms from K into F . Let

f(t) = (

ds∏
i=1

(t− σi(α)))di

be the minimal polynomial of α over F , and let g(t) be the characteristic polynomial
of α• on K, so by Corollary 6.3 we have

g(t) = f(t)[K:L] = (

ds∏
i=1

(t− σi(α))di
n
d =

(
(

ds∏
i=1

(t− σi(α))
ns
ds

)ni

=

(
ns∏
i=1

(t− τi(α))

)pi
.

Equations (4) and (5) follow immediately. �

Corollary 6.6. Let Fqd/Fq be an extension of finite fields. Then the norm map

N : F×
qd
→ F×q is surjective.
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Proof. Let σ : x 7→ xq, so that Aut(Fqd/Fq) = 〈1, σ, . . . , σd−1}. Thus for x ∈ Fqd ,

N(x) =

d−1∏
i=0

σi(x) =

d−1∏
i=0

xq
i

= x
∑d−1
i=0 q

i

= x
qd−1
q−1 .

Therefore KerN consists of all elements of the finite cyclic group F×
qd

of order

dividing qd−1
q−1 , so # KerN = qd−1

q−1 . Since F×
qd
/KerN ∼= N(F×

qd
), we deduce that

#N(F×
qd

) = q − 1: N is surjective. �

6.3. The Trace Form and the Discriminant.

Let F be a field and V a finite-dimensional F -vector space equipped with a bi-
linear form, i.e., a function 〈, 〉 : V × V → F such that for all v, 1, v2 ∈ V and
α ∈ F ,

〈αv1 + v2, v3〉 = α〈v1, v3〉+ 〈v2, v3〉
and

〈v1, αv2 + v3〉 = α〈v1, v2〉+ 〈v1, v3〉.
Let V ∨ = Hom(V,K) be the dual space of V . A bilinear form on V induces a linear
map Φ : V → V ∨, namely

Φ(v) = 〈v, 〉.
(Note that a more careful notation would be something like ΦL : v 7→ 〈v, 〉, to
distinguish it from the other obvious map ΦR : v 7→ 〈 , v〉. We have ΦL = ΦR
iff the bilinear form is symmetric, an assumption which we have not (yet) made.
But in the general case the two maps are equally good, so let us work with Φ = ΦL
for simplicity.) We say that the bilinear form 〈, 〉 is nondegenerate if Φ : V → V ∨

is an isomorphism. Since Φ is a linear map between two finite-dimensional vector
spaces of the same dimension, Φ is an isomorphism iff it is injective, i.e., for each
v ∈ V , if 〈v, w〉 = 0 for all w ∈ V , then v = 0.

Let 〈, 〉 be a bilinear form on V , and fix a K-basis e1, . . . , en of V . We define
the Gram matrix M of the bilinear form as M(i, j) = 〈ei, ej〉. Then for all
v, w ∈ V , we have

〈v, w〉 = vTMw.

We claim that the nondegeneracy of the form is equivalent to the nonsingularity
of the Gram matrix M . If M is singular, so is MT , so there exists 0 6= v such
that vTM = (Mv)T = 0, and thus 〈v, w〉 = 0 for all w ∈ V . Conversely, if M is
nonsingular, then for all 0 6= v ∈ V , vTM is nonzero, so it has at least one nonzero
component i, so vTMei = 〈v, ei〉 6= 0. (Note that this argument also makes clear
that ΦL is an isomorphism iff ΦR is an isomorphism.

Moreover, our fixed basis (e1, . . . , en) induces a dual basis (e∨1 , . . . , e
∨
n), character-

ized by e∨i (ej) = δi,j (Kronecker delta) for all 1 ≤ i, j ≤ n. Thus, given a nondegen-
erate bilinear form 〈, 〉 on V , we may pull back the dual basis (e∨1 , . . . , e

∨
n) under Φ−1

to get a basis (e1, . . . , en) of V with the characteristic property 〈ei, ej〉 = δi,j . Con-
versely, if a basis (e1, . . . , en) of V exists which is dual to the given basis (e1, . . . , en)
in the above sense, then the bilinear form is easily seen to be nondegenerate. In
summary:
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Proposition 6.7. Let V be an n-dimensional vector space over a field K, let 〈, 〉 be
a bilinear form on V , and let (e1, . . . , en) be any K-basis of V . Then the following
are equivalent:
(i) The induced map Φ = ΦL : V → V ∨ given by v 7→ 〈v, 〉 is an isomorphism.
(ii) The induced map ΦR : V → V ∨ given by v 7→ 〈 , v〉 is an isomorphism.
(iii) The Gram matrix M(i, j) = 〈ei, ej〉 is nonsingular.
(iv) There exists a basis (e1, . . . , en) of V such that 〈ei, ej〉 = δi,j.

And now, back to field theory: let K/F be a finite-dimensional field extension.
Define the trace form T : K × K → F , T (x, y) := Tr(x • y•). The bilinearity
of T follows immediately from the linearity of the trace map. Note that T is also
symmetric in the sense that T (x, y) = T (y, x) for all x, y ∈ K. A natural question
is when the trace form is nondegenerate.

Theorem 6.8. Let K/F be a field extension of finite degree n. TFAE:
(i) The trace form T : K ×K → F is nondegenerate.
(ii) There exists some x ∈ K such that Tr(x) 6= 0.
(iii) The trace function Tr : K → F is surjective.
(iv) The extension K/F is separable.

Proof. The implications (i) =⇒ (ii) =⇒ (iii) may safely be left to the reader.
(iii) =⇒ (iv): we argue by contraposition. If K/F is not separable, then char(F ) =
p > 0, [K : F ]i = pe is divisible by p, and thus (5) shows that the trace function is
identically zero.
(iv) =⇒ (i): By the Primitive Element Corollary, we have K = F [α] for some
α ∈ K. Then (1, α, . . . , αn−1) is an F -basis of K. Let x ∈ K. By Proposition 6.7,
it is enough to show that the Gram matrix M(i, j) = Tr(αi−1αj−1) = Tr(αi+j−2) is
nonsingular. To see this, let α1, . . . , αn be the distinct F -conjugates of α inK. Then
Tr(α) =

∑n
i=1 αi, so that for any N ∈ N, Tr(αN ) =

∑n
i=1 α

N
i . Now we introduce

the Vandermonde matrix V = V (α1, . . . , αn): V (i, j) = αi−1
j . Why? Well, we

compute that the (i, j) entry of V V T is
∑n
k=1 α

i−1
k αj−1

k = M(i, j). Therefore

detM = detV V T = (detV )2 = (
∏
i>j

αi − αj)2 6= 0.

�

Example (Trace form of a quadratic extension): Let F be a field of characteristic

different from 2, and let K = F (
√
D) be a quadratic field extension. We wish to

explicitly compute the trace form. A natural choice of F -basis for K is (1,
√
D).

The Gram matrix is then

M =

[
Tr(1) Tr(

√
D)

Tr(
√
D) Tr(D)

]
=

[
2 0
0 2D

]
.

Thus the corresponding quadratic form is (2, 2D), of discriminant D ∈ K×/K×2.

7. The primitive element theorem

Theorem 7.1. Let K/F be a finite field extension. TFAE:
(i) The set of subextensions L of K/F is finite.
(ii) K/F is simple: there exists α ∈ K such that K = F [α].
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Proof. [LaFT, pp. 243-244]: Suppose first that K = Fq is finite. Then (i) is
clear, and (ii) holds because K× is cyclic of order q − 1: if α is a generator of the
multiplicative group K×, then K = F [α]. Henceforth we suppose that K is infinite.
(i) =⇒ (ii): observe that for any subextension E of K/F , since (i) holds for K/F ,
it also holds for E/F . Writing K = F [α1, . . . , αn], we see that it is enough to prove
the result in the case of extensions which are generated by two elements: a simple
dévissage/induction argument then recovers the general case.

So suppose that K = F [α, β]. As c ranges over the infinitely many elements of
F , there are only finitely many distinct subfields of K of the form F [α + cb], so
there exist distinct elements c1, c2 of F such that

E = F [α+ c1β] = F [α+ c2β].

It then follows, successively, that (c1 − c2)β ∈ E, β ∈ E, α ∈ E, so

F [α+ c1β] = E = F [α, β] = K.

(ii) =⇒ (i): Suppose K = F [α], and let f(t) ∈ F [t] be the minimal polynomial
for α over F . For each subextension E of K/F , let gE(t) ∈ E[t] be the minimal
polynomial for α over E. Let E′ be the subextension of K/F generated by the
coefficients of gE . So F ⊂ E′ ⊂ E ⊂ K; since gE is irreducible over E, it is also
irreducible over E′, and thus [K : E′] = [E′[α] : E′] = [E[α] : E] = [K : E]. It
follows that E = E′. In other words, E can be recovered from gE and thus the
map E 7→ gE is bijective. However, we also have that gE divides f for all E, so gE
is a monic polynomial whose multiset of roots in any algebraic closure is a subset
of the multiset of roots of f . So there are only finitely many possibilities for E. �

Corollary 7.2. (“Primitive Element Corollary”) The equivalent conditions of The-
orem 7.1 hold when K/F is finite and separable. In particular, every such extension
is of the form K = F [α].

Proof. Once again we may assume that F is infinite, and once again by dévissage/induction,
it is enough to treat the case of a degree n separable extension of the form K =
F [α, β]. We may, and shall assume, that neither of α and β lie in F . Let σ1, . . . , σn
be the distinct F -algebra embeddings of K into an algebraic closure F . Put

P (t) =
∏
i6=j

(σiα+ tσiβ − σjα− tσjβ) .

Then, e.g. by Theorem 6.5, P (t) is a nonzero polynomial. Since F is infinite, there
exists c ∈ F such that P (c) 6= 0. Then for 1 ≤ i ≤ n, the elements σi(α + cβ) are
distinct, so that [F [α+ cβ] : F ] ≥ n = [F [α, β] = [K : F ]. Thus K = F [α+ cβ]. �

Remark: What we are calling the Primitive Element Corollary is often itself referred
to as the Primitive Element Theorem.

Corollary 7.3. (Lang) Let K/F be a separable algebraic extension such that: there
is n ∈ Z+ such that for all α ∈ K, [F (α) : F ] ≤ n. Then [K : F ] ≤ n.

Proof. Let α ∈ K be such that [F (α) : F ] has maximal degree – it is no loss of
generality to assume that this degree is n. We claim that K = F (α), which will
establish the result.

Suppose that K ) F (α), and let β ∈ K \ F (α). Since F (α, β)/F is finite
separable, by the Primitive Element Corollary (Corollary 7.2) there exists γ ∈ K
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such that F (α, β) = F (γ). But then we must have [F (γ) : F ] > [F (α) : F ],
contradiction. �

Exercise: Give an example to show that the conclusion of Corollary 7.3 does not
hold without the separability hypothesis.

Remark: A more natural proof of Corollary 7.2 would be obtained by taking the
normal closure M of K/F and using the Galois correspondence: the lattice of
subextensions of M/F is anti-isomorphic to the lattice of subgroups of Aut(M/F ),
hence there are certainly only finitely many of the former, which of course implies
that there are only finitely many subextensions of K/F . This brings us to our next
topic, Galois Theory.

8. Galois Extensions

8.1. Introduction.

For any field extension K/F we define Aut(K/F ) to be the group of F -algebra
automorphisms of K, i.e., the set of all field isomorphisms σ : K → K such that
σ(x) = x for all x ∈ F . This is a group under composition.

Let G be a subgroup of Aut(K/F ), i.e., a group of F -algebra automorphisms of K.
We define the fixed field

KG = {x ∈ K | σ(x) = x ∀σ ∈ G}.
Note that the notation comes from representation theory: if R is a commutative
ring, M an R-module and G is a group, then one has the notion of an R-linear
representation of G on M , i.e., a homomorphism from G to the group of R-module
automorphisms of M . In such a situation one can “take invariants”, i.e., consider
the subset of M on which G acts trivially: this is denoted MG. The present defi-
nition is an instance of this with R = F , M = K.

It is immediate to check that KG is a subextension of K/F . (In fact in the more
general setting detailed above, one checks that MG is an R-submodule of M .)

A field extension K/F is weakly Galois if KAut(K/F ) = F . Equivalently, for
any element x ∈ K \ F , there exists σ ∈ Aut(K/F ) such that σ(x) 6= x.

A field extension K/F is Galois if for all subextensions L of K/F , KAut(K/L) = L.

Remark: The terminology “weakly Galois” is not standard. In fact, it is usual
to consider Galois theory only for algebraic extensions and in this case it will turn
out to be the case that the notions of weakly Galois and Galois coincide.

This “top down” definition of a weakly Galois extension is the generalization to
arbitrary extensions of a definition of E. Artin for finite extensions. It has the
merit of making it easy to exhibit a large class of weakly Galois extensions: if K is
any field and G is any group of automorphisms of K, then K/KG is, tautologically,
a Galois extension.
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Example: Let G be the 2-element subgroup of the complex numbers generated
by complex conjugation. Then CG = R, so C/R is a Galois extension.

Example: Let L/K be a separable quadratic extension, so that L = K[t]/(P (t)),
where P (t) is a separable polynomial. Then P (t) splits over L into (t− α)(t− α),
so that the automorphism group of L/K has order 2, the nontrivial element being
the unique K-automorphism σ of L which sends α 7→ α. Since LAut(L/K) is a
subextension of the degree 2 extension L/K, it could only be L or K, and since
σ(α) = α 6= α, we conclude that the fixed field is K and the extension is Galois. In
contrast the automorphism group of an inseparable quadratic extension is trivial,
so this extension is not Galois.

Example: Let K = Q[t]/(t3 − 2) = Q[ 3
√

2]. Since K contains exactly one of the
three roots of t3 − 2 in Q, Aut(K/Q) is the trivial group and K/Q is not Galois.

On the other hand, the automorphism group of the normal closure M = Q[ζ3,
3
√

2]
of K/Q has order 6: since everything is separable, there are three embeddings of

Q[ 3
√

2] into M , and each of these extends in two ways to an automorphism of M .
Any automorphism s of M is determined by an i ∈ {0, 1, 2} and j ∈ {0, 1} such
that

s :
3
√

2 7→ ζi3
3
√

2, ζ3 7→ (ζ3)(−1)j .

Since there are six possibilities and six automorphisms, all of these maps must in-
deed give automorphisms. In particular, there is an order 3 automorphism σ which
takes 3

√
2 7→ ζ3

3
√

2 and fixes ζ3 and an order 2 automorphism τ which fixes 3
√

2 and
maps ζ3 7→ zeta−1

3 . One checks that τστ = τστ−1 = σ−1, i.e., Aut(L/Q) ∼= S3, the
symmetric group on three elements. Indeed, these three elements can be viewed as
the three roots of t3 − 2 in M . Finally, the subgroup fixed by {1, σ} is precisely

K, whereas the generator 3
√

2 of K/Q is not fixed by σ, so that we conclude that
MAut(M/Q) = Q and M/Q is Galois.

These examples already suggest that a finite extension K/F is Galois iff it is normal
and separable, and in this case # Aut(K/F ) = [K : F ]. We will show in the next
section that these conditions are all equivalent.

Example: The extension Q/Q is Galois. We cannot show this by some sort of
direct computation of GQ := Aut(Q/Q): this group is uncountably infinite and has
a very complicated structure. Indeed, as an algebraic number theorist I am more
or less honorbound to inform you that the group GQ is the single most interesting
group in all of mathematics! We will see that the Galois theory of infinite algebraic
extensions cannot be developed in exactly the same way as in the finite case, but
is, in theory, easily understood by a reduction to the finite case.

Example: The extension C/Q is Galois, as is C/Q. In particular the automor-
phism group of the complex field is (much) larger than just {1, c}. In fact we will
show that if F has characteristic zero and K is algebraically closed, then K/F is
Galois. These results are not part of “Galois theory” as it is usually understood, but
rather are facts about automorphism groups of transcendental extensions. These
results will be shown in §10.1.
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Example: For any field F , Aut(F (t)/F ) is the group of linear fractional trans-
formations: the group GL2(F ) of 2× 2 matrices [[ab]][cd]] with ad 6= bc acts by au-
tomorphisms on F (t), via t 7→ at+b

ct+d . Scalar matrices – those with b = d = 0, a = c

– act trivially, so the action factor through to the quotient PGL2(F ) of GL2(F )
by the subgroup F× of scalar matrices. It is a standard fact (more in the vein
of algebraic geometry than pure field theory) that this is the entire automorphism
group of F (t).

Proposition 8.1. The extension F (t)/F is weakly Galois iff F is infinite.

Proof. We will need to use a fact from the next section: if G is a finite group of
automorphisms acting on a field K, then [K : KG] = #G < ∞. Therefore if F
is finite, F (t)Aut(F (t)/F ) has finite index in F (t), so is certainly not equal to F .
Conversely assume F is infinite. . . �

Remark Aside: I am not aware of a simple necessary and sufficient condition for
an extension K/F which is finitely generated, but of infinite degree, to be Galois.
When K/F is regular of transcendence degree 1 (two terms which we have not
yet defined), one can give such a criterion in terms of the Jacobian J(C) of the
corresponding algebraic curve C/F , namely K/F is Galois iff dim J(C) = 0 or
(dim J(C) = 1 and J(C)(F ) is infinite). In particular no such field of genus g ≥ 2
is Galois. One can give some examples of Galois extensions of higher transcendence
degree – e.g. the proof of Proposition XX easily adapts to show that F (t1, . . . , tn)/F
is Galois if F is infinite – but the general problem seems to be a quite subtle one
in birational arithmetic geometry.

8.2. Finite Galois Extensions.

Theorem 8.2. If K/F is a finite field extension, Aut(K/F ) is a finite group of
cardinality at most [K : F ].

Proof. First recall that the set of F -algebra embeddings σ of K into an algebraic
closure F is finite, so in particular the subset of such with σ(K) = K is finite. This
holds because K = F (α1, . . . , αn), and an embedding σ is determined by sending
each αi to one of the at most di = [F [αi] : F ] roots of the minimal polynomial
of αi over F in F . Therefore the set of such embeddings has cardinality at most
d1 · · · dn. Note that when K = F [α] is simple this is exactly the bound we want,
so that e.g. if K/F is separable we are already done.

Now for the general case. Let Aut(K/F ) = {σ1, . . . , σN} and suppose, for a
contradiction, that N > m = [K : F ]. Let α1, . . . , αm be an F -basis for K, and
consider the N ×m matrix A whose (i, j) entry is σi(αj). This matrix has rank at
most m < N , so that its rows are K-linearly dependent: there exist c1, . . . , cN ∈ K,
not all 0, such that for all 1 ≤ j ≤ m we have∑

i

ciσi(αj) = 0.

For each x ∈ K×, there exist a1, . . . , am in F such that x =
∑
j ajαj . Then∑

i

ciσi(x) =
∑
i

ciσi(
∑
j

ajαj) =
∑
i

ci(aj
∑
j

σj(αj))
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=
∑
j

aj(
∑
i

ciσi(αj)) = 0.

But taking M = K× all the automorphisms σi give characters M → K× hence are
K-linearly independent. Therefore in the last equation we must have ci = 0 for all
i, a contradiction. �

Proposition 8.3. (Artin) Let K be a field and G a finite group of automorphisms
of K, of cardinality n. Then [K : KG] = n.

Proof. Step 1: We show that K/KG has finite degree.7

Let α ∈ K, and let S = σ1, . . . , σr be a maximal subset of G such that the
elements σi(α) are distinct in K. It follows that for all τ ∈ G, the r-tuple v =
(τσ1α, . . . , τσrα) differs from w = (σ1α, . . . , σrα) by a permutation: indeed, since
τ is injective, the components of w are all distinct, and if they were not simply
a reordering of the components of v, this would contradict the maximality of S.
Therefore α is a root of the polynomial

f(t) =

t∏
i=1

(t− σiα),

a polynomial with coefficients in KG. Moreover, f(t) is separable, and thus K/KG

is separable. Corollary 7.3 applies to show that K/KG has finite degree, indeed
degree equal to the maximal degree [KG(α) : KG] of an element α ∈ K.
Step 2: Above, for each α we constructed a polynomial satisfied by α of degree
r ≤ n, it follows that [KG : K] ≤ n. On the other hand, by Theorem 8.2 we
have n = #G ≤ # Aut(K/KG) ≤ [KG : K]. We conclude [K : KG] = n and
G = Aut(K/KG). �

Theorem 8.4. (Omnibus theorem for finite Galois extensions) Let K/F be a finite
extension. TFAE:
(i) KAut(K/F ) = F (“K/F is Galois.”)
(ii) #Aut(K/F ) = [K : F ].
(iii) K/F is normal and separable.
(iv) K/F is the splitting field of a separable polynomial.

Proof. Let G = Aut(K/F ). (i) implies (ii) by Proposition XX. (ii) implies (i): we
have F ⊂ KG ⊂ K, and [K : KG] = #G = [K : F ], so KG = F .

(iii) implies (iv): if K/F is separable then by the Primitive Element Theorem
K = F [t]/(P (t)) for some irreducible, separable polynomial P . Since it is normal,
P splits in K and therefore K/F is the splitting field of the separable polynomial P .
(iv) implies (iii) is essentially the same: since K/F is a splitting field, it is normal;
since it is obtained by adjoining roots of separable polynomials, it is separable.

(iv) ⇐⇒ (ii): We know that the number of embeddings of K into F is equal
to the separable degree of K/F and that this equals [K : F ] iff K/F is separable;
moreover, every F -algebra embedding s : K → F has s(K) = K – i.e., gives an
automorphism of K iff K/F is normal. �

7In many standard treatments of finite Galois theory, the finiteness of K/KG is an additional
assumption. Our source for this stronger version is Lang’s Algebra.
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Corollary 8.5. A finite extension is a subextension of a finite Galois extension iff
it is separable. Any algebraic closure F of K contains a unique minimal extension
M of K such that M/F is Galois, namely the normal closure of K/F in F .

Proof. Since Galois extensions are separable and subextensions of separable exten-
sions are separable, for K/F to be contained in a finite Galois extension it is clearly
necessary for it to be separable. If so, then the normal closure M of K/F , being
a compositum of the separable extensions s(K) as s ranges over the finite set of
distinct F -algebra embeddings of K into F is separable and normal, hence Galois.
M/K is even the minimal extension of K which is normal over F , so certainly it is
the minimal such Galois extension. �

Remark: In view of Corollary XX, it is reasonable to call the normal closure of a
finite separable field extension the Galois closure.

Theorem 8.6. (Natural Irrationalities) Let K/F be a finite Galois extension, and
let L/F be an arbitrary (not necessarily algebraic) field extension. Then:
a) The field extension KL/L is Galois.
b) The restriction map r : Aut(KL/L)→ Aut(K/K ∩ L) is an isomorphism.
c) We have [KL : L] = [K : K ∩ L].

Proof. a) This is the assertion that finite Galois extensions have the base change
meta-property. But all of the following properties have the base-change meta prop-
erty: being of finite degree, normality and separability. Alternately, since K/F is
finite Galois, it is the splitting field of the separable polynomial f ∈ F [x]. Then
KL/L is the splitting field of the polynomial f ∈ L[x], which is still separable
because of the Derivative Criterion.
b) Let σ ∈ Aut(KL/L), and let r(σ) denote the restriction of σ to K. Since σ
fixes L pointwise and F ⊂ L, also σ fixes F pointwise. So for all x ∈ K, r(σ)(x)
is an F -conjugate of x; since K/F is normal, this implies r(σ)(x) ∈ K and thus
r(σ) ∈ Aut(K/F ). Indeed, because σ pointwise fixes L, r(σ) pointwise fixes K ∩L
and r(σ) ∈ Aut(K/K ∩ L). This defines a map

r : Aut(KL/L)→ Aut(K/K ∩ L).

That r is a group homomorphism is immediate. Moreover, the kernel of r consists
of the set of automorphisms α of KL that pointwise fix both K and L and thus
also pointwise fix KL: r is injective. Finally we must show that α is surjective.
Its image is a subgroup of Aut(K/K ∩ L), which by the Galois correspondence is
therefore of the form Aut(K/E) for some K ∩ L ⊂ E ⊂ K. Now observe that E
is pointwise fixed by every α ∈ Aut(KL/L), so hence E ⊂ (KL)Aut(KL/L) = L. It
follows that E ⊂ K ∩ L and thus E = K ∩ L and α is surjective.
c) By part b) we have

[KL : L] = #Aut(KL/L) = # Aut(K/K ∩ L) = [K : K ∩ L]. �

8.3. An Abstract Galois Correspondence.

Let X be a set and G a group of automorphisms of X, i.e., a subgroup of the
group Sym(S) of all bijections s : X → X. Let Λ(X) be the collection of all subsets
of X and Λ(G) be the collection of all subgroups of G. Both Λ(X) and Λ(G) are
partially ordered sets under inclusion.
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For a subset Y ⊂ X, we define

GY = {g ∈ G | gy = y∀y ∈ Y },
which is a subgroup of G. Dually, for a subgroup H of G, we define

XH = {x ∈ X | gx = x∀g ∈ H},
which is a subgroup of H. (We could define in the same way XS for any subset
S ⊂ G, but one checks immediately that if H is the subgroup generated by S,
XS = XH , so this extra generality leads nowhere.) To be very formal about it, we
have thus defined a map

Φ : Λ(X)→ Λ(G), Y 7→ GY

and a map
Ψ : Λ(G)→ Λ(X), H 7→ XH .

Let us explore what can be said about these two maps in this extreme level of gen-
erality. Statements that we do not prove are exercises in unwinding the definitions
and left to the reader. (We do recommend that the reader peform these exercises!)

First, both Φ and Ψ are anti-homomorphisms of the partially ordered sets, i.e.,
if Y1 ⊂ Y2, then Φ(Y2) ⊂ Φ(Y1), and similarly if H1 ⊂ H2 then Ψ(H2) ⊂ H1. This
implies that Ψ ◦ Φ : Λ(X)→ Λ(X) and Φ ◦Ψ : Λ(G)→ Λ(G) are homomorphisms
of partially ordered sets:

Y1 ⊂ Y2 =⇒ XGY1 ⊂ XGY2 ,

H1 ⊂ H2 =⇒ GXH1 ⊂ GXH2 .

Moreover, for all Y ⊂ X and H ⊂ G we have

(GC) Y ⊂ XH ⇐⇒ H ⊂ GY .

Indeed, both containments assert precisely that every element of H acts trivially on
every element of Y . If H = GY we certainly have the second containment, therefore
by (GC) we have

(6) Y ⊂ XGY .

Dually with Y = XH we certainly have the first containment hence (GC) gives

(7) H ⊂ GXH .

Proposition 8.7. Let H be a subgroup of G, Y a subset of X and σ ∈ G. We
have:
a) σGY σ

−1 = GσY .

b) σXH = XσHσ−1

.

Proof. We have g ∈ GσY ⇐⇒ ∀y ∈ Y, gσy = σy ⇐⇒ ∀y ∈ Y, σ−1gσy = y ⇐⇒
σ−1gσ ∈ GY ⇐⇒ g ∈ σGY σ−1. Similarly, y ∈ σXH ⇐⇒ σ−1y ∈ XH ⇐⇒
∀h ∈ h, hσ−1y = σ−1y ⇐⇒ ∀h ∈ H, (σhσ−1)y = y ⇐⇒ y ∈ σHσ−1. �

Let us now introduce the following simplified (and symmetric) notation: for Y ⊂ X,
we write Y ′ for GY ; for H ⊂ G, we write H ′ for XH . Equations (6) and (7) now
read as Y ⊂ Y ′′ and H ⊂ H ′′. Let us call a subset Y of X (resp. a subgroup H of
G) closed if Y ′′ = Y ( resp. if H ′′ = H).
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Proposition 8.8. For any Y ∈ Λ(X) and H ∈ Λ(G), we have Y ′ = Y ′′′ and
H ′ = H ′′′. Hence Y ′ is a closed subgroup of G and X ′ is a closed subset of X.

Proof. By (6) we have Y ′ ⊂ (Y ′)′′ and Y ⊂ Y ′′. Applying a prime to the latter
containment reverses it and hence gives Y ′ ⊃ (Y ′′)′. Therefore Y ′ = Y ′′′. The
argument for H is identical. �

Remark: This shows that the operators ′′ on the posets Λ(X) and Λ(G) are what
are called closure operators. In general, if (S,≤) is a partially ordered set, then a
map c : S → S is a closure operator if for all s ∈ S, s ≤ c(s), s ≤ t =⇒ c(s) ≤ c(t)
and c(c(s)) = c(s) for all s ∈ S.

Corollary 8.9. Let Λc(X) be the closed subsets of X and Λc(G) be the closed
subgroups of G. Let Φc be Φ restricted to Λc(X) and Ψc be Ψ restricted to Λc(G).
Then

Φc : Λc(X)→ Λc(G), Ψc : Λc(G)→ Λc(X)

give mutually inverse anti-automorphisms of posets.

In fact the proof is immediate from the previous result; again, it is a good exercise
for the reader to chase through the definitions and notation to see this.

Corollary 8.10. a) A closed subgroup H of G is normal iff its corresponding
closed subset Y = H ′ = H ′′′ is stable under all automorphisms of G: for all σ ∈ G,
σY = Y .
b) A closed subset Y of X is stable under all automorphisms of G iff the corre-
sponding closed subgroup H = Y ′ = Y ′′′ is normal in G.

Again, this follows immediately from Proposition XX.

Exercise X.X: Show that if H is a normal subgroup of G, so is its closure H ′′.

Example: Suppose #X > 1; let x ∈ X and take Y = X \ x. Then Y is not a
closed subset of X, since any group of automorphisms of X which fixes every ele-
ment of Y must also fix x.

Example: If X = {1, 2} and G = S2 is the full symmetry group of X, then the
closed subsets are ∅ and X; the corresponding closed subgroups are G and the
trivial subgroup e. In particular all subgroups are closed. If X = {1, 2, 3} and G
is the full symmetry group S3. The closed subsets are ∅, {1}, {2}, {3} and X.
The corresponding closed subgroups are S3, 〈(23)〉, 〈(13)〉, 〈(12)〉 and the trivial
subgoup e. In particular the (unique) subgroup H = 〈(123)〉 of order 3 is not
closed: H ′ = ∅ and H ′′ = S3. If X is any set, the only subsets invariant under
G = Sym(X) are ∅ and X itself, so Sym(S) does not have any nontrivial, proper
closed normal subgroups. On the other hand, if #X ≥ 3 then Sym(S) always has
a nontrivial, proper normal subgroup (i.e., it is not a simple group): if S is finite,
so Sym(S) ∼= Sn take the alternating group An (the only possible choice if n ≥ 5);
if S is infinite, take the the subgroup H of elements g ∈ Sym(S) such that X \X〈g〉
is finite. Then #H = #S while # Sym(S) = 2# Sym(S).

Key example: Let K/F be a field extension, X = K and G = Aut(K/F ). Then
every closed subset of X is a subextension KH of K/F . Corollary XX shows that
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there is a bijective correspondence between the closed subextensions of K/F and
the closed subgroups of Aut(K/F ). Of course the key word in the previous sentence
is “closed”: if e.g. Aut(K/F ) is the trivial group (e.g. K = R) then the statement
is completely vacuous. In the next section we will show that if K/F is a finite
Galois extension, the best possible behavior occurs.

Exercise X.X: Let Λ and Λ′ be two partially ordered sets. A Galois connection be-
tween Λ and Λ′ is a pair of order-reversing maps Φ : Λ→ Λ′, Ψ : Λ′ → Λ satisfying
the analogoue of identity (GC)8 above: for x ∈ Λ, y ∈ Λ′, Φ(x) ≤ y ⇐⇒ x ≤ Ψ(y).
a) Check that the entire discussion (except for the bit about conjugation and nor-
mality) goes through in this level of generality: we get closure operators on Λ and
Λ′ such that Φ and Ψ give mutually inverse anti-automorphisms on the subsets of
closed elements: Φ : Λc

∼→ Λ′c, Ψ : Λ′c :
∼→ Λc.

b) Look for Galois connection. in your everyday (mathematical) life, paying spe-
cial attention to the closure process. For example, consider the polynomial ring
R = k[t1, . . . , tn] over an algebraically closed field k. Let Λ be the set of ideals I
of R, and let Λ′ be the set of algebraic subsets of affine n-space An over k: that
is, the subsets of kn of the form

⋂r
i∈I P

−1
i (0), where {Pi}i∈I is a set of elements

of R. Define Φ : Λ → Λ′ by I 7→ V (I), the set of points of (a1, . . . , an) such that
P (a1, . . . , an) for all P ∈ I. Define Ψ : Λ′ → Λ by S 7→ I(S), the ideal of all
elements of R which vanish at every (x1, . . . , xn) ∈ S. It is no problem to see that
this gives a Galois connection. What are the closed ideals? What are the closed
algebraic subsets?

8.4. The Finite Galois Correspondence.

Let K/F be a finite Galois extension, so that by the general nonsense of the pre-
vious section, we get a bijective correspondence between closed subextensions L of
K and closed subgroups of G = Aut(K/F ).

Theorem 8.11. (Fundamental theorem of Galois theory) If K/F is finite Galois,
then every subgroup H of G = Aut(K/F ) is closed, i.e., of the form H = Gal(K/L)
for a unique subextension L/K. Conversely, every subextension L is closed, i.e., of
the form KH for a unique subgroup H of G. Therefore the maps L 7→ Gal(K/L)
and H 7→ KH give mutually inverse inclusion-reversing bijections between the set of
subextensions of L/K and the set of subgroups of G. Moreover, a subextension L is
Galois over F iff the corresponding subgroup Gal(K/L) is normal in G, and in this
case Aut(L/F ) is canonically isomorphic to the quotient Aut(K/F )/Aut(K/L).

Proof: Let L be a subextension of K/F . It is clear that L ⊂ KAut(K/L). But
by XXX we know that [K : KAut(K/L)] = # Aut(K/L). Since K/F is Galois, so
is K/L, hence # Aut(K/L) = [K : L]. Therefore we must have KAut(K/L) = L.
Moreover, if H is a subgroup of G, we again clearly have H ⊂ GKH ; but we also
have [G : GKH ] = #G

# Aut(K/KH)
= [G : H], so H = GKH . This shows the Galois

correspondence is perfect. Now applying Corollary XX we get that H = Gal(K/L)
is normal in G iff L is stable under all F -algebra automorphisms σ of K. Since
K/F is itself normal, this holds iff L is stable under all F -algebra embeddings into
an algebraic closure F , i.e., iff L/F is normal. Finally, suppose that L/F is normal.

8In particular “GC” stands for Galois Connection.
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Then every F -automorphism of K restricts to an F -automorphism of L, giving a
natural map Aut(K/F ) → Aut(L/F ) which is easily checked to be a homomor-
phism of groups. The map is surjective by the Extension Theorem XX. Its kernel is
the subgroup of F -algebra automorphisms of K which fix every element of L, i.e.,
Aut(K/L).

This theorem is probably the single most important result in field theory. It re-
duces the study of the lattice of subextensions of a finite Galois extension K/F
to the corresponding lattice of subgroups of the finite group Aut(K/F ), which is
much easier to study, e.g. is a priori finite. Indeed, if K/F is any finite separable
extension, then one may – and should! – apply the Galois correspondence to the
Galois closure M/F .

Exercise X.X: Use the Galois Correspondence to give a more natural proof of the
Primitive Element Corollary (7.2).

When K/F is Galois, we write Gal(K/F ) for Aut(K/F ) and speak of Gal(K/F )
as the Galois group of K/F . We note that some authors (e.g. Shifrin, Kaplan-
sky) use the notation Gal(K/F ) for the automorphism group of an arbitrary field
extension, but from the perspective of infinite Galois theory (coming up!) and
modern number theory this seems dangerously misleading. Namely, it would then
be tempting to call any automorphism group of a finite extension “a Galois group”
and this is most certainly at odds with contemporary terminology. Indeed, perhaps
the single outstanding problem in field theory is to decide whether, for any finite
group G, there is a Galois extension K/Q such that Gal(K/Q) ∼= G. However, the
corresponding statement that any finite group is the automorphism group of some
finite extension K/Q – possibly with [K : Q] > #G – is a much weaker one, and
indeed this is a known theorem of E. Fried and J. Kollar [FK78]

Composita of Galois extensions: let F be a field and K1, K2 two Galois ex-
tensions of F . After choosing an algebraic closure F of F , since K1 and K2

are splitting fields, there is a unique F -algebra embedding of Ki into F . Since
composita of normal (resp. separable) extensions are normal (resp. separable),
the compositum K = K1 ∨ K2 is a finite Galois extension. What is the rela-
tionship of Gal(K/F ) to Gal(K1/F ) and Gal(K2/F )? As above we get surjec-
tive restriction maps ιi : Gal(K/F ) → Gal(Ki/F ), and hence a diagonal map
ι = (ι1, ι2) : Gal(K/F ) → Gal(K1/F ) × Gal(K2/F ). This composite homomor-
phism ι need not (of course?) be surjective: e.g. it will not be if K1 = K2 are
nontrivial extensions of F . Rather ι is always injective: since K is generated as a
field by K1 and K2, a pair of automorphisms σi of Ki can extend in at most one
way to an automorphism of K. Therefore Gal(K/F ) can naturally be viewed as a
subgroup of the product Gal(K1/F )×Gal(K2/F ).

This is in fact rather useful: let C be any class of finite groups which is closed under
formation of direct products and passage to subgroups, and suppose that Ki/F are
two C-Galois extensions, i.e., finite Galois extensions whose Galois groups lie in C.
Then the compositum K1 ∨ K2 is a C-Galois extension. E.g. we may profitably
take C to be the class of all finite abelian groups, or the class of all finite solvable
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groups. When we turn to infinite Galois theory we will see that we are allowed to
take infinite composita as well, and this observation will show that any field admits
a maximal C-Galois extension.

Exercise: Let K1, K2/F be two finite Galois extensions, and K = K1K2 their
compositum. Let H be the image of the map ι : Gal(K/F ) → Gal(K1/F ) ×
Gal(K2/F ). Show that H is normal in Gal(K1/F ) × Gal(K2/F ), and that the
quotient (Gal(K1/F ) × Gal(K2/F ))/H ∼= Gal(K1 ∩K2/F ). In particular, ι is an
isomorphism iff K1 ∩K2 = F .

8.5. The Normal Basis Theorem.

Let K/F be a finite degree field extension. Then a basis {α1, . . . , αn} of K as an
F -vector space is a normal basis if all of its elements lie in the same Aut(K/F )-
orbit, i.e., if for all 1 ≤ i ≤ n there exists σ ∈ Aut(K/F ) such that αi = σα1.

Exercise: If a finite extension K/F admits a normal basis, it is Galois.

The main result of this section is the converse: every finite Galois extension admits
a normal basis. A lot of literature has been written on this result. Our treatment
follows [CW50] and [We09, §3.6]. It is certainly not the shortest treatment avail-
able, but it proceeds by establishing several preliminary results which are of some
interest in their own right.

Every known proof of the existence of normal bases must negotiate a fundamental
dichotomy between finite fields and infinite fields. This dichotomy comes up several
times in field theory, algebra and algebraic geometry (another good example of a
theorem for which the finite field case must be taken separately is the Noether
Normalization Theorem), but often without much fanfare our explanation. To
our mind at least, the source of the trouble is the different behavior of the evalu-
ation map on polynomials over finite domains versus infinite integal domains. (A
geometer might point to the fact that for any n ∈ Z+, a field K is infinite iff the
K-rational points of affine n-space over K are Zariski dense, but in fact this comes
down to the same algebraic observation.)

Lemma 8.12. Let R ⊂ S be an extension of domains and n ∈ Z+. TFAE:
(i) For all f ∈ S[t1, . . . , tn], f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ Rn =⇒ f = 0.
(ii) R is infinite.

Proof. (i) =⇒ (ii): We prove the contrapositive. Note that any finite domain is
a field, so suppose R = Fq. Let f(t) = tq1 − t1. Then for all a = (a1, . . . , an) ∈ Fnq ,

f(a) = aq1 − a1 = 0.
(ii) =⇒ (i): We go by induction on n.
Base Case (n = 1): suppose f ∈ S[t] is a polynomial which is not the zero polyno-
mial. Then it has degree d ≥ 0 and by the Root-Factor Theorem has at most d roots
in the fraction field of R, hence a fortori at most d roots in R. But #R ≥ ℵ0 > d,
so there exists a1 ∈ R with f(a1) = 0.
Induction Step: Suppose n > 1 and that every polynomial in n − 1 vari-
ables with S-coefficients which is not the zero polynomial has a R-rational root.
Let f(t1, . . . , tn−1, z) ∈ S[t1, . . . , tn−1, z]. Put S′ = S[t1, . . . , tn−1], so f may
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be identified with a nonzero polynomial g(z) ∈ S′[z]. Applying the Base Case,
there exists A ∈ R′ such that 0 6= g(A) ∈ R′. Now g(A) is a nonzero element
of S′ = S[t1, . . . , tn−1], so by induction there exist a1, . . . , an−1 ∈ R such that
g(A(a1, . . . , an−1)) 6= 0. Putting an = A(a1, . . . , an−1) we have

f(a1, . . . , an−1, an) = g(A(a1, . . . , an−1)) 6= 0.

�

Proposition 8.13. Any finite cyclic extension K/F admits a normal basis.

Proof. Let K/F be cyclic of degree n with Gal(K/F ) = 〈α〉. We may endow K with
the structure of an F [t]-module extending its F -module structure by putting t ·x =
σ(x) for all x ∈ K. Then tn − 1 annihilates K; moreover, by linear independence
of characters, no smaller degree polynomial does so. It follows that as an F [t]-
module, K is isomorphic to F [t]/(tn − 1). Thus there exists α ∈ K such that
ann(α) = (tn−1) – take, e.g., the preimage of 1 (mod tn−1) under an isomorphism
– so the elements α, σα, σ2α, . . . , σn−1α are F -linearly independent and thus give
a normal basis. �

Lemma 8.14. Let K/F be a degree n Galois extension, and write Aut(K/F ) =
{σi}ni=1. For α1, . . . , αn ∈ K, TFAE:
(i) α1, . . . , αn is an F -basis of K.
(ii) The matrix A ∈Mn(K) with Aij = σiαj is nonsingular.

Proof. (i) =⇒ (ii) follows almost immediately from the (K-)linear independence
of the characters σ1, . . . , σn: details are left to the reader.
(ii) =⇒ (i): We argue by contraposition: suppose α1, . . . , αn is not an F -basis for
K, so there exist a1, . . . , an ∈ F , not all zero, with a1α1 + . . . + anαn = 0. Then
for all i we have

n∑
j=1

ajAij =

n∑
j=1

ajσiαj = σi(

n∑
j=1

aiαj) = 0,

which shows that the columns of the matrix A are linearly dependent. �

By linear independence of characters, for any field extension K/F , any finite set
of automorphisms σ1, . . . , σn ∈ Aut(K/F ) is K-linearly independent. If K/F is a
Galois extension and F is infinite, we have the following significantly stronger
independence result.

Theorem 8.15. Let K/F be a finite degree Galois extension of infinite fields. Then
the elements σ1, . . . , σn of Aut(K/F ) are algebraically independent – if 0 6=
f(t1, . . . , tn) ∈ K[t1, . . . , tn], there exists α ∈ K such that f(σ1(α), . . . , σn(α)) 6= 0.

Proof. As a matter of notation, for an n-tuple (x1, . . . , xn) ∈ Kn, we will denote
by (x1, . . . , xn)• the corresponding column vector, i.e., element of Mn,1(K). If it
brings no confusion, we will suppress indices by writing x• for (x1, . . . , xn)•.

Let α1, . . . , αn be a basis for K/F . Define A ∈ Mn(K) by Aij = σiαj . By
Lemma 8.14, A is nonsingular. Now let c = (c1, . . . , cn) ∈ Fn and put

α =

n∑
j=1

cjαj .
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Then for all 1 ≤ i ≤ n,

σi(α) =

n∑
j=1

Aijcj ,

so

σ(α)• = Ac•.

Seeking a contradiction, we suppose that for all σ ∈ K, f(σ1(α), . . . , σn(α)) = 0.
By the above, this can be reexpressed as

0 = f(σ(α)•) = f(Ac•)

for all c ∈ Fn. Thus the polynomial

g(t) = g(t1, . . . , tn) = f(At•) ∈ K[t1, . . . , tn]

vanishes at every c ∈ Fn, so by Lemma 8.12, g = 0. So f(t) = g(A−1t•) = 0. �

Exercise: Show that Theorem 8.15 fails for every finite extension of finite fields.

Theorem 8.16. (Normal Basis Theorem) Let K/F be a finite Galois extension of
degree n. Then there exists α ∈ K such that the set {σα}σ∈Gal(K/F ) is a basis of
K as an F -vector space.

Proof. By Proposition 8.12 we may assume that F , and hence also K, is infinite.
Write out the elements of Aut(K/F ) as 1 = σ1, σ2, . . . , σn. Let t1, . . . , tn be inde-
pendent indeterminates, and consider the matrix B with Bij = tk, where σiσj = σk.
In this matrix each ti appears exactly once in each row and column, so the spe-
cialization t1 = 1, ti = 0 for all i > 1 gives rise to a permutation matrix with
determinant ±1. It follows that d(t1, . . . , tn) = detB is a nonzero element of the
polynomial ring K[t1, . . . , tn]. Applying Theorem 8.15, there exists α ∈ K such
that d(σ1(α), . . . , σn(α)) 6= 0.

For 1 ≤ j ≤ n, put αj = σj(α). Then the matrix A with Aij = σiαj = σiσjα =
σkα nonsingular, so by Lemma 8.14 σ1α, . . . , σjα is an F -basis of K. �

Exercise: Explain how the Normal Basis Theorem gives a stronger result than the
Primitive Element Corollary in the case of a Galois extension.

8.6. Hilbert’s Theorem 90.

Let G be a group, and let M be a G-module, i.e., commutative group on which
G acts Z-linearly: that is, we are given a homomorphism G → AutZ(M). Let
Z1(G,M) be the set of all maps f : G→M which satisfy the cocycle condition:

∀σ, τ ∈ G, f(στ) = f(σ) + σ(f(τ)).

Let B1(G,M) be the set of maps f : G → M such that there is a ∈ M with
f(σ) = σ(a)− a for all σ ∈ G.

Exercise: a) Show that Z1(G,M) and B1(G,M) are commutative groups under
pointwise addition.
b) Show that B1(G,M) ⊂ Z1(G,M).

We may therefore define

H1(G,M) = Z1(G,M)/B1(G,M),
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the first cohomology group of G with coefficients in M.

Exercise: Suppose that G acts trivially on M . Show that H1(G,M) = Hom(G,M),
the group of all homomorphisms from G to M .

Now observe that if K/F is a field extension and G = Aut(K/F ), then both K (as
an additive group) and K× (as a multiplicative group) are G-modules.

Theorem 8.17. Let K/F be a finite Galois extension, with Galois group G =
Aut(K/F ).
a) H1(G,K) = 0.
b) H1(G,K×) = 0.

Proof. a) Let f : G→ K be a 1-cocycle. Since K/F is finite separable, by Theorem
X.X there is c ∈ K with TrK/F (c) = 1. Put

b =
∑
σ∈G

f(σ)σ(c),

so
τ(b) =

∑
σ∈G

τ(f(σ))(τσ)(c)

=
∑
σ∈G

(f(τσ)− f(τ)) (τσ)(c) =
∑
σ∈G

f(τσ)(τσ)(c)−
∑
σ∈G

f(τ)(τσ)(c)

= b− f(τ) · τ

(∑
σ∈G

σ(c)

)
= b− f(τ).

Thus f(τ) = b− τ(b) for all τ ∈ G, so f ∈ B1(G,K).
b) Let f : G→ K× be a 1-cocycle. By independence of characters, there is c ∈ K
such that

∑
σ∈G f(σ)σ(c) 6= 0; fix such a c and put b =

∑
σ∈G f(σ)σ(c). Then

τ(b) =
∑
σ∈G

τ(f(σ))(τσ)(c),

so
f(τ)τ(b) =

∑
σ∈G

f(τ)τ(f(σ)) · (τσ)(c) =
∑
σ∈G

f(τσ) · (τσ)(c) = b,

i.e., f(τ) = b/τ(b). So f ∈ B1(G,K×). �

The following is a basic result from group cohomology.

Theorem 8.18. Let n ∈ Z+, and let G = 〈σ | σn = 1〉 be a finite cyclic group.
For any G-module M , we have

H1(G,M) ∼= {x ∈M | (1 + σ + . . .+ σn−1)(x) = 0}/{σx− x | x ∈M}.

Combining Theorems 8.17 and 8.18 we immediately deduce the following famous
result of D. Hilbert, the 90th theorem in his Zahlbericht. However, because our
focus here is on field-theoretic methods, we will not give a proof of Theorem 8.18
but rather a purely field-theoretic proof of Hilbert’s Satz 90.

Theorem 8.19. (Hilbert’s Satz 90) Let K/F be a finite Galois extension with cyclic
Galois group G = 〈σ | σn = 1〉.
a) For c ∈ K, the following are equivalent:
(i) TrK/F (c) = 0.
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(ii) There is a ∈ K such that c = a− σ(a).
b) For c ∈ K, the following are equivalent:
(i) NK/F (c) = 1.

(ii) There is a ∈ K× such that c = a
σ(a) .

Proof. Step 1: Because Galois conjugate elements have the same norm and trace,
in both parts a) and b) the implications (ii) =⇒ (i) are immediate.
Step 2: Let c ∈ K be such that TrK/F (c) = 0. Since K/F is separable, by Theorem

X.X there is b ∈ K with TrK/F (b) = 1.9

Put

a = cb+ (c+ σ(c))σ(b) + . . .+ (c+ σ(c) + . . .+ σn−2(c))σn−2(b).

Then

σ(a) = σ(c)σ(b) + (σ(c) + σ2(c))σ2(b) + . . .+ (σ(c) + . . .+ σn−1(c))σn−1(b).

Since TrK/F (c) = c+ σ(c) + . . .+ σn−1(c) = 0, we have

a− σ(a) = cb+ cσ(b) + . . .+ cσn−1b = cTrK/F (b) = c.

Step 3: Let c ∈ K be such that NK/F (c) = 1. By Dedekind’s linear independence
of characters, there is b ∈ K with

a = b+ cσ(b) + cσ(c)σ2(b) + . . .+ cσ(c) · · ·σn−2(c)σn−1(b) 6= 0.

Then
cσ(a) = cσ(b) + cσ(c)σ2(b) + . . .+ cσ(c) · · ·σn−1(c)b = a,

so

c =
a

σ(a)
.

�

We will use Theorem 8.19 later on in our study of cyclic extensions.

include application to Pythagorean triples

8.7. Infinite Algebraic Galois Theory.

Theorem 8.20. For an algebraic field extension K/F , TFAE:
(i) KAut(K/F ) = F . (“K/F is Galois.”)
(ii) K is normal and separable.
(iii) K is the splitting field of a set (possibly infinite) of separable polynomials.

Proof. The equivalence of (ii) and (iii) follows from our characterization of normal
and separable algebraic extensions.
(i) =⇒ (ii): (Morandi, p. 40something) FIXME!!!
(ii) =⇒ (i): Let α ∈ K \ F . Then the minimal polynomial P for α over K
splits in K and has at least one other distinct root β. There is a unique F -algebra
embedding σ : F [α] → K that sends α to β; as usual, we can extend σ to an
automorphism of F and then the restriction of σ to K is an automorphism of K
(since K is normal) for which σ(α) 6= α. Therefore KAut(K/F ) = F . �

9Alternately, since K/F is Galois, TrK/F (x) = x + σ(x) + . . . + σn−1(x). It follows from

Dedekind’s linear independence of characters that TrK/F is not identically zero, and since it is an

F -linear functional it must then be surjective.
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Let us now revisit the abstract setting of section XX in the somewhat less triv-
ial present framework: X = K = F sep, G = Aut(K/F ). Then the maps L 7→
Gal(K/L) and H 7→ KH give a bijective correspondence between closed subexten-
sions L of K/F and closed subgroups H of G. The key fact is the following

Lemma 8.21. Every subextension L of K/F is closed, i.e. KGal(K/L) = L.

Proof. FIX ME!!! �

8.8. A Characterization of Normal Extensions.

Lemma 8.22. a) Let K be a field with algebraic closure K. Let L/K be a purely
inseparable extension, and let σ : L ↪→ K be a K-algebra embedding. Then σ is an
L-algebra embedding, i.e., for all x ∈ L, σ(x) = x.
b) Let K/F be an algebraic field extension and Fi the purely inseparable closure of
F in K. Then Aut(K/Fi) = Aut(K/F ).

Proof. a) Any element y ∈ L satisfies a purely inseparable polynomial P (t) = tp
n−x

for some x ∈ K. The map σ must send y to some root of P (t), of which there is
only one.
b) Choose an algebraic closure K of K. Let σ ∈ Aut(K/F ); by X.X σ extends to
an automorphism of K, which we continue to denote by σ. Applying part a) to σ
with Ki = L, we get that σ fixes Ki pointwise, qed. �

Theorem 8.23. For an algebraic extension K/F , TFAE:
(i) The extension KAut(K/F )/F is purely inseparable.
(ii) K/F is normal.

Proof. (i) =⇒ (ii): Put L = KAut(K/F ). Let F be an algebraic closure of K and let
σ : K → F be an F -algebra embedding, which we may extend to an automorphism
of F . Since L/F is purely inseparable, by Lemma 8.22b) we have σ ∈ Aut(K/L).
In other words, σ fixes L pointwise. But K/L is Galois, hence normal, so for any
embedding σ : K ↪→ F which fixes L pointwise we have σ(K) = K.
(ii) =⇒ (i): Let Fi be the purely inseparable closure of F in K. Since K/F
is normal, so is K/Fi. Moreover, by Theorem X.X and Corollary X.X, K/Fi is
separable. Thus K/Fi is Galois, so (applying Lemma) 8.22) we get

KAut(K/F ) = KAut(K/Fi) = Fi.

�

9. Solvable Extensions

9.1. Cyclotomic Extensions.

9.1.1. Basics.

Let K be a field. An element x ∈ K× is a root of unity if there is n ∈ Z+

such that xn = 1; equivalently, x lies in the torsion subgroup of K×. We put

µn(K) = {x ∈ K | xn = 1},
the nth roots of unity in K. We put µ(K) =

⋃
n≥1 µn(K). Thus µn(K) and µ(K)

are subgroups of K× and µ(K) = K×[tors].

Lemma 9.1. For any field K and n ∈ Z+, we have #µn(K) ≤ n.
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Proof. The elements of µn(K) are the roots of the polynomial tn − 1 over K, and
a nonzero polynomial over a field cannot have more roots than its degree. �

Lemma 9.2. For any field K and n ∈ Z+, µn(K) is a finite cyclic group.

Proof. By Lemma 9.2, µn(K) is finite. We use the Cyclicity Criterion: a finite
group G is cyclic iff for all d ∈ Z+ there are at most d element of order n in G. This
holds in µn(K) since the polynomial td − 1 can have no more than d roots. �

Example: Fix n ∈ Z. For 0 ≤ k < n, the elements e
2πki
n are distinct nth roots of

unity in C. So #µn(C) = n.

Exercise: Let K be an ordered field. Show that µ(K) = {±1}.

An element of K× of exact order n is called a primitive nth root of unity.

Proposition 9.3. Let K be an algebraically closed field. For n ∈ Z+, TFAE:
(i) charK - n.
(ii) #µn(K) = n.
(iii) K admits a primitive nth root of unity.
(iv) K admits precisely ϕ(n) primitive nth roots of unity.

Proof. (i) ⇐⇒ (ii): Let f(t) = tn − 1. Then f ′(t) = ntn−1. Thus charK - n ⇐⇒
gcd(f, f ′) = 1 ⇐⇒ tn − 1 has n distinct roots ⇐⇒ #µn(K) = n.
(ii) ⇐⇒ (iii): By Lemma 9.2, µn(K) is a finite, cyclic n-torsion abelian group.
Thus it has order n iff it has an element of order n.
(ii) =⇒ (iv): (ii) holds ⇐⇒ µn(K) is cyclic of order n, in which case it has
precisely ϕ(n) generators.
(iv) =⇒ (iii): Since for all n ∈ Z+, ϕ(n) ≥ 1, this is clear. �

Exercise: a) Let K be an algebraically closed field of characteristic zero. Show that
µ(K) ∼= lim

−→n∈Z+
Z/nZ.

b) Let K be an algebraically closed field of characteristic p ≥ 0. Show that
µ(K) ∼= lim

−→n∈Z+, p-n
Z/nZ.

Exercise: Show that for any field K, µ(Ksep) = µ(K).

Henceforth we only consider µn for charK - n.

For a field K, we denote by Kcyc the field obtained by adjoining to K all roots
of unity in a fixed algebraic closure K. Then Kcyc is the splitting field of the set
{tn − 1}charK-n of separable polynomials, so is an algebraic Galois extension, the

maximal cyclotomic extension of K. For n ∈ Z+ with charK - n, let K(µn)
be the splitting field of the separable polynomial tn − 1, the nth cyclotomic ex-
tension. Thus Kcyc = lim

−→
K(µn).

For a field K, it is traditional to denote by ζn a primitive nth root of unity in

Ksep. When K = C, the standard choice is ζn = e
2πi
n . There is an advantage to

this choice: for all m | n, we have

(8) ζ
n
m
n = ζm.
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Exercise: Let K be any algebraically closed field.
a) Show that one may choose, for all n ∈ Z+ with charK - n, a primitive nth root
of unity ζn such that the compatibility relation (8) holds.
b) In how many ways is it possible to do this?
(Suggestion: express your answer as an inverse limit of finite sets.)

Proposition 9.4. Let K be a field and n ∈ Z+ with charK - n.
a) We have K(µn) = K(ζn).
b) There is a canonical injection an : Aut(K(ζn)/K) ↪→ (Z/nZ)×.

Proof. a) In other words, the assertion is that by adjoining any one primitive root
of unity, we get the splitting field of the polynomial tn− 1. Since every nth root of
unity is a power of ζn, this is clear.
b) For σ ∈ Aut(K(ζn)/K), σ(ζn) is a primitive nth root of unity: any automorphism
of a field preserves the order of elements of the multiplicative group of that field.

Thus σ(ζn) = ζ
an(σ)
n for a unique an(σ) ∈ (Z/nZ)×. It is immediate that σ 7→ an(σ)

is a group homomorphism. Finally, if an(σ) = 1, then σ(ζn) = ζn, so σ fixes K(ζn)
and is thus trivial. �

Exercise: a) In order to define an we chose a primitive nth root of unity ζn ∈ Ksep.
Show that the homomorphism an is in fact independent of this choice.
b) Suppose that m | n. Show that we have a commutative diagram

Aut(K(ζn)/K)
an→ (Z/nZ)×

Aut(K(ζm)/K)
am→ (Z/mZ)×,

where the map (Z/nZ)× → (Z/mZ)× is the induced map on units of the quotient
map Z/nZ→ Z/mZ.
c) Deduce that there is an injection

a : Aut(Kcyc/K) ↪→ lim
←−n∈Z+,charK-n

(Z/nZ)×.

d) In particular, for any prime ` 6= charK, there is an injection

χ` : Aut(lim
−→

K(µ`n)/K)→ Z×` ,

called the `-adic cyclotomic character. When charK = 0, there is an injection

χ : Aut(Kcyc/K) ↪→ Ẑ×,

the adelic cyclotomic character.

9.1.2. Cyclotomic Polynomials.

For n ∈ Z+, let Φn(t) be the unique monic polynomial with roots the primitive
nth roots of unity in C.10

Proposition 9.5. a) For all n ∈ Z+, we have

(9)
∏
d|n

Φd(t) = tn − 1.

10The use of C here is somewhere between tradition and psychology: any algebraically closed
field of characteristic zero – e.g. Q – would serve as well.
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b) For all n ∈ Z+, Φn(t) ∈ Z[t].
c) For all n ∈ Z+, we have

(10) Φn(t) =
∏
d|n

(td − 1)µ(nd ).

Proof. a) Both sides of (9) are monic polynomials with C coefficients whose roots
are precisely the nth roots of unity in C. So they are equal.
b) By strong induction on n. The base case is clear: Φ1(t) = t − 1. Now sup-
pose n > 1 and that Φd(t) ∈ Z[t] for all proper divisors d of n. Then Q(t) =∏
d|n, d 6=n Φd(t) ∈ Z[t] is a monic polynomial and Q(t)Φn(t) = tn−1. Now imagine

actually performing polynomial long division of tn − 1 by Q(t) to get Φn(t): since
tn − 1,Φn(t) ∈ Z[t] are monic, the quotient Φn(t) has Z-coefficients.
c) This follows from part a) by the Möbius Inversion Formula applied in the com-
mutative group Q(t)×.11 �

Theorem 9.6. Let n ∈ Z+ and let K be a field of characteristic p. Regard Φn(t) ∈
Fp[t] ⊂ K[t]. Then Φn(t) is a separable polynomial whose roots in K[t] are precisely
the primitive nth roots of unity.

Proof. By the Derivative Criterion tn− 1 ∈ K[t] is separable; by (8) so is Φn(t). It
is clear that the ϕ(n) roots of Φn(t) in K are nth roots of unity; that they are the
ϕ(n) primitive nth roots of unity follows by an easy induction argument. �

Exercise: Let p be a prime number and a ∈ Z+.
a) Show that Φp(t) = 1 + t+ . . .+ tp−1.
b) Show that Φ2p(t) = 1− t+ . . .+ (−t)p−1.

c) Show that Φpa(t) = Φp(t
pa−1

).

Exercise: For n ∈ Z+, let r(n) =
∏
p|n p. Show:

Φn(t) = Φr(n)(t
n
r(n) ).

Exercise: Let n ∈ Z+.
a) Show: for all n ≥ 2, the constant coefficient of Φn(t) is 1.
b) Show: for all n 6= 2, the product of the primitive nth roots of unity in C is 1.

Theorem 9.7. (Gauss-Kronecker) For all n ∈ Z+, Φn(t) ∈ Q[t] is irreducible.

Proof. Since Φn(t) ∈ Z[t] is monic and Z is a UFD, by Gauss’s Lemma it is equiv-
alent to show that Φn is irreducible in Z[t]. We may write Φn(t) = f(t)g(t) with
f, g ∈ Z[t] monic and f irreducible, and the goal is to show g = 1.
Step 1: Let α be a root of f(t) ∈ Q (hence a primitive nth root of unity) and let p
be a prime number not dividing n. We claim that αp is also a root of f(t).
proof of claim: Suppose not; then, since p - n, αp is a primitive nth root of
unity, so αp is a root of g. Thus α is a root of h(tp). Since f is monic irre-
ducible and f(α) = 0, f is the minimal polynomial for α, so there is h ∈ Z[t] with
f(t)h(t) = g(tp). Now apply the homomorphism Z[t]→ Z/pZ[t], f 7→ f : we get

Φn = fh.

11In fact we don’t need this in what follows – it is just a pretty formula.
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For any polynomial a(t) ∈ F/pZ[t] we have a(tp) = a(t)p, and thus

gp = fh.

Let q be an irreducible factor of f . Then q | f | gp, so q | g. It follows that
g2 | fg = Φn. But since p - n, the Derivative Criterion still holds to show that
Φn ∈ Z/pZ[t] is separable: contradiction.
Step 2: Let β be any root of Φn(t) in Q. Then β and α are both primitive nth
roots of unity, so that there is a sequence of (not necessarily distinct) prime numbers
p1, . . . , pr with gcd(p1, . . . , pr, n) = 1 and αp1···pr = β. Applying Step 1 successively
to α, αp1 , . . . , αp1···pn−1 we find that β is also a root of f(t). Thus f has as its roots
all primitive nth roots of unity, i.e., f = Φn, and Φn is irreducible. �

9.1.3. Some Applications.

Corollary 9.8. For any n ∈ Z+, the extension Q(µn)/Q) is Galois, with Aut(Q(µn)/Q)
canonically isomorphic to (Z/nZ)×.

Exercise: Prove it.

Exercise: Let m,n ∈ Z+ with m | n.
a) Show: Q(µm) ⊆ Q(µn).
b) Show: Q(µm) = Q(µn) iff m = n or (m is odd and n = 2m). c) Show:

(11) Q(µm, µn) = Q(µlcm(m,n)).

(12) Q(µm) ∩Q(µn) = Q(µgcd(m,n)).

Theorem 9.9. Let n ∈ Z+. There are infinitely many primes p with p ≡ 1
(mod n).

Proof. We may assume n ≥ 2. Let S be a finite set (possibly empty) of primes
p ≡ 1 (mod n), and let q =

∏
p∈S p. For sufficiently large k ∈ Z, we have

N = Φn(knq) > 1.

Since the constant term of Φn is 1, for any prime p | knq, N ≡ 1 (mod p). Since
N > 1, there is a prime p with Φn(knq) = N ≡ 0 (mod p), so p - knq: in particular
p /∈ S. By Theorem 9.6, knq ∈ Fp is a primitive nth root of unity. By Lagrange’s
Theorem, n | p− 1. We’ve produced a prime p /∈ S with p ≡ 1 (mod n). �

Lemma 9.10. Let G be a finite abelian group. Then there are k, n ∈ Z+ and a
surjective homomorphism of groups (Z/nZ)k → G.

Exercise: Prove it.

Corollary 9.11. For any finite abelian group G, there is a Galois extension L/Q
with Aut(L/Q) ∼= G.

Proof. Step 1: By Lemma 9.10, G is a quotient of (Z/nZ)k for some k, n ∈ Z+.
Since any group which is a quotient of a finite Galois group over a field K is also a
finite Galois group over that field, it suffices to treat the case G = (Z/nZ)k.
Step 2: By Theorem 9.9, there are prime numbers p1, . . . , pk such that n | (pi − 1)
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for 1 ≤ i ≤ k. The group (Z/piZ)× is cyclic of order ϕ(pi) = pi − 1, so there is a
surjection qi : (Z/piZ)× → Z/nZ. Let

q = (q1, . . . , qk) :

k∏
i=1

(Z/piZ)× → (Z/nZ)k,

a surjective group homomorphism. Put N = p1 · · · pk. Since the pi’s are distinct,
by the Chinese Remainder Theorem there is an isomorphism

Z/NZ ∼→
k∏
i=1

Z/piZ

and thus, passing to unit groups, an isomorphism

Φ : (Z/NZ)×
∼→

k∏
i=1

(Z/piZ)×.

Thus we get a surjective map

Aut(Q(µN )/Q)
∼→ (Z/NZ)×

Φ→
k∏
i=1

(Z/piZ)×
q→ (Z/nZ)k.

By Galois Theory, there is a subextension L of Q(µN )/Q with Aut(L/Q) ∼= (Z/nZ)k.
�

Exercise: Show: for any number field K and any finite abelian group G, there is a
Galois extension L/K with Aut(L/K) ∼= G.

Exercise: Let n ∈ Z+.
a) (Parker: [Pa74]) Show: there is a number field K ⊂ R such that K/Q is Galois
and Aut(K/Q) ∼= Z/nZ.
b) Prove or disprove: for every finite abelian group G, there is a number field K ⊂ R
such that K/Q is Galois and Aut(K/Q) ∼= G.

9.2. Cyclic Extensions I: Kummer Theory.

A field extension K/F is cyclic if it is of finite degree and Aut(K/F ) is a cyclic
group of order [K : F ]. In particular a cyclic extension is necessarily Galois. By
a generator of a cyclic extension L/K, we mean an element σ which generates
Aut(L/K). (Of course σ is not unique if n > 2.)

Example 9.12. A quadratic extension K/F is cyclic iff it is separable. Thus if F
does not have characteristic 2 then every quadratic extension K/F is cyclic, and

moreover – as the quadratic formula holds here – is of the form F (
√
a) for some

a ∈ F \ F 2.

Let F be a field of characteristic 0. Since adjunction of square roots of elements
of F yields cyclic extensions, it is natural to try to construct cyclic extensions of
degree n by adjunction of nth roots. This is a good idea, but it works only under
certain restrictions.

Example 9.13. We revisit Example 4.17. For n ≥ 3, let pn(t) = tn − 2, and let
Fn = Q[t]/(pn(t)). We may embed Q ↪→ R ↪→ C, and then, since pn has a unique

root n
√

2 in R, and in such a way we view Fn ↪→ R. If ζn is a primitive nth root
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of unity, then the conjugates of n
√

2 over Q are ζin
n
√

2 for 0 ≤ i < n. The only

conjugate that lies in R, let alone Fn, is n
√

2, so Fn/Q is not normal (so certainly
not cyclic). The splitting field of Fn/Q is

Kn := Q(ζn,
n
√

2).

Because the subgroup Aut(Kn/Fn) of Aut(Kn/Q) is not normal, the group Aut(Kn/Q)
is not commutative, hence certainly not cyclic.

Now let n = 3. Then the polynomial p3(t) remains irreducible over Q(ζ3): in-
deed, every irreducible cubic polynomial remains irreducible over a quadratic field
extension, so K3/Q(ζ3) is Galois of degree 3, hence cyclic. A generator for its

automorphism group is the automorphism that sends 3
√

2 to ζ3
3
√

2. We also com-
pute in this way that the automorphism group Aut(K3/Q) is noncommutative of

order 6 and thus, as a permutation group on the conjugates 3
√

2, ζ3
3
√

2, ζ2
3

3
√

2, is the
full symmetric group S3. Indeed, it has order [K3 : Q(ζ3)][Q(ζ3) : Q] = 6 and is
noncommutative since the order 2 subgroup Aut(K3/F3) is not normal.

Proposition 9.14. Let K be a field of characteristic p ≥ 0, let n ∈ Z+, and
let a ∈ K be such that the polynomial f(t) = tn − a is irreducible in K[t]. Let
L := K[t]/(f(t)) = K( n

√
a). The following are equivalent:

(i) The extension L/K is cyclic.
(ii) The field K contains a primitive nth root of unity. (In particular, p - n).

Proof. Note first that f ′(t) = ntn−1, so by the Derivative Criterion, L/K is sep-
arable iff p - n. It follows that if p | n then neither (i) nor (ii) holds, so we may
assume henceforth that p - n. In this case the roots of f(t) in a splitting field are
of the form ζin

n
√
a, where ζn is a primitive nth root of unity.

(i) =⇒ (ii): In particular, ζn
n
√
a

n
√
a

= ζn lies in any splitting field for f , so if L/K is

normal then ζn lies in L.
(ii) =⇒ (i): The above discussion shows that if K contains a primitive nth root
of unity – say ζn – then L/K is normal and separable, thus Galois.

It remains to show that the group Aut(L/K) is cyclic. For this, observe that
there is a unique σ ∈ Aut(L/K) such that σ( n

√
a) = ζn n

√
a: such an automorphism

exists because the automorphism group of a Galois extension K[t]/(f)/K acts tran-
sitively on the roots of f , and it is unique because L = K( n

√
a). For any i ∈ Z+,

σi : n
√
a 7→ ζin

n
√
a, and thus the order of σ is

〈σ〉 = n = [L : K] = # Aut(L/K). �

There is an important converse to Proposition 9.14. To prove it, we need first the
following result, which despite its innocuous appearance is actually quite famous.

Lemma 9.15. Let K be a field, ζn ∈ K a primitive nth root of unity. Let L/K be a

cyclic extension of degree n, with generator σ. There is α ∈ L such that ζn = σ(α)
α .

Proof. Equivalently, we need to show that ζn is an eigenvalue for the K-linear
endomorphism σ : L → L. Since σ has order n, by Dedekind’s Theorem the
transformations 1, σ, . . . , σn−1 are all K-linearly independent, and therefore the
minimal polynomial of σ is indeed p(t) = tn − 1. Thus ζn is a root of the minimal
polynomial for σ and therefore also a root of its characteristic polynomial. �

Theorem 9.16. (Kummer) Let n ∈ Z+, and let K be a field containing a primitive
nth root of unity ζn. Let L/K be a degree n cyclic extension with generator σ.



64 PETE L. CLARK

a) There exists a ∈ K such that σ( n
√
a) = ζn n

√
a and L = K( n

√
a).

b) If b ∈ K is such that σ( n
√
b) = ζn

n
√
b and L = K( n

√
b), then a

b ∈ K
n.

Proof. a) By Lemma 9.15, there is α ∈ L such that σ(α) = ζnα. Thus for all i ∈ Z+

σ(αi) = ζinα. In particular a = αn ∈ K, and the subgroup of 〈σ〉 = Aut(L/K)
fixing K(α) pointwise is the identity. It follows that L = K(α) = K( n

√
a).

b) We have σ n
√

a
b = n

√
a
b , so

n
√
a

n√
b

= u ∈ K. Take nth powers: a
b = un ∈ Kn. �

We continue with our study of cyclic extensions under the existence of sufficiently
many roots of unity. Note that an important feature of the next result is that
we analyze extensions of the form K( n

√
a) without the hypothesis that tn − a is

irreducible in K[t].

Proposition 9.17. Let K be a field containing a primitive nth root of unity ζn,
and let L/K be a field extension such that L = K(α) and αn = a ∈ K.
a) L/K is a cyclic extension.
b) The degree m = [L : K] is equal to the order of the image of a in K×/K×n.
c) There exists b ∈ K such that the minimal polynomial of α over K is tm − b.

Proof. �

Proposition 9.18. Let K be a field containing a primitive nth root of unity ζn,
and let L = K( n

√
a) for a ∈ K. Then any subextension M of L/K is of the form

K( m
√
a) for some divisor m of n.

If K is a field of characteristic not dividing n but not containing a primitive nth
root of unity, there is in general no simple description of the degree n cyclic ex-
tensions of K. A lot of work has been done on special cases: for instance global
class field theory gives a kind of description of all abelian extensions of a number
field or function field in one variable over a finite field. Cyclic extensions have a
distinguished role to play in this theory (e.g. via the Hasse Norm Theorem),
but restricting class field theory to the cyclic case does not make it easier.

Perhaps surprisingly, the positive characteristic case is much more auspicious. If
K is a field of characteristic p > 0, then none of the results of this section de-
scribe cyclic extensions of of K of order a power of p. But in fact there is a very
satisfactory description of these extensions, due to Artin-Schreier and Witt.

9.3. The equation tn − a = 0.

In this section we analyze the structure of the splitting field of a polynomial
tn − a = 0 without assuming that the ground field contains a primitive nth root of
unity. We closely follow [LaFT, §VI.9].

Lemma 9.19. Let F be a field of characteristic p > 0 and a ∈ F× \ F×p. Then
for all n ≥ 1, the polynomial tp

n − a is irreducible.

Proof. We shall prove the contrapositive: suppose that for some n ∈ Z+ the poly-
nomial tp

n −α is reducible; we will show that α is a pth power in F . We may write
tp
n − α = f(t)g(t), where f(t) and g(t) are nonconstant monic polynomials. Let

K/F be an extension field containing a root β of tp
n − α, so that in K[t] we have

tp
n

− α = tp
n

− βp
n

= (t− β)p
n

.
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Since K[t] is a UFD and f(t) and g(t) are monic, we therefore have f(t) = (t− β)r

for some 0 < r < pn. Write r = pms with gcd(p, s) = 1. Note that m < n. Then

f(t) = (tp
m

− βp
m

)s,

so that the coefficient of tp
m(s−1) is −sβpm . This lies in F and – since s 6= 0 in F

– we conclude βp
m ∈ F . Thus

α = (βp
m

)p
n−m
∈ F p

n−m
∈ F p

since m < n. �

Theorem 9.20. Let n ≥ 2, let F be a field, and let a ∈ F×. We suppose:
• For all prime numbers p | n, we have a /∈ F p, and
• If 4 | n, then a /∈ −4F 4.
Then f(t) := tn − a is irreducible in F [t].

Proof. We begin by establishing several special cases.
Step 1: Suppose n = pe is a prime power, a ∈ F \ F p and p is the characteristic of
F . This case is covered by Lemma 9.19.
Step 2: Suppose n = pe is a prime power, a ∈ F \F p and p is not the characteristic
of F . First we claim that tp− a is irreducible. Otherwise, there is some root α ∈ F
of tp − a such that [F (α) : F ] = d < p. Let N denote the norm map from F (α) to
F : since αp = a, we have

N(α)p = N(a) = ad.

Since gcd(d, p) = 1, there are x, y ∈ Z such that xd+ yp = 1, and thus

a = axdaup = (N(α)xau)p ∈ F,

contradiction. Now write

tp − a =

p∏
i=1

(t− αi),

with α1, . . . , αp ∈ F and α1 = α. We may thus also write

tp
e

− a =

p∏
i=1

(tp
e−1

− αi).

Suppose first that α /∈ F (α)p. Let A be root of tp
e−1 − α. If p is odd, then by

induction A has degree pe−1 over F (α) and thus degree pe over F and it follows
that tp

e − a is irreducible. If p = 2, suppose α = −4β4 for some β ∈ F (α). Again
let N be the norm from F (α) to F . Then

−a = N(α) = 16N(β)4,

so −a ∈ F 2. Since p = 2 it follows that
√
−1 ∈ F (α) but α = (

√
−12β2)2, a

contradiction. By induction, A has degree pe over F . So we may assume that there
is β ∈ F (α) such that βp = α. . . .

�

The following is an immediate consequence.

Corollary 9.21. Let p be a prime number, F a field, and a ∈ F \F p. If p is either
odd or equal to the characteristic of F , then for all n ∈ Z+ the polynomial tp

n − a
is irreducible in F [t].
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Let F be a field. Let n be a positive integer that is not divisible by the characteristic
of F , let a ∈ F×, and let K be the splitting field of the separable polynomial p(t) =
tn−a. We address the following question: what is the Galois groupG := Aut(K/F )?
Let α be a root of p(t) in K, so K = (α, ζn). Then an element σ ∈ G is determined
by its action on α and ζn, and we have

σ(α) = ζb(σ)α, b(σ) ∈ Z/nZ,

σ(ζn) = ζd(σ)
n , d(σ) ∈ (Z/nZ)×.

Consider the group

G(n) :=

{[
1 0
b d

]
∈ GL2(Z/nZ)

}
.

The identity [
1 0
0 d

] [
1 0
b 1

] [
1 0
0 d−1

]
=

[
1 0
bd 1

]
.

shows that the subgroup

N =

{[
1 0
b 1

]
∈ GL2(Z/nZ)

}
is normal. It also cyclic of order n, and it follows easily that

G(n) ∼= Z/nZ o (Z/nZ)×,

with the homomorphism given by the canonical isomorphism

ϕ : (Z/nZ)× → AutZ/nZ.

A straightforward computation shows that the commutator subgroup of G(n) is
contained in N ; since G(n)/N ∼= (Z/nZ)× is commutative, N must be the com-
mutator subgroup of G(n). The map σ 7→ d(σ) is precisely the mod n cyclotomic
character, so ζn ∈ F ⇐⇒ G ⊂ N . In general, let Cn ⊂ (Z/nZ)× be the image of

the cyclotomic character, viewed as a subgroup of diagonal matrices

[
1 0
0 d

]
as

above. Then

G ⊂ Z/nZ o Cn.

On the other hand, if p(t) = tn− a is irreducible then K contains F [t]/(p(t)) hence
n | #G. So this gives us the answer in some cases.

Proposition 9.22. Suppose tn − a is irreducible and gcd(n, ϕ(n)) = 1. Then

G ∼= Z/nZ o Cn.

Proof. We know that G is a subgroup of Z/nZ o Cn, of corder n#Cn. As above,
irreducibility implies n | #G. We also have Cn ⊂ G, so #Cn | #G. Since
gcd(n, ϕ(n)) = 1 and #Cn | ϕ(n) = 1, also gcd(n,#Cn) = 1 and thus n#Cn | #G.
It follows that G = Z/nZ o Cn. �

Theorem 9.23. Let n be an odd positive integer prime to the characteristic of F ,
and suppose that [F (ζn) : F ] = ϕ(n): equivalently, the mod n cyclotomic character
is surjective. Let a ∈ F be such that a ∈ F \ F p for all primes p - n. Let K be the
splitting field of tn − a over F , and let G := Aut(K/F ) be its Galois group. Then
G = G(n), and the commutator subgroup of G is Aut(K/F (ζn)).
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Proof. Noe first that since n is odd, by Theorem 9.20 the polynomial tn − a is
irreducible in F . Let α ∈ K be a root, so [F (α) : F ] = n.
Step 1: Suppose n = p is prime. Since gcd(p, ϕ(p)) = gcd(p, p−1) = 1, Proposition
9.22 applies to give G = G(n). The commutator subgroup is N , which is precisely
the set of automorphisms that pointwise fix ζn, so the commutator subgroup is
Aut(K/F (ζn)). (This latter argument holds in the general case.)
Step 2: Now suppose that n is composite; we may write n = pm with p prime.
Since the mod n cyclotomic character is surjective and m | n, also the mod m
cyclotomic character is surjective. Put β := αp, so of course β is a root of tm − a,
and by induction the result applies to tm − a. In particular we have

n = pm = [F (α) : F ] = [F (α) : F (β)][F (β) : F ],

so [F (α) : F (β)] = p. This implies that tp − β is irreducible over F (β): otherwise,
the minimal polynomial of α over F (β) would have degree less than p, contradiction.
Consider the subfield

L := F (α) ∩ F (β, ζn) ⊂ K.
Certainly F (β) ⊂ L. On the other hand, L/F (β) is an abelian extension. On
the other hand, L is also the splitting field of tp − β over F (β), so by Step 1, the
maximal abelian subextension of K/F (β) is F (β, ζp), and thus

L ⊂ F (α) ∩ F (β, ζp) = F (β) :

if it were any larger, then F (α) would contain a nontrivial subextension of F (ζp)/F ,
contradicting [F (ζn) : F ] = ϕ(n). Thus

[F (α, ζn) : F (β, ζn)] = p :

if not, then these fields would be equal and thus

F (β) ⊂ F (α) ⊂ F (β, ζn),

so F (α)/F (β) would be abelian, again contradicting Step 1. An argument identical
to the above but using induction instead of Step 1 shows that

F (ζn) ∩ F (β) = F

and then using Natural Irrationalities we get

[F (β, ζn) : F (β)] = [F (ζn) : F ] = ϕn.

It follows that

[K : F ] = [K : F (β, ζn)][F (β, ζn) : F (ζn)][F (ζn) : F ] = nϕ(n) = #G(n),

so Aut(K/F ) = Gn. The conclusion on commutator subgroups follows. �

Exercise 9.1. a) Let f(t) = x8 − 2 ∈ Q[t]. Show: the splitting field of f is

Q( 8
√

2, ζ4).
b) Observe that f satisfies all of the hypotheses of Theorem 9.23 except that 8 is

not odd, and that the conclusion does not hold: [K : F ] = nϕ(n)
2 , not nϕ(n).

We remark that the essential content content of Theorem 9.23 lies in the assertion
that (under the hypotheses and notation used therein) F (ζn) ∩ F (α) = F , since
by Natural Irrationalities this implies that [F (ζn, α) : F (ζ)] = n. It is also natural
to think in terms of linear disjointness (cf. §12): because F (ζn)/F is Galois, the
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identity F (ζn) ∩ F (α) = F holds iff F (ζn) and F (α) are linearly disjoint over F .
Since this holds iff

F (ζn)⊗F F (α) = F (ζn)[t]/(tn − a)

is a field, another equivalent condition is that the polynomial tn − a remains irre-
ducible over F (ζn). In the situation of the above exercise we have

Q(ζ8) ∩Q(
8
√

2) = Q(
√

2)

and thus the polynomial t8−2, which is irreducible over Q, becomes reducible over
Q(ζ8): indeed we have

t8 − 2 = (t4 −
√

2)(t4 +
√

2).

9.4. Cyclic Extensions II: Artin-Schreier Theory.

9.5. Cyclic Extensions III: Witt’s Theory.

9.6. Abelian Extensions of Exponent n: More Kummer Theory.

9.7. Solvable Extensions I: Simple Solvable Extensions.

9.8. Solvable Extensions II: Solvability by Radicals.

10. Computing Galois Groups

11. Structure of Transcendental Extensions

11.1. Transcendence Bases and Transcendence Degree.

Let K/F be an extension. A finite set S = {x1, . . . , xn} ⊂ K is algebraically
independent over F if for the only polynomial P (t1, . . . , tn) ∈ F [t1, . . . , tn] such
that P (x1, . . . , xn) = 0 is P = 0. An arbitrary set S ⊂ K is algebraically inde-
pendent if all of its finite subsets are algebraically independent. (To be precise,
we must impose some ordering on the elements of S in order to substitute them in
as values of an n-variable polynomial, but the definition is obviously independent
of the chosen ordering.) We say that K/F is purely transcendental if it is of the
form F (S) for some algebraically independent subset S of K.

Proposition 11.1. Let K/F be an extension and S = {xi} be an ordered set of
elements of K. TFAE:
(i) The natural map Φ : F [{ti}]→ K given by ti 7→ xi is an injection.
(ii) The map Φ extends uniquely to an isomorphism F ({ti})→ F (S).
(iii) S is algebraically independent over F .

A subset S of K/F is a transcendence basis if it is algebraically independent
and K/F (S) is algebraic. In other words, a transcendence basis for K/F effects a
decomposition of K/F into a tower K/F (S)/F of a purely transcendental extension
followed by an algebraic extension.

Example: The empty set is – perhaps by definition – always algebraically inde-
pendent. If K/F is algebraic, then the only algebraically independent subset is the
empty set, which is a transcendence basis.
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Lemma 11.2. Let K/F be an extension, S ⊂ K be algebraically independent, and
x ∈ K. Then S∪{x} is algebraically independent iff x is transcendental over F (S).

Proof. f S is an algebraically independent subset and x ∈ K is transcendental
over F (S), then suppose for a contradiction that S ∪ {x} were dependent: i.e.,
there exists finite ordered subset Sn = (x1, . . . , xn) of S and a nonzero polyno-
mial P ∈ F [t1, . . . , tn, tn+1] such that P (x1, . . . , xn, x) = 0. But the transcendence
of x over F (S) implies that the polynomial P (x1, . . . , xn, tn+1) is identically zero,
so that the polynomial Q(t1, . . . , tn) := P (t1, . . . , tn, 0) is not identically zero and
Q(x1, . . . , xn) = 0, contradicting the independence of (x1, . . . , xn). The other di-
rection is even easier. �

Corollary 11.3. a) An algebraically independent subset S of K is a transcendence
basis iff it is not properly contained in any other algebraically independent set.
b) Every algebraically independent subset of K is contained in a transcendence basis.

Proof. Part a) follows immediately from Lemma 11.2: a maximal algebraically
independent set S is precisely one for which K/F (S) is algebraic, i.e., a transcen-
dence basis. Moreover the union of a chain of algebraically independent sets is
algebraically independent, so part b) follows from part a) by Zorn’s Lemma. �

Applying Corollary 11.3 to S = ∅, we deduce that every field extension K/F admits
a transcendence basis.

Exercise X.X.X: Let {xi}i∈S be a transcendence basis for the (nonalgebraic) field
extension K/F . Let n• : S → Z+ be any function. Show that {xnii } is also a
transcendence basis.

Definition: The transcendence degree of a field extension K/F is the mini-
mum cardinality of a transcendence basis. We defer the obvious question – can
there exist two transcendence bases of different cardinalities? – until §X.X.

The transcendence degree of an extension is related to #K and #F as follows:

Proposition 11.4. Let K/F be a transcendental field extension, with transcen-
dence degree κ. Then

#K = max(#F, κ,ℵ0).

Proof. Since K/F is transcendental, K is infinite. Moreover, κ and #F are cardi-
nalities of subsets of K, so clearly #K ≥ max(#F, κ,ℵ0). Conversely, let S be a
transcendence basis; then F (S) has cardinality max(#, κ) and K/F (S) is algebraic
and F (S) is infinite, so #K = #F (S). �

11.2. Applications to Algebraically Closed Fields.

Theorem 11.5. (Automorphism extension theorem) Let K be an extension of F ,
with K algebraically closed. Then every automorphism of F can be extended to at
least one automorphism of K.

Proof. Let {xi}i∈S be a transcendence basis for K/F . There is a unique automor-
phism of F (S) which extends ι and maps each xi to itself. Since K is the algebraic
closure of F (S), by Corollary XX we can further extend to an automorphism of
K. �
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For any field K, let F be its prime subfield. An absolute transcendence basis
for K is a transcendence basis for K/F .

Corollary 11.6. a) Two algebraically closed fields K1 and K2 are isomorphic iff
they have the same characteristic and the same absolute transcendence degree.
b) Suppose K1, K2 are two algebraically closed fields of the same characteristic and
#K1 = #K2 is uncountable. Then K1

∼= K2.

Proof. Evidently any pair of isomorphic fields K1
∼= K2 have the same characteristic

and absolute transcendence degree. If K1 is algebraically closed with prime subfield
F and transcendence degree κ, then for a set S of indeterminates of cardinality
κ, then K1 is isomorphic to the algebraic closure of F(S), which shows that the
characteristic and the absolute transcendence degree determine the isomorphism
class of an algebraically closed field. Proposition ?? implies that the absolute
transcendence degree of any uncountable field is equal to its cardinality, and part
b) then follows immediately from part a). �

Remark: The fact that any two algebraically closed fields of given cardinality and,
say, continuum cardinality, are isomorphic has important applications in model the-
ory: via the Tarski-Vaught test, it shows that the first order theory of algebraically
closed fields of a given characteristic is complete.

Theorem 11.7. Let K/F be an extension of fields, of transcendence degree κ.
TFAE:
(i) For any extension field K ′ of F with transcendence degree κ′ ≤ κ, there exists
an F -algebra embedding K ′ ↪→ K.
(ii) K is algebraically closed.

Exercise X.X.X: Prove Theorem X.X.

Theorem 11.8. Let K be an algebraically closed field. The group Aut(K) of all
automorphisms of K has cardinality 2#K .

Proof. Step 0: Note that 2#K is also the cardinality of the set of all functions from
K to K, so is the largest conceivable value of # Aut(K).

Step 1: We must check the result for Fp and Q. In the former case we have identified

the automorphism group as Ẑ, which indeed has cardinality c = 2ℵ0 = 2#Fp . In the
latter case we can by no means “identify” Aut(Q), but to see that it has continuum
cardinality it suffices, by the automorphism extension theorem, to exhibit a simpler
Galois extension K/Q which has continuum cardinality. Indeed one can take K to
be quadratic closure of Q, i.e., the compositum of all quadratic field extensions of
Q. The automorphism group here is (Z/2Z)ℵ0 = c.

Step 2: By the automorphism extension theorem, the cardinality of the automor-
phism group of any algebraically closed field is at least that of the continuum, which
by Step 0 gives the answer for all countable fields, i.e., for all fields of countable
absolute transcendence degree.

Step 3: Otherwise K is uncountable so there exists an absolute transcendence
basis S with #S = #K. Now the natural action of Sym(S) on S gives rise to an
injection Sym(S) ↪→ Aut(F(S)), i.e., by permutation of indeterminates. By the au-
tomorphism extension theorem, this shows that # Aut(K) ≥ # Sym(S) = 2#S . �
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Corollary 11.9. Suppose K/F is an extension with K algebraically closed. Then
KAut(K/F ) is the purely inseparable closure of F in K. In particular, KAut(K/F ) =
F iff F is perfect.

Proof. If x lies in the purely inseparable closure of F in K, then for some e ∈ Z+,
xp

e ∈ F . Since x has no Galois conjugates, we must have σ(x) = x for every
σ ∈ Aut(K/F ). Let F be the algebraic closure of F in K. By the usual Galois

theory we have F
Aut(F/F )

is the purely inseparable closure of F in F , and by the
automorphism extension theorem we conclude that KAut(K/F ) ∩ F is the purely
inseparable closure of F in K. If x ∈ K is transcendental over F , then by Theorem
X.X.X there exists an ordered transcendence basis S = (x, {xα}) containing x. By
Exercise X.X.X, S′ = (x2, {xα}) is also a transcendence basis hence there exists
an automorphism F (S) → F (S′) sending x 7→ x2, which, as usual, extends to an
F -algebra automorphism σ of K with σ(x) = x2 6= x. �

Another fact which is true about automorphism groups of algebraically closed field
extensions K/F is that any bijection ϕ between algebraically independent subsets
I and I ′ of K extends to an F -automorphism of F . For this it is necessary and
sufficient that ϕ extend to a bijection on transcendence bases S ⊃ I, S′ ⊃ I ′. A
moment’s thought shows that this holds provided that all transcendence bases of
K/F have the same cardinality and need not hold otherwise. This brings us to the
next section.

11.3. An Axiomatic Approach to Independence.

We wish to prove the following result.

Theorem 11.10. Let K/F be a field extension. Then any two transcendence bases
for K/F have the same cardinality, so that the transcendence degree of K/F is the
cardinality of any transcendence basis.

Of course this is strikingly similar to the situation in ordinary linear algebra. We
could therefore go back to our linear algebra texts, consult the proof of the car-
dinality independence of bases in vector spaces, and attempt to mimic it in the
present context. This approach will succeed. Of course in order to do this we will
have to find some sort of precise analogy between linear independence and alge-
braic independence. In mathematics, once we determine that situations A and B
are analogous (to the extent that certain proofs can be carried over from one con-
text to the other), do we just dutifully copy down the similar proofs and keep the
analogy in the back of our mind in case we need it later? Depending on taste, this
is a reasonable approach to take, perhaps more reasonable for the mind which is
able to quickly remember what it once knew. As for myself, I would at the same
time worry that it would take me some time and energy to recreate the analogy if
I hadn’t written it down, and I would also be curious whether A and B might be
common instances of a more general construction that it might be interesting or
useful to know explicitly. So we shall follow the second course here, with apologies
to those with different tastes.

Let us begin by placing alongside the analogies between linear independence of
a subset S of an F -vector space V and algebraic independence of a subset S of an
F -algebra K.
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In both contexts we have a set, say X, and a collection of subsets S of X that
we are calling independent, subject to:

(LI1) The empty set is independent.
(LI2) A set is independent iff all its finite subsets are independent.
(LI3) Any subset of an independent set is independent.

Notice that it follows from (LI2) and (LI3) that the union S =
⋃
i Si of any chain

of independent subsets is independent: if not, there would exist a finite dependent
subset S′ of S, but S′ would have to be a subset of some Si, contradicting the
independence of Si. Combining this with (LI1) and aplying Zorn’s Lemma, we get

(A) Maximal independent sets exist, and every independent set is contained in
some maximal independent set.

Could it be that (LI1) through (LI3) imply the following desirable property?

(B) All maximal independent sets have the same cardinality.

Unfortunately this is not the case. Suppose we have a set X which is partitioned
into disjoint subsets:

X =
∐
i

X.

Call a subset S ⊂ X independent iff it is contained in Xi for some i. Then (LI1)
through (LI3) are satisfied and the maximal independent sets are simply the Xi’s,
which we are evidently not entitled to conclude have the same cardinality.

So we need another axiom. Consider the following:

(LI4) If S1 and S2 are independent subsets of X with #S1 < #S2, then there
exists x ∈ X \ S1 such that S1

⋃
{x} is independent.

A set X equipped with a family of subsets {Si} satisfying axioms (LI1) through
(LI4) is called an independence space.

In an independence space, if S1 and S2 are independent sets with #S1 < #S2,
then S1 is non-maximal. Therefore a maximal independent set has cardinality at
least as large as any other independent set, so by symmetry all maximal indepen-
dent sets have the same cardinality: independence spaces satisfy (B). Conversely,
(LI1) through (LI3) and (B) clearly imply (LI4).

In this new language, Theorem 11.10 takes the form

Theorem 11.11. If K/F is a field extension, then the collection of algebraically
independent subsets of K is an independence space.

Unfortunately it is not so obvious how to show that the collection of algebraically
independent subsets of K satisfies (LI4). So let us try a different approach, in terms
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of something called spanning sets. We notice that to each subset S of a vector space
its linear span S gives an abstract closure operator: namely we have

(CL1) S ⊂ S
(CL2) S ⊂ S′ =⇒ S ⊂ S′

(CL3) S = S.

But the linear span satisfies two other properties, the first of which is not sur-
prising in view of what has come before:

(SO4) if x ∈ S, there exists a finite subset S′ ⊂ S such that x ∈ S′.

Famously, linear span also satisfies the following Exchange Lemma:12

(SO5) If y ∈ S ∪ x and y is not in S, then x ∈ S ∪ y.

(Proof: If y ∈ S ∪ x, there exist s1, . . . , sn ∈ S and scalars a1, . . . , an, a such
that y = a1s1 + . . . + ansn + ax. If y is not in the span of S, then a 6= 0, so
x = y − −a1a s1 + . . .+ −an

a sn ∈ S ∪ y.)

Now, suppose K/F is a field extension and S is a subset of K. We will define
S to be the algebraic closure of F (S) in K. It is immediate that this “algebraic
closure” operator satisfies (SO1) through (SO4). Let us check that it also satisfies
(SO5): suppose y ∈ S ∪ x and y is not in the algebraic closure of S. Then there
exists a finite subset x1, . . . , xn of S such that y is algebraic over F (x1, . . . , xn, x):
i.e., there exists a polynomial f(t1, . . . , tn, tn+1, tn+2) with F -coefficients such that
f(x1, . . . , xn, x, tn+2) 6= 0 and f(x1, . . . , xn, x, y) = 0. Writing

f(x1, . . . , xn, tn+1, tn+1) =

g∑
i=0

Ai(x1, . . . , xn, tn+2)tin+1,

observe that not all the polynomials Ai(x1, . . . , xn, tn+2) can be zero. Since y is
not algebraic over F (S), it follows that not all of the elements A(x1, . . . , xn, y) are
zero, and therefore f(x1, . . . , xn, tn+1, tn+1, y) 6= 0. Since f(x1, . . . , xn, x, y) = 0, it
follows that x is algebraic over F (S, y) as asserted.

Suppose again that X is any set equipped with a spanning operator S 7→ S,
i.e., an operator satisfying the three closure axioms (CL1) through (CL3) and also
(CL4) and (CL5). A subset S of X is a spanning set if S = X. A subset S of

X is independent if for all s ∈ S, s is not in S \ s. A basis is an independent
spanning set.

Note that it is immediate to show that the independent sets for a spanning op-
erator satisfy (LI1) through (LI3). In particular, we have (A), that bases exist and
any independent set is contained in a basis. Again it is not obvious that (LI4) is
satisfied. Rather we will show (B) directly – which is what we really want anyway

12This is an absolutely prototypical example of a lemma: the exchange lemma is the essential

kernel of content in the theory of linearly independence, and yet it is itself not very memorable or
appealing, so is doomed to be overshadowed by the figurehead theorems that it easily implies.
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– and by the above remarks that implies (LI4).

In the following results X is always a set equipped with a spanning operator S 7→ S.

Proposition 11.12. For a subset S ⊂ X, TFAE:
(i) S is a minimal spanning set of X.
(ii) S is a maximal independent set of X.
(iii) S is a basis.

Proof. (This is the usual thing.) (i) =⇒ (iii): Suppose S is minimal spanning

but not dependent; then by definition there exists s ∈ S such that x ∈ S \ s), so

that S \ s, being a closed set containing S, also contains the closure of S, i.e., X,
and we found a smaller spanning set. (iii) =⇒ (ii): if S is a basis and S ∪ {x}
is independent then x does not lie in S which is absurd since S is a spanning set.
(ii) =⇒ (i) is similar: if S were a maximal independent set but not a spanning
set, then there exists x ∈ X \ S and then S ∪ {x} is independent. �

Theorem 11.13. Let S be an independent subset of X and T a spanning set.
There exists a subset T ′ ⊂ T such that S ∪ T ′ is a basis and S ∩ T ′ = ∅.

Proof. Let I be the collection of all subsets T ′ of T such that S ∩ T ′ = ∅ and
S ∪ T ′ is indepdendent. Observe that ∅ ∈ I, so I is not itself empty. As usual,
I is closed under unions of increasing chains so by Zorn’s Lemma has a maximal
element T ′. Let x ∈ T , and suppose that x is not in S ∪ T ′. Then T ′′ := T ′ ∪ {x}
is a strictly larger subset of T such that S ∪ T ′′ is still independent, contradicting
the maximality of T ′. Therefore

X = T ⊃ S ∪ T ′ = S ∪ T ′,
so S ∪ T ′ is a basis. �

Corollary 11.14. If X admits a finite spanning set, it admits a finite basis.

Proof. Apply Theorem 11.13 with S = ∅. �

Theorem 11.15. Any two bases B, B′ of X have the same cardinality.

Proof. Case 1: Suppose B = {x1, . . . , xn} is a finite basis, and let B′ be any other
basis. Let m = #B ∩ B′. If m = n then B ⊂ B′ and by Proposition 11.12
distinct bases are at least incomparable, so B = B′. So suppose (WLOG) that
B ∩ B′ = {x1, . . . , xm} with m < n. The set B \ xm+1 cannot be a spanning set,

whereas B′ is, so there exists y ∈ B′B \ xm+1. The set B1 := (B\xm+1)∪y is inde-

pendent. By the Exchange Lemma (SO5), xm+1 ∈ (B1). Hence B ⊂ B1, and since
B is a spanning set, so is B1. Thus B1 is a basis. Notice that B1 has n elements
and also {x1, . . . , xm, y} ⊂ B1 ∩ B′, so that we have replaced B by another basis
of the same cardinality and sharing at least one more element with B′. Repeating
this procedure will produce a finite sequence of bases B2, B3, each of cardinality n,
such that the last basis Bk is contained in, and thus equal to, B′.

Case 2: We may now suppose that B and B′ are both infinite. For every x ∈ X,
we claim the existence of a subset Ex with the property that x ∈ Ex and for any
subset E of B such that x ∈ E, Ex ⊂ E. Assuming the claim for the moment,
we complete the proof. Consider the subset S =

⋃
x∈B′ Ex of B. Since each Ex
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is finite, #S ≤ #B′. On the other hand, for all x ∈ B′, x ∈ Ex ⊂ S, so B′ ⊂ S
and therefore S ⊃ B′ = X. Therefore S is a spanning subset of the basis B, so
S = B and thus #B ≤ #B′. By reversing the roles of B and B′ in the argument
we conclude #B = #B′.

It remains to prove the claim on the existence of Ex. In turn we claim that if
E′ and E′′ are two subsets of B such that x ∈ E′ ∩ E′′ and x is not in the span
of any proper subset of E′, then E′ ⊂ E′′; this certainly suffices. Assuming to the
contrary that there exists y ∈ E′ \E′′. Then x is not in the span of E′ \ y and is in
the span of (E′ \ y) ∪ y, so by (SO5) y is in the span of (E′ \ y) ∪ x. Since x is in
the span of E′′, we get that y is in the span of (E′ \ y) ∪ E′′. But this contradicts
the fact that the (E′ \ y)cupE′′ ∪ {y}, being a subset of B, is independent. �

Remark: A set X endowed with a spanning operator as above is often called a
finitary matroid. (The word “finitary” refers to (SO4).) Combinatoricists are es-
pecially interested in finite matroids, which includes the class of finite-dimensional
vector spaces over finite fields but not that of independent subsets of a field exten-
sion (except in the trivial case of an algebraic field extension).

For future reference, for a field extension L/K, we will refer to the matroid with
sets the subsets of L, spanning operator S 7→ S the algebraic closure of K(S) in
L and (it follows) with independent sets the algebraically independent subsets the
transcendence matroid of L/K.

We saw above how to go from a finitary matroid to an independence space, namely
by decreeing a subset S ⊂ X to be dependent if there exists x ∈ S such that
x ∈ S \ x. Conversely, to every independence space we can associate a finitary
matroid: define the span Y of a subset Y to be the set of x ∈ X such that S ∪ x
is dependent. This complete equivalence between concepts of linear independence
and spanning seems a bit unexpected, even in the context of vector spaces.

For finite matroids, combinatorialists know at least half a dozen other equivalent
axiomatic systems: e.g. in terms of graphs, circuits, “flat” subspaces and pro-
jective geometry. As above, demonstrating the equivalence of any two of these
systems is not as easy as one might expect. This phenomenon of multiple nonob-
viously equivalent axiomatizations has been referred to, especially by G. Rota, as
cryptomorphism. Of course every twenty-first century student of mathematics
has encountered crytomorphism (although it seems that the multiplicity is espe-
cially large for finite matroids!). In several essays, Rota saw cryptomorphism as a
warning not to take any particular axiomatization of a theory or structure too seri-
ously. This seems fair, but since the different axiomatizations can lead to different
and possibly easier proofs, perhaps it should also be viewed as an instance of the
inherent richness of mathematical concepts.

11.4. More on Transcendence Degrees.

Proposition 11.16. Let L/K be a field extension and T a subset of L such that
L = K(T ). Then trdeg(L/K) ≤ #T .

Proof. In the transcendence matroid of L/K, T is a spanning set. According to
Theorem 11.13 with S = ∅, some subset T ′ of T is a basis for the matroid, i.e., a
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transcendence basis for L/K. Thus

trdeg(L/K) = #T ′ ≤ #T.

�

Theorem 11.17. Let F ⊂ K ⊂ L be a tower of field extensions.
a) If {xi}i∈I is a transcendence basis for K/F and {yj}j∈J is a transcendence basis
for L/K, then {xi, yj} is a transcendence basis for L/F .
b) We have trdeg(L/F ) = trdeg(L/K) + trdeg(K/F ).

Proof. a) We first show that {xi, yj} is an algebraically independent set. Choose
any finite subsets of {xi} and {yj}: for ease of notation, we rename the elements
x1, . . . , xm, y1, . . . , yn. Suppose there exists a polynomial P ∈ F [t1, . . . , tm+n] such
that P (x1, . . . , xm, y1, . . . , yn) = 0. Put Q(t1, . . . , tn) = P (x1, . . . , xm, t1, . . . , tn) ∈
K[t]. Then Q(y1, . . . , yn) = 0 implies Q(t1, . . . , tn) = 0. Each coefficient of this
polynomial is a polynomial expression in x1, . . . , xm with F -coefficients, and the
algebraic independence of the xi’s implies that each of these coefficients is equal
to 0. Thus P = 0. Let K0 = F ({xi}), so K/K0 is algebraic. Let L0 = K({yj},
so L/L0 is algebraic. Let z ∈ L. Then z satisfies a polynomial equation with
coefficients in L0. Since K/K0 is algebraic, z also satisfies a polynomial equation
with coefficients in K0({yj}) = F ({xi, yj}).
b) By part a), {xi, yj} is a transcendence basis for L/F , of cardinality #I + #J =
trdeg(K/F ) + trdeg(L/K). �

Exercise: Let M/F be a field extension, and let K,L be subextensions of M/F .
Suppose K/F is finite and L/F is purely transcendental. Show [LK : L] = [K : F ].
(Suggestion: reduce to the case K = F [t]/(p(t)) and L = F (t). An idea for this
case is that if the polynomial p(t) factors over F (t), then by taking t = a for a ∈ F
we get a factorization over F . One has to be a little careful here in order to avoid
values a which make the denominator of one of the rational functions equal to 0.)13

Theorem 11.18. For F ⊂ K ⊂ L be a tower of field extensions, TFAE:
(i) K/F and L/K are both finitely generated.
(ii) L/F is finitely generated.

Proof. (i) =⇒ (ii): If K = F (x1, . . . , xm) and L = K(y1, . . . , yn), then L =
F (x1, . . . , xm, y1, . . . , yn).
(ii) =⇒ (i): It is immediate that if L/F is finitely generated then so is L/K
for any subextension K of L/F : any finite generating set for L/F is also a finite
generating set for L/K. Let z1, . . . , ze be a transcendence basis for K/F . Then
F (z1, . . . , ze)/F is finitely generated, so it suffices to show that the algebraic ex-
tension K/F (z1, . . . , ze) is finitely generated. Moreover, L/F (z1, . . . , ze) is finitely
generated, so it is enough to prove the result with F (z1, . . . , ze) in place of F and
thus we may assume that K/F is algebraic.

We are thus reduced to showing: if L/K(t1, . . . , tn) is a finite extension of a
rational function field and K/F is an algebraic extension, then L/F finitely gen-
erated implies K/F finitely generated – or, equivalently since K/F is algebraic –
that K/F is finite. But suppose not: then for all d ∈ Z+ there exists a subex-
tension Kd of K/F such that [Kd : F ] ≥ d. By the preceding exercise we have

13This result will become much more clear following our later discussion of linear disjoint-
ness. The reader may prefer to defer the exercise until then.
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[Kd(t1, . . . , tn) : F (t1, . . . , tn)] = [Kd : F ] ≥ n. Thus L/F (t1, . . . , tn) is an algebraic
extension but

[L : F (t1, . . . , tn)] ≥ [K(t1, . . . , tn) : F (t1, . . . , tn) ≥ ℵ0,

so it is algebraic of infinite degree, hence not finitely generated: contradiction! �

Exercise: Let k be any field. Consider the polynomial ring R = k[x, y]: note that it
is finitely generated as a k-algebra. Show that there is a k-subalgebra of R which is
not finitely generated. (Thus Theorem 11.18 exhibits a property of field extensions
without analogue in the study of commutative rings.)

12. Linear Disjointness

12.1. Definition and First Properties.

Let E/F be a field extension, and let R,S be F -subalgebras of E. We say that R
and S are F-linearly disjoint in E if the canonical map R⊗F S → E is injective.
(If the ambient field E is understood, we will just say that R,S are F -linearly
disjoint, or that they are linearly disjoint over F. In fact the depenence on E is
often suppressed, for reasons that will be explored soon enough.)

Lemma 12.1. Let E/F be a field extension, and let K,L be subextensions of finite
degree over F . Then K and L are linearly disjoint over F iff
[KL : F ] = [K : F ][L : F ].

Proof. The canonical map τ : K ⊗F L→ KL is always surjective. Since its source
and target are both finite-dimensional F -vector spaces, τ is injective iff

[K : F ][L : F ] = dimF K ⊗F L = dimF LK. �

Exercise 12.1. Let K,L be finite degree extensions of a field F of coprime degrees.
Show: K,L are F -linearly disjoint.

Lemma 12.2. If R,S are F -linearly disjoint in E, then R ∩ S = F .

Proof. By contraposition: suppose there exists u ∈ (R ∩ S) \ F . We may then
choose F -bases A of R and B of S such that {1, u} ⊂ A ∩ B. The elements 1 ⊗ u
and u ⊗ 1 are then F -linearly independent in R ⊗F S but under ι : R ⊗F S → E
they both get mapped to u, so ι is not injective. �

Exercise 12.2. a) Let F = Q and E = C. Show that K = Q( 3
√

2) and L =

Q(e
2πi
3

3
√

2) are not linearly disjoint over F , even though K ∩ L = F .
b) Try to generalize the result of part a), for instance as follows: if K/F is alge-
braic and not normal, then inside any algebraic closure E of K there exists a field
extension L/F such that K ∩ L = F but K,L are not F -linearly disjoint in E.

Exercise 12.3. Let R,S be F -subalgebras of E/F . Show: the following are equiv-
alent:
(i) R and S are linearly disjoint over F .
(ii) For all F -linearly independent subsets {ai}i∈I of R and {bj}j∈J of S, {aibj}(i,j)∈I×J
is F -linearly independent in E.
(iii) For all positive integers m and n, if a1, . . . , am are F -linearly independent in R
and b1, . . . , bn are F -linearly independent in S, then a1b1, . . . , am, b1, a2b1, . . . , ambn
are F -linearly indpendent in E.
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Exercise 12.4. (Linear disjointness is preserved by direct limits) Let R be an
F -subalgebra of E/F . Suppose R = lim−→Ri is a direct limit of a family {Ri}i∈I of

F -subalgebras. Show: for any F -subalgebra S of E/F , R and S are linearly disjoint
iff for all i ∈ I, Ri and S are linearly disjoint.

Exercise 12.5. Suppose R,S are linearly disjoint subalgebras of E/F . Let R′ ⊂ R
and S′ ⊂ S be F -subalgebras. Show: R′ and S′ are linearly disjoint over F .

Lemma 12.3. Two subalgebras R and S of E/F are linearly disjoint over F iff
the subfields they generate, say K and L, are linearly disjoint over F .

Proof. Suppose that R and S are linearly disjoint over F . It is enough to show that
if k1, . . . , km are F -linearly independent elements of K and l1, . . . , ln are F -linearly
independent elements of L, then {kilj}1≤i≤m,1≤j≤n are F -linearly independent in
E. There exist a, a1, . . . , am ∈ R such that ki = ai

a for all i, and simiarly there

exist b, b1, . . . , bn ∈ S such that lj =
bj
b for all j. Then if αij ∈ F is such that∑

i,j αij
aibj
ab = 0, then multiplying by ab gives

∑
i,j αijaibj = 0, and by assumption

αij = 0 for all i and j.
The converse is immediate from Exercise 12.5. �

Thus it is no loss of generality to speak of linear disjointness of subfields of E/F ,
but it is often convenient to phrase things in terms of subdomains of these fields.

Proposition 12.4. Let K,L be subextensions of a field extension L/F . TFAE:
(i) K and L are linearly disjoint over F .
(ii) Every F -linearly independent subset S of K is L-linearly independent in E.
(ii′) Every F -linearly independent subset T of L is K-linearly independent in E.
(iii) There is an F -basis A of K which is L-linearly independent as a subset of E.
(iii′) There is an F -basis B of L which is K-linearly independent as a subset of E.

Proof. (i) =⇒ (ii): Let A be F -linearly independent in K. Consider any finite
subset of elements of A, say k1, . . . , kn, and let β1, . . . , βn ∈ L be such that

(13) β1k1 + . . .+ βnkn = 0.

Choose an F -basis {lj}j∈J for L, so that there are unique αij ∈ F such that for all
i, βi =

∑
j αij lj . Substituting this into (13) gives∑

i,j

αijkilj = 0.

By Exercise 12.3 this forces αij = 0 for all i, j and thus βj = 0 for all k, so the ki’s
are L-linearly independent.
(i) =⇒ (ii′): The above proof works with the roles of K and L reversed.
(ii) =⇒ (i): By Exercise 12.3, it is enough to fix m,n ∈ Z+ let k1, . . . , km
be F -linearly independent elements of K and l1, . . . , ln be F -linearly independent
elements of L and show that {kilj} are F -linearly independent elements of E.
Suppose that αij ∈ F are such that

∑
i,j αijkilj = 0. But we may rewrite this as

(α11l1 + . . .+ α1nln)k1 + . . .+ (αm1l1 + . . .+ αmnln)km = 0.

By hypothesis the ki’s are L-linearly independent, so this forces all the coefficients
of the above equation to be equal to zero, which in turn, since the lj ’s are F -linearly
independent, forces all the αij ’s to be zero.
(ii′) =⇒ (i) in the same way.
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(ii) =⇒ (iii) and (ii′) =⇒ (iii′) are immediate.
(iii) =⇒ (ii): Let S be an F -linearly independent subset of K, and complete it
to a basis A′ of K. Let ϕ : A′ → A be a bijection and Φ the induced F -linear
automorphism of K. Suppose that A′ is not L-linearly independent, i.e., there
exists a finite subset a′1, . . . , a

′
n of A’ and β1, . . . , βn ∈ L, not all zero, such that∑

i βia
′
i = 0. Applying Φ to this relation gives

∑
i βiai = 0, so that A is not L-

linearly independent, contradiction. Thus A′ is L-linearly independent independent
and a fortiori so is its subset S.
(iii′) =⇒ (ii′) in the same way. �

Remark: Some source take condition (ii) of Proposition 12.4 to be the definition
of linear disjointness. This has the advantage of not requiring any knowledge of
tensor products on the part of the reader. All the other advantages, however, seem
to lie with the tensor product definition. For instance, it is clearly symmetric with
respect to K and L.

Exercise 12.6. Let K,L be subfields of E/F , and let R be an F -subalgebra of K
with fraction field K. Suppose that there exists a K-basis of R which is L-linearly
independent in E. Show that K,L are F -linearly disjoint in E.

Proposition 12.5. Let E1, E2 be subextensions of E/F and K1 a subextension of
E1/F . Then E1, E2 are linearly disjoint over F if and only if:
(i) K1, E2 are linearly disjoint over F , and
(ii) K1E2, E1 are linearly disjoint over K1.

Proof. JacobsonII, p. 526. �

12.2. Intrinsic Nature of Linear Disjointness.

The definiton of linear disjointness is initially hard to process because it involves
four different algebras. In fact the dependence of the definition on the “ambient”
field E is in many cases rather weak. One easy of instance of this is given in the
following exercise.

Exercise 12.7. Let K,L be subextensions of a field extension E/F , and let E′/E
be any field extension. Show: K,L are F -linearly disjoint as subfields of E iff they
are F -linearly disjoint as subfields of E′.

We now look more deeply into the dependence on the ambient field E, following
a MathOverflow discussion led by Andrew Critch. Let F be a field, and let K,L
be field extensions of F . We say that K,L are somewhere linearly disjoint
over F if there exists a field extension E/F and F -algebra embeddings of K and
L into E such that K,L are F -linearly disjoint in E. Further, we say that K,L
are everywhere linearly disjoint over F if for all field extensions E/F and all
F -algebra embeddings of K,L into E, K,L are F -linearly disjoint in E.

Certainly we want everywhere linearly disjoint over F to imply somewhere lin-
early disjoint over F . To see this there is a minor technicality to be disposed of,
which is treated in the next exercise.

Exercise 12.8. a) Let F be a field and K,L be field extensions of F . Show: there
exists a field extension E and F -algebra embeddings of K and L into E. Show
that for instance one may take E to be any algebraically closed field such that
trdeg(E/F ) ≥ max trdeg(K/F ), trdeg(L/F ).
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b) Deduce: if K,L are everywhere linearly disjoint over F then they are somewhere
linearly disjoint over F .

Exercise 12.9. Let F be any field, and put K = L = F (t).
a) Take E = F (t) to show that K,L are not everywhere linearly disjoint.
b) Take E = F (a, b) (rational function field in two variables) to show that K and
L are somewhere linearly disjoint.

Proposition 12.6. Let F be a field, and let K and L be field extensions of F .
TFAE:
(i) K,L are somewhere F -linearly disjoint.
(ii) The tensor product K ⊗F L is a domain.

Proof. If K ⊗F L can be embedded into a field, then it is a domain. Conversely, if
K ⊗F L is a domain, it can be embedded into its fraction field. �

Corollary 12.7. Let F be a field, K,L be field extensions of F and R an F -
subalgebra of K which is a domain. Then K,L are somewhere F -linearly disjoint
iff R⊗K L is a domain.

Proof. By Proposition 12.6, K,L are somewhere F -linearly disjoint iff K ⊗F L is a
domain. If it is, then the subring R ⊗F L is also a domain. Conversely, if R ⊗F L
is a domain, then taking E to be its fraction field shows that K,L are somewhere
F -linearly disjoint. �

Proposition 12.8. Let F be a field, and let K and L be field extensions of F .
TFAE:
(i) K,L are everywhere F -linearly disjoint.
(ii) K ⊗F L is a field.

Proof. (i) =⇒ (ii): In order to show that the (evidently nonzero, since it contains
F ) ring R = K ⊗F L is a field, it suffices to show that the only maximal ideal is
(0). So let m be a maximal ideal of R. Then E = R/m is a field extension of K,L
and the induced map K ⊗F L→ E is precisely the quotient map R→ R/m. Since
this map is injective, m = (0).
(ii) =⇒ (i): If R = K ⊗F L is a field, then every homomorphism into a nonzero
ring – and in particular, any F -algebra homomorphism – is injective. �

Theorem 12.9. Let K,L be field extensions of F .
a) Suppose that K,L are everywhere F -linearly disjoint. Then at least one of K,L
is algebraic over F .
b) Conversely, suppose that at least one of K,L is algebraic over F . Then K,L are
somewhere F -linearly disjoint iff they are everywhere F -linearly disjoint.

Proof. a) If K and L are transcendental over F , then they admit subextensions
K ′ = F (a), L′ = F (b). By Exercise 12.5, it suffices to show that F (a) and F (b)
are not everywhere F -linearly disjoint over F . To see this take E = F (t) and map
K ′ → E by a 7→ t and L′ → E by b 7→ t and apply Lemma 12.2.
b) Because every algebraic extension is a direct limit of finite extensions, by Ex-
ercise 12.4 it is no loss of generality to assume that K/F is finite, and in light of
Propositions 12.6 and 12.8, we must show that if K ⊗F L is a domain then it is a
field. But if {k1, . . . , kn} is a basis for K/F , then k1 ⊗ 1, . . . , kn ⊗ 1 is a basis for
K⊗F L over L, so K⊗F L is a domain and a finitely generated L-module. Therefore
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it is a field, by an elementary argument which we have seen before (and which is a
special case of the preservation of Krull dimension in an integral extension). �

In conclusion: the notion of F -linear disjointness of two field extensions K,L is in-
trinsic – independent of the embeddings into E – iff at least one of K,L is algebraic
over F . In most of our applications of linear disjointness this hypothesis will be
satisfied, and when it is we may safely omit mention of the ambient field E.

Here is a first result with our new convention in force.

Theorem 12.10. Let K/F be purely transcendental and L/F be algebraic. Then
K,L are F -linearly disjoint.

Proof. By Exercise 12.4 and Lemma 12.3 it is enough to show that for all n ∈ Z+,
F [x1, . . . , xn], L are F -linearly disjoint. By Corollary 4.5, this holds iff F [x1, . . . , xn]⊗F
L is a domain. It is clear that the F -basis of F [x1, . . . , xn] consisting of monomi-
als remains L-linearly independent in L[x1, . . . , xn] and by Proposition 12.4 this
implies that F [x1, . . . , xn] and L are F -linearly disjoint. In particular, the natural
map F [x1, . . . , xn]⊗K L→ L[x1, . . . , xn] is an isomorphism of L-algebras. �

Theorem 12.11. Let K,L be two field extensions of F with K/F purely transcen-
dental. Then K ⊗F L is a domain.

Proof. The F -algebra K ⊗F L is the direct limit of the F -algebras Ki ⊗F Li as
Ki ranges over finitely generated subextensions of K/F and Li ranges over finitely
generated subextensions of L/F . Since the direct limit of domains is a domain, we
have reduced to the case in which K and L are finitely generated over F , say E2 =
F (s1, . . . , sm), and E1 = F (t1, . . . , tn, x1, . . . , xp), where the ti’s are independent in-
determinates over F and for all 1 ≤ k ≤ p, F (t1, . . . , tn, x1, . . . , xk)/F (t1, . . . , tn, x1, . . . , xk−1)
has finite degree. Put K1 = F (t1, . . . , tn). Let E be the algebraic closure of the
fraction field of F [s1, . . . , sm] ⊗F F [t1, . . . , tn]. We may embed E2 and L in E,
and then E2 and K1 are linearly disjoint over F . Since K1E2/K1 is purely tran-
scendental and E1/K1 is algebraic, by Theorem 12.14 K1E2 and E1 are linearly
disjoint over K1. By Proposition 12.5, E1 and E2 are linearly disjoint over F , hence
E1 ⊗F E2 is a domain. �

A field extension K/F is regular if it satisfies the conclusion of Theorem 12.11:
that is K ⊗F L is a domain for all field extensions L/F . Thus purely transcenden-
tal extensions are regular, whereas nontrivial algebraic extensions are not regular.
Later we will give a characterization of regular extensions.

12.3. Linear Disjointness and Normality.

Proposition 12.12. Let E/F be a field extension, and let K,L be two finite degree
subextensions, with K/F and L/F both Galois extensions. Then K,L are F -linearly
disjoint [in E, but by Theorem 12.9 this does not matter] iff K ∩ L = F .

Proof. The forward direction holds for any pair of subextensions by Lemma 12.2.
Conversely, assume K ∩L = F . The image of K⊗F L in E is the compositum KL,
which is finite Galois over F since normality, separability and finiteness of degree are
all preserved by finite composita. Let d = [KL : F ], dK = [K : F ] and dL = [L : F ].
We have a surjective F -linear map ι : K⊗F L→ KL between two finite-dimensional
F -vector spaces, so ι is injective iff [KL : F ] = [K ⊗F L : F ] = dKdL. Let
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HK = Aut(KL/K) and HL = Aut(KL/L). Since K/F and L/F are Galois, HK

and HL are normal in G = Aut(L/K). Moreover, since KL is the compositum of
(KL)HK and (KL)HL , KL = KLHK∩HL , i.e., HK ∩HL = {e}. Therefore HKHL

is a subgroup of G, the internal direct product of HK and HL. Moreover,

F = K ∩ L = (KL)HK ∩ (KL)HL = KL〈HK ,HL〉 = KLHKHL ,

so HKHL = G. It follows that G = HK ×HL and therefore

d = #G = #HK#HL =
d

dK

d

dL

and thus [K ⊗ L : F ] = dKdL = d = [KL : F ]. �

Theorem 12.13. Let E/F be a field extension, and let K,L be two algebraic
subextensions such that K/F is Galois. Then K,L are F -linearly disjoint [in E,
but...] iff K ∩ L = F .

Proof. By a now familiar argument involving Exercise 12.5 and Proposition 12.8,
we reduce to the case in which K/F is finite Galois. Now by the theorem of Natural
Irrationalities, we have

[KL : F ] = [KL : L][L : F ] = [K : K ∩ L][L : F ],

so

[KL : F ] = [K : F ][L : F ] ⇐⇒ K ∩ L = F. �

12.4. Linear Disjointness and Separability.

Lemma 12.14. Let K/F be a separable field extension of characteristic p > 0,
and let a1, . . . , an be F -linearly independent elements of K. Then for all e ∈ Z+,

ap
e

1 , . . . , a
pe

n are F -linearly independent.

Proof. By replacing K by F (a1, . . . , an), we may assume that a1, . . . , an is a basis
for K and thus [K : F ] = n.

Step 1: Let K ′ = F (ap
e

1 , . . . , a
pe

n ), so that K ′ is a subextension of K/F . Observe
that for all i, the element ai is both separable and purely inseparable over K ′, so
ai ∈ K ′ for all i and thus K ′ = K and [K ′ : F ] = n.

Step 2: Let V be the F -subspace spanned by ap
e

1 , . . . , a
pe

n . It is enough to show
that V is closed under multiplication: then it is a subring of a field which is finite
dimensional as an F -algebra and therefore a field and therefore the F -subalgebra

generated by ap
1

1 , . . . , a
pe

n . By Step 1, this means V = K ′ = K and thus [V : F ] = n.

Therefore the n-element spanning set ap
e

1 , . . . , a
pe

n is linearly independent.
Step 3: To show that V is a subalgebra, it is enough to show that the product of
two basis elements is an F -linear combination of the basis elements. To see this, fix
any 1 ≤ i, j ≤ n. Since a1, . . . , an span K over F , there exist α1, . . . , αn such that

aiaj =
∑
i

αiai

Raising both sides to the peth power gives

ap
e

i a
pe

j =
∑
i

αp
e

i a
pe

i ,

which shows that ap
e

i a
pe

j lies in V . �
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Proposition 12.15. Let K/F be a separable algebraic extension. Then K and

F p
−∞

are F -linearly disjoint.

Proof. Since F p
−∞

= lim−→F p
−e

, by Exercises 12.3, 12.4 and Proposition 12.4 it is

enough to show that for all e,m ∈ Z+, if a1, . . . , an are F -linearly independent

elements of K, they are also F p
−e

-linearly independent. But this last statement

holds iff ap
e

1 , . . . , a
pe

n are F -linearly independent, which they are by Lemma 12.14.
�

The natural question to ask at this point is: can an inseparable extension K/F be

linearly disjoint from F p
−∞

? It follows immediately from what we already know
about separable extensions that the answer is no if K/F is inseparable and normal,
for then by XXX it contains a nontrivial purely inseparable subextension and thus

F ( K ∩ F p−1 ⊂ K ∩ F p−∞ . In fact, as we are about to see, among algebraic field

extensions K/F , being linearly disjoint from F p
−∞

characterizes separable exten-
sions. But actually we can go further, with the following definitions.

A separating transcendence basis for a field extension K/F is an algebraically
independent subset S of K such that K/F (S) is separable algebraic.

It is clear that separating transcendence bases need not exist, e.g. an insepara-
ble algebraic extension will not admit a separating transcendence basis. On the
other hand, it is clear that separable algebraic extensions and purely transcenden-
tal extensions both admit separating transcendence bases: as with being linearly
disjoint from the perfect closure, this is something that these apparently very dif-
ferent classes of extensions have in common.

We say that a field extension K/F is separably generated if it admits a sep-
arating transcendence basis.

Exercise 12.10. Give an example of a separably generated field extension admitting
a transcendence basis that is not a separating transcendence basis.

An arbitrary field extension K/F is separable if every finitely generated subex-
tension admits a separating transcendence basis.

And now the main theorem on separable extensions.

Theorem 12.16. (Mac Lane) Let F be a field of characteristic p > 0, and let E/F
be a field extension. The following are equivalent:
(i) E/F is separable: every finitely generated subextension is separably generated.

(ii) E and F p
−∞

are F -linearly disjoint.

(iii) E and F p
−1

are F -linearly disjoint.

Proof. (i) =⇒ (ii): Since every field extension is the direct limit of its finite
generated subextensions, by Exercise LD2 we may assume that E/F is finitely gen-
erated and thus separably generated, so let B be a transcendence basis for E/F

such that E/F (B) is separable algebraic. By Proposition 12.15, E and F (B)p
−∞

are F (B)-linearly disjoint. Since F (B)p
−∞ ⊃ F p

−∞
(B), it follows that F p

−∞
(B)

are F (B)-linearly disjoint. By Proposition 12.5, E and F p
−∞

are F -linearly dis-
joint.
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(ii) =⇒ (iii) is immediate.

(iii) =⇒ (i): Suppose that E and F p
−1

are F -linearly disjoint. We will prove
by induction on n that for all n ∈ N, if K = F (a1, . . . , an) is a finitely gener-
ated subextension of E/F then there exists a subset S ⊂ {a1, . . . , an} which is a
separating transcendence basis for K/F . When n = 0, K = F and the result is
trivial. The result is also clear if a1, . . . , an are algebraically independent. Hence
we may assume (after relabelling) that there exists r < n such that a1, . . . , ar are a
transcendence basis for K/F . Let f ∈ K[t1, . . . , tr+1] be a polynomial of minimal
total degree such that f(a1, . . . , ar+1) = 0; necessarily f is irreducible.

We claim f is not of the form g(tp1, . . . , t
p
r). If it were, there would exist h ∈

F p
−1

[t1, . . . , tr+1] such that g(tp1, . . . , t
p
r) = h(t1, . . . , tr)

p with h(a1, . . . , ar+1) = 0.
Let {mi} be the monomials occurring in h. Then the elements mi(a1, . . . , ar+1)

are F p
−1

-linearly dependent, so by hypothesis they are F -linearly dependent. This
gives a nontrivial polynomial relation in the ai of degree less than the degree of h,
contradiction.

It follows that there is at least one i, 1 ≤ i ≤ r + 1, such that f(t1, . . . , tr+1)
is not a polynomial in tpi . Then ai is algebraic over F (a1, . . . , ai−1, ai+1, . . . , ar+1)
and thus {a1, . . . , ai−1, ai+1, . . . , ar+1} is a transcendence basis for K/F . So

F [a1, . . . , ai−1, t, ai+1, . . . , ar+1] ∼= F [t1, . . . , tr+1],

so f(a1, . . . , ai−1, t, ai+1, . . . , ar+1) is ireducible in F [a1, . . . , ai−1, t, ai+1, . . . , ar+1],
so by Gauss’s Lemma it is irreducible in F (a1, . . . , ai−1, ai+1, . . . , ar+1)[t]. Since
ai is a root of f(a1, . . . , ai−1, t, ai+1, . . . , ar+1) and this is not a polynomial in tp,
ai is separable algebraic over F (a1, . . . , ai−1, ai+1, . . . , ar+1) and hence over L :=
F (a1, . . . , ai−1, ai+1, . . . , an). The induction hypothesis applies to L to give a subset
{ai1 , . . . , air} of {a1, . . . , ai−1, ai+1, . . . , an} that is a separating transcendence base
for L/F . Since ai is separable algebraic over L, it is separable algebraic over
F (ai1 , . . . , air ). So {ai1 , . . . , air} is a separating transcendence basis for K/F . �

Example 12.17. (Mac Lane): Let F be any field of characteristic p > 0, F (t)

a rational function field. Let E = F (t, tp
−1

, tp
−2

, . . .). Then any finitely generated
subextension of E/F is isomorphic to F (t) and thus separably generated. But E
itself does not admit a separating transcendence basis. Thus E/F is separable but
not separably generated.

Exercise 12.11. Show: a separably generated extension is separable.

Exercise 12.12. Show: a subextension of a separable extension is separable.

Exercise 12.13. a) Show: separably generated extensions do not satisfy the base
change property (DC2).
(Suggestion: let F be any field of characteristic p > 0, let K = F (t), and let

L = F (t
1
p ).)

b) Conclude that separably generated extensions – and thus also separable exten-
sions – do not form a distinguished class in the sense of Lang.
c) Prove or disprove: the compositum of two separably generated extensions is sep-
arably generated.
d) Prove or disprove: the compositum of two separable extensions is separable.
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13. Derivations and Differentials

13.1. Derivations.

Let R be a commutative ring, and let M be an R-module. A derivation of R
into M is a map D : R→M satisfying both of the following:

(D1) For all x, y ∈ R, D(x + y) = D(x) + D(y) (i.e., D is a homomorphism of
additive groups),
(D2) For all x, y ∈ R, D(xy) = xD(y) +D(x)y (“Leibniz rule”).

Exercise DER0: Let D : R → M be a derivation, let x ∈ R and let n ∈ Z+.
Show that D(xn) = nxn−1D(x).

Suppose we are given a subring k of R. Then a k-derivation is a derivation
D : R→M satisfying the additional property

(D3) For all x ∈ k, D(x) = 0.

We often have M = R and then we speak of derivations and k-derivations on
R. We denote the set of all k-derivations on R by Derk(R).

Exercise DER0.5:
a) Show that any k-derivation D : R → M is a k-linear map: for all c ∈ k and
x ∈ R, D(cx) = cD(x).
b) Show that Derk(R) is a k-submodule of Homk(R,R).
c) Show that Derk(R) in fact has the structure of an R-module: if D ∈ Derk(R)
and α ∈ R, then αD ∈ Derk(R).
d) Show that if D1, D2 ∈ Derk(R), D1 ◦D2 need not be a derivation of R.
e) Show that if D1, D2 ∈ Derk(R), then the map [D1, D2] : R → R defined by
[D1, D2] : x 7→ D1(D2(x))−D2(D1((x)) is a k-derivation of R.
f) Suppose that k is a field of characteristic p > 0. Show that for any D ∈ Derk(R),
the p-fold composition D◦p is a k-derivation on R.

Exercise DER1: Let D : R→M be a derivation, and let C = {x ∈ R | D(x) = 0}
be its kernel. Show that C is a subring of R and is in fact the unique maximal sub-
ring of k of R such that D is a k-derivation. (It is sometimes called the constant
subring of R.)

Example: Let k be a field and R = k[t]. The usual polynomial derivative f 7→ f ′

is a k-derivation on R; we will denote it by ∂. The derivation ∂ is the unique
k-derivation D such that D(t) = 0.

Exercise DER2: Compute the constant subring of ∂ : k[t] → k[t]. Note that
the answer in positive characteristic is very different from characteristic zero!

Exercise DER3: Let k be a domain, n ∈ Z+, and let R = k[t1, . . . , tn] be the
polynomial ring in n variables over k. Show that for each 1 ≤ i ≤ n there is a
unique k-derivation ∂i on R such that ∂i(tj) = δij .
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At least when k = R, it is well known that we may differentiate not only polyno-
mials but also rational functions. This generalizes nicely to our abstract algebraic
context.

Theorem 13.1. Let R be a domain with fraction field K and D a derivation on
R.
a) There is a unique extension of D to a derivation on K, given by

(14) DK

(
x

y

)
=
yD(x)− xD(y)

y2
.

b) If D is a k-derivation for some subring k of R with fraction field f(k), then DK

is an f(k)-derivation.

Proof. a) Our first order of business is to show that DK is well-defined, i.e., if
x1, x2, y1, y2 ∈ R are such that y1y2 6= 0 and x1y2 = x2y1, then

y1D(x1)− x1D(y1)

y2
1

=
y2D(x2)− x2D(y2)

y2
2

.

We check this by a straightforward if somewhat unenlightening calculation:

y2
2 (x1D(y1)− y1D(x1))−

(
y2

1(x2D(y2)− y2D(x2)
)

= y2
2x1D(y1)− y2

2y1D(x1)− y2
1x2D(y2)− y2

1y2D(x2)

= (y2x1d(y1y2)− y1y2D(x1y2))− (y1x2D(y1y2) + y1y2D(y1x2))

= (x1y2 − x2y1)D(y1y2)− y1y2D(x1y2 − x2y1) = 0.

Next we check that DK is a derivation:

DK

(
x1

y1
+
x2

y2

)
= DK

(
x1y2 + x2y1

y1y2

)
= . . . .

DK

(
x1

y1

x2

y2

)
= DK

(
x1x2

y1y2

)
= . . . .

Let D be any derivation on K extending D. For x, y ∈ K with y 6= 0, we have

D(x) = D
(
x

y
· y
)

=
x

y
D(y) + yD

(
x

y

)
,

so

D
(
x

y

)
=
D(x)

y
− xD(y)

y2
=
yD(x)− xD(y)

y2
= DK

(
x

y

)
,

completing the proof of part a).
b) Since DK extends D and D(x) = 0 for all x ∈ k, certainly DK(x) = 0 for all

x ∈ k. Using (14) it follows that for all x, y ∈ k with y 6= 0, D
(
x
y

)
= 0. �

We now concentrate our studies on DerK(L) for a field extension L/K.

Proposition 13.2. Let L/K be a field extension, and let D ∈ DerK(L). Let
f ∈ K[t1, . . . , tn] and a = (a1, . . . , an) ∈ Ln. Then

D(f(a)) =

n∑
i=1

∂if(a1, . . . , an)D(ai).
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Exercise DER4: Prove Proposition 13.2.

Let L/K be a field extension and S ⊂ L. Any derivation D on L restricts to
a function DS : S → L. We say that D is S-finite if {x ∈ S | D(x) 6= 0} is finite.
Of course S-finiteness is automatic if S itself is a finite set. The S-finite derivations
form an L-subspace of DerK(L) which we will denote by DerSK(L).

Proposition 13.3. Let L/K be a field extension. Let S ⊂ L be such that L =
K(S).
a) We have

dimL DerSK(L) ≤ #S.

b) In particular if L can be generated as a field extension by n <∞ elements, then
dimL DerK(L) ≤ n.

Proof. Let L(S) be the set of all finitely nonzero functions from S to L. This is an
L-vector space with basis canonically in bijection with S: indeed, for s ∈ S, let δs
be the function which takes the value 1 at s and zero elsewhere. Then {δs}s∈S is
an L-basis for L(S).
The natural restriction map DerSK(L) → L(S) is L-linear and injective. The L-
linearity is a triviality: the injectivity follows from the fact that every element
of L is a rational function in the elements of S with coefficients in K. Since
dimL(S) = #S, part a) follows immediately! Part b) is also immediate from the
observation that S-finiteness is a vacuous condition when S itself is a finite set. �

We will see later on that equality holds in Proposition 13.3 when S is a separating
transcendence basis for L/K. At the other extreme, Proposition 13.3 together with
the Primitive Element Corollary shows that for any finite separable extension L/K,
dimL DerK(L) ≤ 1. In fact we can do better.

Theorem 13.4. (Derivation Extension Theorem) See Lang’s algebra, pages 369-
370, for the statement and proof.

Corollary 13.5. Let L/K be a separable algebraic extension.
a) Every derivation on K extends uniquely to a derivation on L.
b) We have DerK(L) = 0.

Proof. a) Step 1: suppose that L/K is finite.
Step 2: Suppose that L/K is an infinite degree separable extension. It is therefore
the direct limit of its finite separable subextensions Lα. By Step 1, there exists
a unique Dα ∈ DerF (L) extending D. Because of the uniqueness, it is automatic
that these derivations fit together to give a derivation DL on L: that is, for any
x ∈ L, we choose α such that x ∈ Lα and put DL(x) = DLα(x). If x ∈ Lα ∩ Lβ
then the uniqueness forces DLα(x) = DLαLβ (x) = DLβ (x).
b) Let D ∈ DerK(L). Then D extends 0 ∈ Der(K), as does 0 ∈ DerL. By part a),
we must have D = 0. �

Exercise DER5: Let F ⊂ K ⊂ L be a tower of fields with L/K separable algebraic,
and let M be a subextension of L/K. Show that for any F -derivation D of L such
that D(K) ⊂ K, we have also D(M) ⊂M .

Corollary 13.6. Let K be a field of chracteristic p > 0, and let L = K(x) be a
nontrivial purely inseparable field extension of K.
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a) For each D ∈ DerK and α ∈ L, there exists a unique DL ∈ DerL extending DK

and such that DL(x) = α.
b) In particular dimL DerK(L) = 1; a basis is given by {Dx}, where Dx is the
unique K-derivation with Dx(x) = 1.

Proof. a) . . .
b) By part a) there is a unique derivation Dx on L extending the zero derivation
on K and such that Dx(x) = 1. Thus dimL DerK(L) ≥ 1. On the other hand, by
Proposition 13.3, dimL DerK(L) ≤ 1. We deduce that DerK(L) is a one-dimensional
L-vector space and thus a basis is given by any nonzero vector in that space, e.g.
Dx. �

Corollary 13.7. Let L = K(t) be a univariate rational function field.
a) For each D ∈ DerK and α ∈ L, there exists a unique DL ∈ DerL extending DK

and such that DL(t) = α.
b) In particular dimL DerK(L) = 1; a basis is given by ∂t, where ∂t is the unique
K-derivation with ∂t(t) = 1.

Proof. . . . �

Corollary 13.8. Let L/K be any field extension, and let D be a derivation of K.
Then there is at least one extension of D to a derivation on L.

Proof. Consider the set of pairs (M,DM ) where M is a subextension of L/K and
DM ∈ DerM extends D. This set is partially ordered as follows: (M1, DM1

) ≤
(M2, DM2

) if M1 ⊂M2 and DM2
extends DM1

. It is easy to see that the hypothesis
of Zorn’s Lemma is satisfied, so that we get a maximal element (M,DM ).

Suppose first that L/M is not algebraic. Then there exists an element t ∈ L
which is transcendental over M , so that M(t) ⊂ L is a rational function field. By
Corollary 13.7, DM extends to M(t), contradicting the maximality of M .
Next suppose that L/M is algebraic, and let Ms be the separable closure of M
in M . If Ms ) L, then by Corollary 13.5 DM extends to a derivation on Ms,
contradicting the maximality of M . So it must be the case that L/M is purely
inseparable. Thus if L )M , there exists x ∈ L \M and then M(x)/M is a proper
purely inseparable extesion. By Corollary 13.6, DM extends to a derivation on
M(x), contraditing the maximality of M .

It follows that M = L, i.e., the derivation D can be extended to L. �

Proposition 13.9. Let K be a field, S a set and L = K({ts}s∈S be the rational
function field over K.
a) For s ∈ S, there is a unique K-derivation δs of L such that δs(ts) = 1 and
δs(ts′) = 0 for all s′ 6= s.

b) The set {δs}s∈S is an L-basis for DerSK(L).

Theorem 13.10. Let L/K be a finitely generated separable field extension.
a) We have trdeg(L/K) = dimL DerK(L).
b) If {x1, . . . , xn} is a separating transcendence basis for L/K, then there is a
basis {Di}1≤i≤n for DerK(L) such that for all 1 ≤ i ≤ n, the restriction of Di to
K(x1, . . . , xn) is ∂i.

Proof. Let {x1, . . . , xn} be a separating transcendence basis for L/K and put M =
K(x1, . . . , xn). By Theorem ??, for each 1 ≤ i ≤ n there exists a unique K-
derivation of L extending ∂i on M : call it Di. We claim that {D1, . . . , Dn} is an
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L-basis for DerK(L): this will establish both parts of the theorem.
�

13.2. Differentials.

14. Applications to Algebraic Geometry

15. Ordered Fields

15.1. Ordered Abelian Groups.

An ordered abelian group (G,+, <) is an abelian group (G,+) equipped with a
total ordering < which is compatible with the group law in the sense that

(OAG) For all x, y, z ∈ G, x ≤ y =⇒ x+ z ≤ y + z.

A homomorphism of ordered abelian groups f : (G,<)→ (H,<) is a group homo-
morphism which is isotone: for all x1 ≤ x2, f(x1) ≤ f(x2).

Lemma 15.1. For x, y, z in an ordered abelian group G, if x < y then x+z < y+z.

Proof. Since x < y, certainly x ≤ y, so by (OAG) x + z ≤ y + z. If x + z = y + z
then adding −z to both sides gives x = y, a contradiction. �

Lemma 15.2. Let x1, x2, y1, y2 be elements of an ordered abelian group G with
x1 ≤ x2 and y1 ≤ y2. Then x1 + y1 ≤ x2 + y2.

Proof. Applying (OAG) with x1, x2, y1 gives x1 + y1 ≤ x2 + y1. Applying (OAG)
with y1, y2, x2 gives x2+y1 = y1+x2 ≤ y2+x2. By transitivity x1+y1 ≤ x2+y2. �

To an ordering on a commutative group we associate its positive cone:

G+ = {x ∈ G | x > 0}.

Elements of G+ are called positive. We also define

G− = {x ∈ G | x < 0}.

Elements of G− are called negative.

Lemma 15.3. Let x be a nonzero element of the ordered abelian group G. Then
exactly one of x, −x is positive. Thus G = {0}

∐
G+

∐
G−.

Proof. If x > 0 and −x > 0 then adding gives 0 > 0, a contradiction.
If x is not positive then x < 0. By Lemma 15.1 we may add −x to both sides,
getting 0 = x+ (−x) < 0 + x = −x. �

Lemma 15.4. Let x1, x2 be elements of an ordered abelian group.
a) If x1, x2 ∈ G+, then x1 + x2 ∈ G+.
b) If x1, x2 ∈ G−, then x1 + x2 ∈ G−.

Proof. a) Since x1 > 0 and x2 > 0, by Lemma 15.1 x1 + x2 > 0.
b) If x1 < 0 and x2 < 0, then by Lemma 15.3 −x1,−x2 > 0, so by part a)
−x1 − x2 = −(x1 + x2) > 0, so by Lemma 15.1 again x1 + x2 < 0. �



90 PETE L. CLARK

In an ordered abelian group we define |x| to be x if x ≥ 0 and −x otherwise.

Exercise: Let x, y be elements of an ordered abelian group G.
a) Suppose x ≤ y and n ∈ N. Show that nx ≤ ny.
b) Suppose x ≤ y and n is a negative integer. Show that nx ≥ ny.

Example: Let (G,<) be an ordered abelian group and H a subgroup of G. Re-
stricting < to H endows H with the structure of an ordered abelian group.

Example (Lexicographic ordering): Let {Gi}i∈I be a nonempty indexed family
of ordered abelian groups. Suppose that we are given a well-ordering on the index
set I. We may then endow the direct product G =

∏
i∈I Gi with the structure of

an ordered abelian group, as follows: for (gi), (hi) ∈ G, we decree (gi) < (hi) if for
the least index i such that gi 6= hi, gi < hi.

Theorem 15.5. (Levi [Lev43]) For an abelian group G, TFAE:
(i) G admits at least one ordering.
(ii) G is torsionfree.

Proof. (i) =⇒ (ii) Let < be an ordering on G, and let x ∈ G•. By Lemma 15.4
we have nx 6= 0 for all n ∈ Z+.
(ii) =⇒ (i): Let G be a torsionfree abelian group. Then G is a flat Z-module.
Tensoring the injection Z ↪→ Q gives us an injection G ↪→ G ⊗ Q. Since Q is a
field, the Q-module G⊗Q is free, i.e., it is isomorphic to

⊕
i∈I Q. Choose a total

ordering on I. Give each copy of Q its standard ordering as a subfield of R and put
the lexicographic ordering on

⊕
i∈Q Q ∼= G⊗Q. Via the injection G ↪→ G⊗Q this

induces an ordering on G. �

An anti-isomorphism of abelian groups is an order-reversing group isomophism.
For every ordered abelian group (G,<), the inversion map x ∈ G 7→ −x is an anti-
isomorphism of G.

Exercise X.X: a) Show that the abelian group Z admits exactly two orderings <1

and <2, such that inversion gives an isomorphism (Z, <1)
∼→ (Z, <2).

b) Give an example of an abelian group G admitting orderings <1 and <2 such
that (G,<1) is not isomorphic or anti-isomorphic to (G,<2).

The comparability quasi-ordering: For x, y ∈ G, we write x ≺ y if there
exists n ∈ Z+ such that |x| ≤ n|y|. We claim that ≺ is a quasi-ordering on
G, i.e., a reflexive, transitive but not necessarily anti-symmetric binary relation.
Indeed the reflexivity is immediate; if x ≺ y and y ≺ z then there exist n1, n2 ∈ Z+

such that |x| ≤ n1|y| and |y| ≤ n2|z|, and thus |x| ≤ n1n2|z|.

As is the case for any quasi-ordering, the relation x ≺ y and y ≺ x is an equiva-
lence relation, and the quasi-ordering descends to a partial ordering on equivalence
classes. Write x ≈ y for the resulting equivalence relation on the ordered group G:
explicitly, there exist n1, n2 ∈ Z+ such that |x| ≤ n1|y| and |y| ≤ n2|x|.

Exercise: Show that the resulting partial ordering on G/ ≈ is a total ordering.
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In any ordered abelian group G, {0} is its own ≈-equivalence class, hence any
nontrivial ordered abelian group has at least two ≈-equivalence classes. We refer to
nonzero ≈-equivalence classes as Archimedean equivalence classes and denote
the set of all such equivalence classes as Ω(G).

An ordered abelian group with #Ω(G) ≤ 1 is called Archimedean. Equiva-
lently, for all x, y ∈ G•, there are n1, n2 ∈ Z+ such that |x| ≤ n1|y| and |y| ≤ |x|.

Example: The group (R,+) is Archimedean. That is, for any x ∈ R>0 there are
positive integers n1 and n2 such that 1

n1
≤ x ≤ n2. Indeed the second inequality

follows from the least upper bound axiom: if this were not the case then the set Z+

of positive integers would be bounded above in R, and this set cannot have a least
upper bound. The first inequality follows from the second upon taking reciprocals.

Example: A subgroup of an Archimedean ordered abelian group is Archimedean.
In particular, any subgroup of (R,+) is Archimedean in the induced ordering.

Rather remarkably, the converse is also true.

Theorem 15.6. (Hölder [Hö01]) Let (G,+) be an ordered abelian group. If G is
Archimedean, there exists an embedding (G,+) ↪→ (R,+).

Proof. We may assume G is nontrivial. Fix any positive element x of G. We will
construct an order embedding of G into R mapping x to 1.

Namely, let y ∈ G. Then the set of integers n such that nx ≤ y has a maximal
element n0. Put y1 = y − n0x. Now let n1 be the largest integer n such that
nx ≤ 10y1: observe that 0 ≤ n1 < 10. Continuing in this way we get a set of integers
n1, n2, . . . ∈ {0, . . . , 9}. We define ϕ(y) to be the real number n0 +

∑∞
k=1

nk
10k

. It is
not hard to show that ϕ is isotone – y ≤ y′ =⇒ ϕ(y) ≤ ϕ(y′) – and also that ϕ is
injective: we leave these tasks to the reader.

But let us check that ϕ is a homomorphism of groups. For y ∈ G, and r ∈ Z+,
let n

10r be the rational number obtained by truncating ϕ(y) at r decimal places.
The numerator n is characterized by nx ≤ 10ry < (n + 1)x. For y′ ∈ G, if
n′x ≤ 10ry′ ≤ (n′ + 1)x, then

(n+ n′)x ≤ 10r(y + y′) < (n+ n′ + 2)x,

so

ϕ(y + y′)− (n+ n′)10−r <
2

10r

and thus

|ϕ(y + y′)− ϕ(y)− ϕ(y′)| < 4

10r
.

Since r is arbitrary, we conclude ϕ(y + y′) = ϕ(y) + ϕ(y′). �

Proposition 15.7. Let G be an Archmidean ordered abelian group. Then exactly
one of the following holds:
(i) G is trivial.
(ii) G is order-isomorphic to Z.
(iii) The ordering on G is dense.

Proof. We may suppose that G is nontrivial.
Step 1: Suppose G+ has a least element x. Let y ∈ G+. Since the ordering is
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Archimedean there is a largest n ∈ Z+ such that nx ≤ y. Then y − nx ≥ 0; if
y > 0 then y − nx ≥ x so y ≥ (n + 1)x, contradicting the maximality of n. Thus
y = nx, i.e., every positive element of G+ is a multiple of x. It follows that there
is a unique order isomorphism from G to (Z, <) carrying x to 1.
Step 2: Suppose G is not isomorphic to (Z, <), so there is no least positive element.
In other words, given any positive element x there exists 0 with 0 < y < x. Now let
a, b ∈ G with a < b. If 0 < y < b− a then a < y < b. So the ordering is dense. �

Theorem 15.8. (Pierce) Let (G,<) be an ordered abelian group. Let GD be the
Dedekind completion of the linearly ordered set (G,<).
a) There is a unique commutative monoid structure + on GD such that (GD,+) is
an ordered commutative monoid and the natural map (G,+, <) ↪→ (GD,+, <) is a
homomorphism of ordered commutative monoids.
b) The following are equivalent:
(i) GD is a group.
(ii) (G,<) is Archimedean.

15.1.1. Hahn Embedding Theorem.

The following generalization of Hölder’s Theorem was proven by H. Hahn.

Theorem 15.9. (Hahn Embedding Theorem) Let G be an ordered abelian group.
Then there is an embedding of ordered abelian groups

h : G ↪→ RΩ(G).

Here Ω(G) denotes the Archimedean equivalence classes of G• and RΩ(G) is lexico-
graphically ordered.

15.2. Introducing Ordered Fields.

An ordered ring is a ring (R,+, ·) together with a total ordering ≤ on R compat-
ible with the commutative group (R,+) and satisfying the additional property

(OR) ∀x, y ≥ 0, xy ≥ 0.

In these notes the ordered rings we will study are ordered fields.

Example: The real numbers R with the standard < form an ordered field.

Example: Let F = Q(
√

2). There are two embeddings F ↪→ R which differ from

each other by the nontrivial automorphism of F , which carries
√

2 7→ −
√

2. In one
of these embeddings,

√
2 goes to the positive real number whose square is 2, and

in the other one it goes to the negative real number whose square is 2. Thus the
two embeddings give different orderings, and it is easy to check that these are the
only two orderings of F .

A homomorphism f : (F,<)→ (F ′, <′) is a monotone field homomorphism: i.e., a
field homomorphism such that x < y =⇒ f(x) < f(y).

Exercise: Let (K,<) be an ordered field and let F be a subfield of K. Denote
by <F the restriction to F of <. Show that (F,<F ) is an ordered field and the
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inclusion of F into K is an homomorphism of ordered fields.

We denote by X(K) the set of all field orderings on K.

Exercise: Show that there is a natural action of Aut(K) on X(K). Give an example
where the orbit space Aut(K)\X(K) consists of more than one element.

Proposition 15.10. Every ordered field (K,≤) has characteristic 0.

Proof. Apply Theorem 15.5 to (K,+). �

For a subset S ⊂ K, put S• = S \ {0}.

We consider the following conditions on a subset P of a field K:

(PO1) P + P ⊂ P , and PP ⊂ P .
(PO2) Σ�(K) = {x2

1 + . . .+ x2
n | xi ∈ K} ⊂ P .

(PO3) −1 /∈ P .
(PO3′) P ∩ (−P ) = {0}.
(PO3′′) P • + P • ⊂ P •.
(PO3′′′) P 6= K.
(PO4) P ∪ (−P ) = K.

Exercise: Let P ⊂ K satisfy (PO1) and (PO2).
a) Show: (PO3), (PO3′), and (PO3′′) are equivalent conditions on P .
b) Suppose charK 6= 2. Show: (PO3′′′) and (PO3) are equivalent conditions on P .

(Hint: x =
(
x+1

2

)2 − (x−1
2

)2
.)

c) Suppose charK = 2. Show: P satisfies (PO1) and (PO2) iff P is a subfield of K
containing K2.

Exercise: Let P ⊂ K satisfy (PO1) and (PO4). Show: P satisfies (PO2).

Lemma 15.11. Let K be a field.
a) If ≤ is a field ordering on K, put P = K≥0. Then K satisfies (PO1) through
(PO4) above, and also 1 ∈ P .
b) Let P ⊂ K satisfy (PO1) through (PO4). Define a relation ≤ on K by x ≤
y ⇐⇒ y − x ∈ P . Then ≤ is a field ordering on K.

Proof. a) By Proposition X.X, K has characteristic 0. Lemma 146 implies P sat-
isfies (PO1), and Lemma 147 implies P satisfies (PO3′) and (PO4). By Exercise
X.X, P satisfies (PO2). Finally, by (PO4), exactly one of 1, −1 lies in P . But if
−1 ∈ P , then (−1)2 = 1 ∈ P , so 1 ∈ P .
b) By (PO3) and (PO4), ≤ is a total ordering on K. Given x, y, z ∈ K with x ≤ y,
then (y + z)− (x+ z) = y − x ∈ P , so x+ z ≤ y + z: (K,≤) is an ordered abelian
group. Finally, if x, y ≥ 0 then x, y ∈ P , so by (PO1) xy ∈ P , i.e., xy ≥ 0. �

In view of this result, we refer to a subset P ⊂ K satisying (PO1), (PO2) and
(PO3) as being an ordering on K, and we often refer to the ordered field (K,P ).

Exercise: Let P1, P2 be two orderings on a field K. Show: P1 ⊂ P2 =⇒ P1 = P2.
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The alert reader may now be wondering why we have introduced (PO2) at all
since it is implies by the other axioms for an ordering.14 The reason is that it is a
key idea to entertain a more general structure.

A subset P ⊂ K satisying (PO1), (PO2) and (PO3) is called a preordering
of K. (Note that our choice of (PO3) instead of (PO3′′′) shows that a field of
characteristic 2 admits no preorderings.)

Exercise X.X: Let T be a preordering on F and x, y ∈ T .
Show that x, y ∈ T, x+ y = 0 =⇒ x = y = 0.

A field K is formally real if −1 /∈ Σ�(K).

Lemma 15.12. Suppose charK 6= 2. Then the following are equivalent:
(i) K is formally real.
(ii) Σ�(K) ( K. (iii) Σ�(K) is a preordering on K.
(iv) For all n ≥ 1 and all x1, . . . , xn ∈ K, x2

1 + . . .+x2
n = 0 =⇒ x1 = . . . = xn = 0.

Exercise: Prove it.

Remark: Condition (iv) above makes a connection with quadratic form theory.
A quadratic form q(x) = a1x

2
1 + . . . + anx

2
n over a field K is isotropic if there

exists some nonzero x ∈ Kn with q(x) = 0 and otherwise anisotropic. Thus by
Lemma X.X, a field is formally real iff for each n the sum of n squares form is
anisotropic.

Lemma 15.13. Let F be a field such that Σ�(F ) ∩ (−Σ�(F )) = ∅ and Σ�(F ) ∪
(−Σ�(F )) = F×. Then P = Σ�(F ) is the unique ordering on F .

Exercise: Prove Lemma 15.13.

Exercise: Use Lemma 15.13 to show that each of the following fields admits a
unique ordering: R, Q, the field of constructible numbers.

Proposition 15.14. If (F, P ) is an ordered field, F is formally real.

Proof. The contrapositive is clear: if F is not formally real, then −1 is a sum of
squares, so it would be – along with 1 – in the positive cone of any ordering. �

It follows that any ordered field has characteristic 0.

Much more interestingly, the converse of Proposition 15.14 is also true. In order to
prove this celebrated result we need the following innocuous one.

Lemma 15.15. Let F be a field, T ⊆ F a preordering on F , and a ∈ F×. TFAE:
(i) The set T [a] := {x+ ya | x, y ∈ T} is a preordering.
(ii) a is not an element of −T .

Proof. Since by (PC4) no preordering can contain both a and −a, (i) =⇒ (ii) is
clear. Conversely, assume (ii). It is immediate to verify that T [a] satisfies (PC1),

14The less than alert reader may now be asleep, and we owe him our apologies: things will
liven up shortly!
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(PC2) and (PC5), so it suffices to show that there is no x ∈ F× such that x and
−x both lie in T [a]. If so, we deduce

−1 = −x · x · ( 1

x
)2 ∈ T [a].

But now suppose −1 = x+ya for x, y ∈ T . Then −ya = 1 +x is a nonzero element
of T , so a = (−y)−2(−y)(1 + x) ∈ −T , a contradiction. �

Theorem 15.16. Let t be a preordering on a field K. Then:
a) t is the intersection of all orderings P ⊃ t.
b) (Artin-Schreier) If K is formally real, then it admits an ordering.

Proof. a) Step 1: Let S be the set of all preorderings on K containing t. The union
of a chain of preorderings is again a preordering. Applying Zorn’s Lemma, we get
a maximal element T ⊃ t. By Lemma 15.15 we have that for all a ∈ F , if −a 6∈ T
then a ∈ T , so T satisfies (PO4) and is therefore an order.
Step 2: Let b ∈ K \ t. We must construct an ordering P ⊃ t with b /∈ P . But by
Lemma 15.15, t[−b] is a preordering, which by Step 1 extends to an ordering P ,
and since −b ∈ P , b /∈ P .
b) If K is formally real then Σ�(K) is a preordering on K. In particular, by (PO3)
a preordering is a proper subset of K, whereas by part a) if there were no orderings
on K then the intersection over all orderings containing Σ�(T ) would be the empty
intersection, and thus would equal K. �

The following special case of Theorem X.Xa) is important in its own right.

Corollary 15.17. (Artin) For x ∈ K×, char(K) 6= 2, the following are equivalent:
(i) For every ordering P on K, x ∈ K.
(ii) The element x is a sum of squares.

Remark: Corollary 15.17 is an important step towards the solution of Hilbert’s 17th
problem: show that any positive semidefinite polynomial f ∈ R[t1, . . . , tn] is a sum
of squares of rational functions.

Remark: Corollary 15.17 does not extend to all fields of characteristic 2. Indeed,
for a field F of characteristic 2, we simply have Σ�(F ) = F 2, so every element of
F is a sum of squares iff F is perfect. (In no case are there any orderings on F .)

15.3. Extensions of Formally Real Fields.

Let L/K be a field extension. If L is formally real, then by Artin-Schreier it
admits an ordering P , which restricts to an ordering p on K.15 However, there is a
related but much more subtle question: suppose p is an ordering on a field K and
L/K is an extension field. Can the ordering p be extended to L?

An obvious necessary condition is that L be formally real: if not it admits no
orderings at all, let alone an extension of p. But this condition is not sufficient: let
K = R(t). By Example X.X above there is a unique ordering p on K extending
the unique ordering on R and such that x ≤ t for all x ∈ R. Take L = K(

√
−t).

Clearly p does not extend to L, since if so the negative element −t would be a

15particular, a subfield of a formally real field is formally real. But that was clear anyway from
the definition.
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square. However, the element
√
−t is transcendental over K, so there is a K-

algebra automorphism K(
√
−t)→ K(t), and thus L is certainly formally real.

In general the extension problem for orderings is a rich one with a large liter-
ature. But we will give one fundamental and useful result, an extension of the
Artin-Schreier Theorem. First:

Lemma 15.18. For an ordered field (K, p), an extension L/K, and c ∈ L, TFAE:
(i) There are a1, . . . , an ∈ p• and x1, . . . , xn ∈ L such that

c = a1x
2
1 + . . .+ anx

2
n.

(ii) c ∈
⋂
P⊃p P, the intersection being over all orderings of L extending p.

Proof. Let
t = {a1x

2
1 + . . .+ anx

2
n | ai ∈ p, xi ∈ L},

and note that the desired equivalence can be rephrased as t =
⋂
P⊃p P . Moreover

t satisfies (PO1) and (PO2), and an ordering P of L contains t iff it contains p.
Case 1: Suppose−1 /∈ t. Then t is a preordering, and by Theorem X.X, t =

⋂
P⊃p P .

Case 2: If −1 ∈ t, there is no ordering on L extending p. Then – since K has ordered
and thus not of characteristic 2! – by Exercise X.X, we have t = K =

⋂
P⊃p P . �

We are now ready for one of our main results.

Theorem 15.19. For an ordered field (K, p) and an extension field L/K, TFAE:
(i) There is an ordering on L extending p.
(ii) For all a = (a1, . . . , an) ∈ pn, the quadratic form

qa(x) = a1x
2
1 + . . .+ anx

2
n

is anisotropic over L: if x = (x1, . . . , xn) ∈ Ln is such that q(x) = 0, then x = 0.

Proof. (i) =⇒ (ii) is immediate.
(ii) =⇒ (i): If for any a ∈ pn the quadratic form qa(x) represents −1, then
the form qa,1(x) = a1x

2
1 + . . . + anx

2
n + x2

n+1 would be isotropic, contrary to our
hypothesis. It follows that

−1 /∈ t = {a1x
2
1 + . . .+ anx

2
n | ai ∈ p, xi ∈ L},

so – as in the proof of the previous result – t is a preordering of L containing p. By
Theorem X.X, t must extend to at least one ordering of L. �

Exercise: Deduce from Theorem 15.19 that every formally real field L admits an
ordering. (Hint: we wrote L, not K!)

We will now deduce several sufficient conditions for extending orderings.

Theorem 15.20. Let (K, p) be an ordered field, and let L = K({
√
x}x∈p) be the

extension obtained by adjoining all square roots of positive elements. Then the
ordering p extends to L.

Proof. By Theorem 15.19, it suffices to show that for any n, r ∈ Z+ and any
b1, . . . , br, c1, . . . , cn ∈ p, if x1, . . . , xn ∈ F (

√
b1, . . . ,

√
br) are such that

(15) c1x
2
1 + . . .+ cnx

2
n = 0,

then x1 = . . . = xn = 0. For any fixed n, we prove this by induction on r. Suppose
by induction that the equation c1x

2
1 + . . . + cnx

2
n = 0 has no nontrivial solutions
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over Kr−1, and let (z1, . . . , zn) ∈ Kn
r be a solution to (15). Write zi = xi +

√
bryi,

with xi, yi ∈ Kr−1. Then equating “rational parts” in the equation

0 =
∑

ciz
2
i =

∑
cix

2
i +

∑
brciy

2
i + 2

∑
cixiyi

√
br

shows that (x1, . . . , xn, y1, . . . , yn) ∈ K2n
r−1 is a solution of

c1t
2
1 + . . .+ cnt

2
n + brc1t

2
n+1 + . . .+ brcnt

2
2n = 0.

By induction, x1 = . . . = xn = y1 = . . . = yn = 0, i.e., z1 = . . . = zn = 0. �

To obtain further results we take a perspective arising from quadratic form theory.
Let us say a field extension L/K is anistropic if every anisotropic quadratic form
q(x1, . . . , xn) ∈ K[x1, . . . , xn] remains aniostropic when extended to L. (In the
algebraic theory of quadratic forms one studies the Witt kernel of a field extension:
the kernel of the natural ring homomorphism W (K) → W (L). An anisotropic
extension is precisely one in which the Witt kernel is trivial.) From Theorem 15.19
we immediately deduce the following result.

Corollary 15.21. If (K, p) is an ordered field and L/K is an anisotropic extension,
then the ordering p extends to L.

Exercise: a) Let K be a field and let {Li}i∈I be a directed system of anisotropic
extensions of K. Show that lim−→Li/K is an anisotropic extension.

b) Let (K, p) be an ordered field and L/K a field extension. Suppose that p extends
to an ordering on any finitely generated subextension of L/K. Show that p extends
to an ordering on L.

The next results give the two basic examples of anisotropic extensions.

Theorem 15.22. A purely transcendental extension L/K is anisotropic.

Proof. Step 0: It suffices to prove that K(t)/K is anisotropic. Indeed, if so then
an immediate induction gives that K(t1, . . . , tn)/K is anisotropic, and we finish by
applying Exercise X.X.
Step 1: Let K be any field, and let (f1, . . . , fn) ∈ K(t)n be an n-tuple of ra-
tional functions, not all zero. Then there exists a nonzero rational function f
such that (ff1, . . . , ffn) is a primitive vector in K[t], i.e., each ffi ∈ K[t] and
gcd(ff1, . . . , ffn) = 1. Indeed this holds with K[t] and K(t) replaced by any UFD
and its fraction field.

Step 2: Let q = a1x
2
1 + . . . + anx

2
n be a nonsingular quadratic form over K such

that qK(t) is isotropic: that is, there exist rational functions f1, . . . , fn, not all zero,
such that

a1f
2
1 + . . .+ anf

2
n = 0.

Let f ∈ K(t)× be the rational function as in Step 1; then multiplying through by f2

we get a primitive polynomial solution, i.e., there exist polynomials p1(t), . . . , pn(t) ∈
K[t] with gcd(p1(t), . . . , pn(t)) = 1 and

a1p1(t)2 + . . .+ anpn(t)2 = 0.

Now we substitute t = 0 (or any value of K): we cannot have p1(0) = . . . = pn(0) =
0, because then all of the pi’s would be divisible by t, contradicting primitivity.
Therefore q(p1(0), . . . , pn(0)) = 0 shows that q is isotropic over K. �
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Remark: The proof of Proposition X.X used only that q was a form – i.e., a homo-
geneous polynomial – not that it was a quadratic form. Indeed any system of homo-
geneous polynomials would work as well, so the argument really shows: if V/K is a

projective variety which has a K(t)-rational point, then it has a K-rational point.16

The following was conjectured by Witt in 1937 and proven by Springer in 1952.17

Theorem 15.23. (Springer [Sp52]) Let L/K be a field extension of finite odd
degree d. Then L/K is anisotropic.

Proof. We go by induction on the degree, the case d = 1 being trivial. Suppose
the result holds for all field extensions of odd degree less than d, and L/K be an
extension of odd degree d. If L/K had any proper subextension, then we would be
done by a dévissage argument. So we may assume in particular that L is monogenic
over K: L = K[x]. Let p(t) ∈ K[t] be the minimal polynomial of x. Let q be an
anisotropic quadratic form over K which becomes isotropic over L: i.e., there exists
an equation

(16) q(g1(t), . . . , gn(t)) = h(t)p(t)

with polynomials gi, h ∈ K[t], not all gi = 0, and M := max deg gi ≤ d − 1.
As in the proof of Proposition 15.22, we may also assume that (g1, . . . , gn) is a
primitive vector in K[t]. Since q is anisotropic, the left hand side of (16) has degree
2M ≤ 2d− 2, so deg h is odd and at most d− 2. In particular, h has an irreducible
factor h̃ of odd degree at most d−2; let y be a root of h̃ in K. Taking t = y in (16),
we see that q(g1(y), . . . , gn(y)) = 0. Note that since K[t] is a PID, the condition
gcd(g1, . . . , gn) = 1 is equivalent to the fact that 1 ∈ 〈g1, . . . , gn〉, which implies
that the polynomials g1, . . . , gn remain setwise coprime as elements of K[y][t]. In
particular, not all gi(y) are equal to 0, so that qK[y] is isotropic. By induction, this
implies that q was isotropic, contradiction! �

Exercise: Let (K, p) be an ordered field. Show that the formal power series field
K((t)) admits a unique ordering extending p in which 0 < t < x for all x ∈ K.

Exercise: In the algebraic theory of quadratic forms it is shown that the Witt
kernel of a quadratic extension L = K(

√
p)/K is the principal ideal generated

by α = 〈1,−p〉: [QF, Thm. II.20]. In other words, it consists of quadratic forms
a1x

2
1+. . .+anx

2
n−pa1x

2
1−. . .−panx2

n for a1, . . . , an ∈ K×. Use this (and induction)
to give another proof of Theorem 15.20.

15.4. The Grand Artin-Schreier Theorem.

A field F is real-closed if it is formally real and admits no proper formally real
algebraic extensions. For instance, R is evidently real-closed since its unique non-
trivial algebraic extension is C = R(

√
−1), which is not formally real.

Example (Puiseux series): The Puiseux series field
⋃
n∈Z+ R((t

1
n )) is real-closed.

16The same conclusion holds for arbitrary varieties over any infinite field, or for complete
varieties over a finite field. But taking the projective line over Fq and removing its Fq-rational

points shows that some hypothesis is necessary!.
17According to D. Hoffmann, Artin orally conveyed a proof of Witt’s conjecture to Witt in

1939: he calls the result the Artin-Springer Theorem.
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The previous examples of real-closed fields F were obtained by showing that F
is formally real and F (

√
−1) is algebraically closed. In fact this is a characteriza-

tion of real-closed fields. In particular the absolute Galois group of a real-closed
field is finite and nontrivial. Remarkably, this too is a characterization of real-closed
fields! These assertions are part of the following result, one of the most striking
and celebrated theorems in all of field theory.

Theorem 15.24. (Grand Artin-Schreier Theorem) For a field F , TFAE:
(i) F is formally real and admits no proper formally real algebraic extension.
(ii) F is formally real, every odd degree polynomial over F has a root, and for each
x ∈ F×, one of x, −x is a square.
(iii) F is formally real and F (

√
−1) is algebraically closed.

(iv) The absolute Galois group of F is finite and nontrivial.

The proofs of (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) follow relatively easily from what
we have already done. We give these first and then tackle (iv) =⇒ (i), the hardest
implication.18

Proof. (i) =⇒ (ii): Since an odd degree polynomial has an odd degree irreducible
factor, an odd degree polynomial without a root would yield a proper odd degree
extension K/F . By Proposition X.X, K would be formally real, contradicting the
definition of real closure. Suppose that neither x nor −x is a square. One of them
is positive; WLOG say it is x. By Proposition X.X, F (

√
x) is a proper formally

real extension field, contradiction.
(ii) =⇒ (iii) Since F is formally real, certainly [F (

√
−1) : F ] = 2. Let F be an

algebraic clsoure of F (
√
−1): we wish to show that F = F (

√
−1). By hypothesis

on odd degree polynomials having a root, the absolute Galois group of F is a pro-2-
group, and thus so is the absolute Galois group of F (

√
−1). If F (

√
−1) 6= F then,

we are entitled to a proper finite extension M of F (
√
−1), which is Galois over

F (
√
−1) and has degree a power of 2. By the basic theory of 2-groups together

with the Galois correspondence, there must exist a subextension G of M/F (
√
−1)

with [G : F (
√
−1)] = 2. But we claim that the hypotheses on F imply that F (

√
−1)

is quadratically closed. Indeed, let a, b be arbitrary elements of F . We claim that
there are c, d ∈ F such that

a+ b
√
−1 = (c+ d

√
−1)2.

This amounts to the system a = c2 − d2, b = 2cd. Substituting d = b
2c , we get the

equation c2 = a+ b2

4c2 , or c4 − ac2 − b2

4 = 0. The quadratic formula gives

c2 =
a±
√
a2 + b2

2
.

Since inside the radical we have a sum of squares, the squareroot does exist in F .
If we choose the plus sign in the squareroot, it is easy to see that the expression is
again non-negative, so we can solve for c in our field F .
(iii) =⇒ (iv) is immediate. �

Now we begin the proof of (iv) =⇒ (i), so suppose that F is a field with algebraic
closure F such that 1 < [F : F ] <∞.

18Our proof of (iv) =⇒ (i) closely follows lecture notes of Keith Conrad.
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Step 1: We claim that F/F is Galois.

Proof: Certainly F/F is normal, so it suffices to show that it is separable. If
F has characteristic 0 (which it cannot, in fact, but we haven’t shown that yet),
then there is nothing to say, so suppose F has characteristic p > 0. We claim that
the hypotheses imply that F is perfect, and thus that every algebraic extension of
F is separable. Indeed, if F is not perfect, then there exists α ∈ F \F p and then by
Lemma 9.19, the polynomials tp

n −α are irreducible for all n ∈ Z+ so [F : F ] =∞.

Step 2: Let G = Gal(F/F ). We wish to show that #G = 2. If not, then by
Sylow theory there exists a subgroup H of order either 4 or an odd prime `. We
wish to derive a contradiction.

We will consider the cases #G = ` a prime number and #G = 4 in turn. First we
suppose #G = ` and let σ be a generator of the cyclic group G.

Step 3: We claim that the characteristic of F is not equal to `. If it were, then
Artin-Schreier theory would apply, so that F = F (α), where α is a root of an
Artin-Schreier polynomial tp − t− a ∈ F [t]. We may write any element b ∈ F as

b = b0 + b1α+ . . .+ b`−1α
`−1

for unique b0, . . . , b`−1 ∈ F . Thus

b` − b =

`−1∑
i=0

b`iα
`i − biαi =

`−1∑
i=0

b`i(α+ a)i − biαi =
(
bpp−1 − bp−1

)
αp−1 +O(αp−2),

where by O(αp−2) we mean a polynomial in α of degree at most p − 2. Choose
b ∈ F such that bp − b = aαp−1, and then equating coefficients of αp−1 gives
bpp−1− bp−1−a = 0. Since bp−1 ∈ F , this contradicts the irreducibility of tp− t−a.

Step 4: Since the characteristic of F is not ` = #G, F contains a primitive `th
root of unity ζ. Indeed, since [F (ζ) : F ] ≤ ` − 1 and (` − 1, `) = 1, we must have
ζ ∈ F . Therefore Kummer Theory applies to give F = F (γ), where γ` = c ∈ F .

Choose β ∈ F such that β` = γ, so β`
2

= c. Thus β`
2

= σ(β`
2

) = (σβ)`
2

, so

σ(β) = ωβ with ω`
2

= 1. Then ω`, being an `th root of unity, lies in F . If ω` = 1,
then (σ(β))` = β`, so σ(β`) = β` and then β` = γ ∈ F , contradiction. So ω is a
primitive (`2)th root of unity. It follows easily that there exists k ∈ Z such that

σω = ω1+`k.

From σβ = ωβ, we get

β = σpβ = σ`−1ωβ = ωσ(ω) · · ·σ`−1(ω)β = ω1+(1+`k)+...+(1+`k)`−1

β.

From this we deduce

`−1∑
i=0

1 + (1 + `k) + . . .+ (1 + `k)`−1 ≡ 0 (mod `2).
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Expanding out the binomial and reducing modulo `2, we get

0 ≡
`−1∑
i=0

(1 + i`k) ≡ `+
(`− 1)(`)

2
(`k) (mod `2).

If ` is odd, this gives 0 ≡ ` (mod `2), a contradiction. When ` = 2, we get

2 + 2k ≡ 0 (mod 4),

so that k is odd. In this case ω has order 4 and σω = ω1+2k = ω3, so σω 6= ω and
ω 6∈ F . Let us write ω as i. In summary: if #G is prime, then it equals 2, i 6∈ F
and F does not have characteristic 2.

Step 5: Now suppose that #G = 4. Then there exists at least one subexten-
sion K of F/F with [F : K]. Then the above reasoning shows that i 6∈ K, hence
not in F , but then F (i) is a subfield of F with [F : F (i)] = 2 and containing a 4th
root of unity, contradicting the above analysis.

In summary, we have shown so far that if 1 < [F : F ] < ∞, then F does not
have characteristic 2 and F = F (i). It remains to be shown that F is formally real,
and this is handled by the following result.

Lemma 15.25. Let F be a field in which −1 is not a square and such that every
element of F (

√
−1) is a square in F (

√
−1). Then:

a) Σ�(F ) = F 2,
b) char(F ) = 0, and
c) F is formally real.

Proof. Put i =
√
−1. To show part a), it is enough to see that the sum of two

squares in F (i) is again a square in F (i). Let a, b ∈ F . By hypothesis, there are
c, d ∈ F such that (a + bi) = (c + di)2, so a = c2 − d2 and b = 2cd and thus
a2 + b2 = (c2 + d2)2.
b) If F had positive characteristic p, then −1 is a sum of p − 1 squares but not
itself a square, contradicting part a).
c) Since −1 is not a square, F does not have characteristic 2, and thus by part a)
−1 is not a sum of squares and F is formally real. �

The following exercises give strengthenings and variations on the Artin-Schreier
theorem.

Exercise X.X: (E. Fried): Let F be a field. Suppose that there exists a positive
integer d such that for every irreducible polynomial P ∈ K[t], deg(P ) ≤ d. Show
that F is real-closed or algebraically closed.

Exercise X.X (Knopfmacher-Sinclair) Let F be a field. Suppose that the set of
isomorphism classes of finite-dimensional field extensions of F is finite. Show that
F is real-closed or algebraically closed.

Exercise X.X (K. Conrad): A field K is real-closed iff 1 < [Ksep : K] <∞.

Exercise X.X (E. Fried): Let C be an algebraically closed field and K a subfield of
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C with K 6= C. Suppose that C is finitely generated over K. Then K is real-closed
and C = K(

√
−1).

Corollary 15.26. Let R be a real-closed field and K be a subfield of R. Let K ′ be
the algebraic closure of K in R. Then K ′ is real-closed.

Proof. Certainly K ′ is formally real. If P (t) ∈ K ′[t] is an irreducible polynomial of
odd degree, then K ′[t]/(P ) is formally real, so P has a root in R and therefore also
in K ′. Moreover, if 0 6= α ∈ K ′, then exactly one of α,−α is a square in R, so that
t2 ± α has a root in R and thus in K ′. By Theorem 15.24, K ′ is real-closed. �

15.5. Sign Changing in Ordered Fields.

Let (K, p) be an ordered field, and let f ∈ K[t] be a polynomial. If for a, b ∈ K we
have f(a)f(b) < 0, then we say f changes sign between a and b. If such a, b
exist we say f changes sign.

Lemma 15.27. Let (K, p) be an ordered field.
a) Every odd degree f ∈ K[t] changes sign.
b) For all a > 0, the polynomial t2 − a changes sign.

Exercise: Prove Lemma 15.27.

Proposition 15.28. For an ordered field (F, p), the following are equivalent:
(i) (Polynomial Intermediate Value Theorem) Let f ∈ F [t] and let a < b ∈ F
be such that f(a)f(b) < 0. Then there is c ∈ F such that a < c < b and f(c) = 0.
(ii) F is real-closed.

Proof. (i) =⇒ (ii): Suppose the Polynomial Intermediate Value Theorem holds
in F . By Lemma 15.27, every odd degree polynomial f ∈ K[t] change sign hence
has a root. Similarly, if a ∈ F×, then either a or −a is positive; without loss of
generality a > 0, and by Lemma 15.27, t2 − a changes sign so has a root. Thus
there is b ∈ F with b2 = a. By Theorem 15.24 F is real-closed.
(ii) =⇒ (i): Without loss of generality we may assume that f(a) < 0,, f(b) > 0
and that f is monic irreducible. By Theorem 15.24 f has degree 1 or 2. At this
point the proof is an amusing callback to high school algebra. If f has degree 1

then it is f(a) +
(
f(b)−f(a)

b−a

)
x, so it has a unique root and is moreover increasing,

so its unique root must occur in (a, b). Otherwise f(t) = t2 + ct + d, so by the
quadratic formula if it does not have a root then c2 − 4d < 0, but then for all

x ∈ K, f(x) =
(
x+ c

2

)2
+
(
d− c2

4

)
> 0, contradiction! �

Proposition 15.29. Let (K, p) be an ordered field, and let f ∈ K[t] be an irre-
ducible polynomial which changes sign. Then the field L = K[t]/(f) admits an
ordering extending p.

Proof. We go by induction on n = deg f , the base case n = 1 being trivial. So
suppose n ≥ 2, that the result holds for all smaller degrees and – seeking a contra-
diction – that it fails for some irreducible f of degree n. By Theorem 15.19 then
there are ai ≥ 0 and fi ∈ K[t], each of degree at most n− 1, such that

1 +
∑
i

aifi(t)
2 ≡ 0 (mod f)
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and thus there is 0 6= h ∈ K[t] with deg h ≤ n− 2 such that

1 +
∑
i

aifi(t)
2 = f(t)h(t).

Plugging in t = a and t = b we find f(a)h(a) > 0 and f(b)h(b) > 0 and thus
h(a)h(b) < 0. There must then be at least one irreducible factor g(t) of h(t) such
that g(a)g(b) < 0. Since

deg g ≤ deg h ≤ n− 2 < n = deg f

and
1 +

∑
i

aifi(t)
2 ≡ 0 (mod g),

this contradicts our induction hypothesis. �

Exercise: Use Proposition 15.29 to deduce new proofs of many (as many as possible!)
of the results of § 16.3.

15.6. Real Closures.

Proposition 15.30. For every formally real field K, there exists an algebraic ex-
tension Krc which is real-closed.

Proof. Let K be an algebraic closure of K, and consider the partially ordered set
of formally real subextensions of K/K. Since the union of a chain of formally
real fields is formally real, Zorn’s Lemma applies to give a maximal formally real
subextension, which is by definition real-closed. �

Definition: A real closure of a formally real field K is a real-closed algebraic
extension of K.

Lemma 15.31. Let K be a field, let R/K be a real-closed extension field of K,
and let R0 be the algebraic closure of K in R. Then R0 is a real closure of K.

Exercise: Prove Lemma 15.31.

Thus we have shown the existence of real closures for formally real fields. What
about uniqueness? By comparison with the case of algebraically closed fields, one
might guess that any two real closures of a given formally real field K are isomor-
phic as K-algebras. However, this is in general very far from being the case!

Example: Let K = Q(t). There is a unique embedding ι : K → R in which t
gets sent to π. Let K1 be the algebraic closure of ι(K) in R. On the other hand,

let ι2 : K →
⋃
n R(t

1
n ) be the natural embedding of K into the Puiseux series field,

and let K2 be the algebraic closure of ι2(K) in
⋃
nR(t

1
n . By Corollary 15.26, K1

and K2 are both real-closed fields. In particular, they each admit a unique order-
ing, in which the positive elements are precisely the nonzero squares. However,
the ordering on K1 is Archimedean and the ordering on K2 is not, since t is an
infinitesimal element. Therefore K1 and K2 are not isomorphic as fields, let alone
as K-algebras.

Theorem 15.32. Let (F, p) be an ordered field. Then there is an algebraic ex-
tension R/F which is real-closed and such that the unique ordering on R extends
p.
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Proof. Let K = F ({
√
x}x∈p). By Theorem 15.20, K is formally real, and now

by Proposition 15.30, there exists a real-closed algebraic extension R of K. Let
P = {x2 | x ∈ R×} be the unique ordering on R. Every x ∈ p is a square in
K and hence also in R: that is, p ⊂ P ∩ F . Conversely, if x ∈ F× \ p, then
−x ∈ p ⊂ P ∩ F ⊂ P , so that x 6∈ P , hence x 6∈ P ∩ F . Thus P ∩ F = p. �

In the above situation, we say R is a real closure of the ordered field (F, p).

Exercise: Use Theorem 15.32 to give a third proof of X.X and X.X

Theorem 15.33. (Sylvester) Let (K, p) be an ordered field, and let (R,P ) be a
real-closed extension. Let f ∈ K[t] be a nonzero monic separable polynomial, and
put A = K[t]/(f). Let Bf be the trace form on the K-algebra A, i.e., the bilinear

form 〈x, y〉 = TrA/K(x, y). Let C = R(
√
−1). Then:

a) The number of roots of f in R is equal to the signature of Bf .
b) Half the number of roots of f in C \R is equal to the number of hyperbolic planes
appearing in the Witt decomposition of Bf .

Proof. Let f(t) = f1(t) · · · fr(t) be the factorization of f over R[t]. Since f is
separable, the polynomials fi are distinct, and since R(

√
−1) is algebraically closed,

each fi has degree 1 or 2. Since A ⊗K R ∼= R[t]/(f), the trace form of A ⊗K R
is simply the scalar extension to R of the trace form Bf . Further, by the Chinese
Remainder Theorem

R[t]/(f) ∼=
r∏
i=1

R[t]/(fi),

so

(Bf )/R ∼=
r⊕
i=1

Bfi .

It is easy to see that if deg fi = 1 then the trace form is just 〈1〉, whereas the
computation at the end of Section 7 shows that when deg fi = 2 – so thatR[t]/(fi) ∼=
C – the trace form is congruent to 〈2,−2〉 ∼= 〈1,−1〉 = H, the hyperbolic plane.
Both parts of the theorem follow immediately. �

Sylvester’s Theorem may look rather specific and technical at first glance. Let
us explicitly extract from it the following key consequence: let f ∈ K[t] by a
polynomial defined over an ordered field (K,P ). Then if f has a root in one
real-closed field extending (K,P ), it has a root in every real-closed field extending
(K,P ). This is a very special case of Tarski’s transfer principle, which a logician
would express in the form “The theory of real-closed fields is model complete.”
Although it is a very special case, it has enough teeth to be the driving force
behind the powerful theorems we will now establish.

Theorem 15.34. Let (E,P )/(K, p) be an algebraic extension of ordered fields. Let
R be a real-closed field, and let σ : K → R be an ordered field embedding. Then
there is a unique order embedding ρ : E ↪→ R extending σ.

Corollary 15.35. Let (K,P ) be an ordered field, and for i = 1, 2 let σ:(K,P )→ Ri
be real closures. There is a unique K-algebra isomorphism ρ : R1 → R2.

Proof. Applying Theorem 15.34 with R1 = E and R2 = R, σ2 = σ, there is a
unique order embedding ρ : R1 → R2 extending σ2. Since R2/ρ(R1) is an algebraic
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extension of real-closed fields we must have ρ(R1) = R2. Finally, if τ : R1 → R2 is
any K-algebra homomorphism, then for all α > 0 in R1, we have

τ(α) = τ(
√
α)2 > 0.

Thus τ is order-preserving, so τ = ρ. �

15.7. Artin-Lang and Hilbert.

Lemma 15.36. Let K be real-closed, and let h1, . . . , hn ∈ K[t]•. Let P be an
ordering on K(t). Then there are infinitely many a ∈ K such that

∀1 ≤ i ≤ n, sgn(hi) = sgn(hi(a)).

Proof. Let h ∈ K[t]•. Then we may write

h = u(t− c1) · · · (t− cr)q1(t) · · · qs(t)

with u, c1, . . . , cr ∈ K× and qj(t) a monic irreducible quadratic for all 1 ≤ j ≤ s.
For any j,

qj(t) = q(t) = t2 + bt+ c = (t+
b

2
)2 + (c− b2

4
),

and since qj is irreducible over the real-closed field K, c − b2

4 > 0. It follows that
q > 0 and that for all a ∈ K, q(a) > 0. Thus

sgnh = sgnu

r∏
i=1

sgn(t− ci),

∀a ∈ K, sgnh(a) = sgnu

r∏
i=1

sgn(a− ci).

We may thus assume that each hi is monic and
∏n
i=1 hi has distinct roots in K.

Let c be the smallest root which is strictly greater than t, or ∞ if there is no such
root. Then for all a ∈ (t, c), sgnhi(a) = sgnhi(t) for all i: this is an infinite set. �

Theorem 15.37 (Artin-Lang Homomorphism Theorem). Let R be a real-closed
field, and let E = R(x1, . . . , xm) be a finitely generated field extension. If E is
formally real, then there is an R-algebra map R[x1, . . . , xm]→ R.

Proof. Let d be the transcendence degree of E/R. The case d = 0 is trivial: then
E = R[x1, . . . , xm] = R.
Step 1: We reduce to the d = 1 case. Indeed, let E′ be a subextension of E/R of
transcendence degree 1. Let R be a real-closure of E, and let R′ be the algebraic
closure of E′ in R, so by Lemma 15.31 R′ is real-closed. Assuming the result in
transcendence degree 1, there is a homomorphism of R′-algebras

ϕ : R′[x1, . . . , xm]→ R′.

Then

trdeg(K(ϕ(x1), . . . , ϕ(xm))/K) ≤ trdeg(R′/K) = trdeg(E′/K) = trdeg(E/K)− 1,

so by induction on d we may assume there is aK-algebra mapK[ϕ(x1), . . . , ϕ(xm)]→
K. Composing with the restriction of ϕ to K[x1, . . . , xm] we get a K-map to K.
Step 2: Suppose E = K(x, y1, . . . , yr), with x transcendental over K and y1, . . . , yr
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algebraic over K. We want a K-algebra map K[x, y1, . . . , yr] → K. By the Prim-
itive Element Corollary, there is y ∈ E such that E = K(x)[y]; further, we may
take y to be integral over K[x]. Then:

∃g1, . . . , gr ∈ K[x, y], h ∈ K[x]• such that ∀1 ≤ i ≤ r, yi =
gi(x, y)

h(x)
.

If ϕ : K[x, y] → K is such that ϕ(h) 6= 0, then ϕ induces a K-algebra map
K[x, y1, . . . , yr] → K. Thus it is enough to show: there are infinitely many K-
algebra maps ϕ : K[x, y] → K. Indeed, if 0 = ϕ(h) = h(ϕ(x)), then ϕ maps x to
one of the finitely many roots of h in K; since y is algebraic over K(x), having fixed
ϕ(x) there are only finitely many choices for ϕ(y).
Step 3: Let

f = (x, Y ) = Y n + cn−1(x)Y n−1 + . . .+ c0(x)

be the minimal polynomial for y over K(x). Since y is integral over K[x], we have
ci(x) ∈ K[x] for all i. For a ∈ K, put fa(Y ) = f(a, Y ) ∈ K[Y ]. We look for roots of
fa in K. For if b ∈ K is such that fa(b) = f(a, b) = 0, there is a unique K-algebra
map ϕ : K[x, y] → K with ϕ(x) = a, ϕ(y) = b. So it is enough to show: there are
infinitely many a ∈ K such that there is b ∈ K with fa(b) = 0.
Step 4: Finally we use that E is formally real! Let P be an ordering on E and
let R be a real-closure of (E,P ). Then f(x, Y ) ∈ K[x][Y ] has a root in R, namely
y ∈ E ⊂ R. By Sylvester’s Theorem, sgn(Bf )/K(x) > 0. If we can show that
there are infinitely many a ∈ K such that sgn((Bf )a)/K) > 0, then applying
Sylvester’s Theorem again we will get infinitely many a such that fa(Y ) has a root
in K and be done. We may diagonalize the quadratic form corresponding to Bf
as 〈h1(x), . . . , hn(x)〉, say. Staying away from the finitely many a such that hi(a)
is zero or undefined for some i, we have that Bfa

∼= 〈h1(a), . . . , hn(a)〉. By Lemma
15.36 there are infinitely many a such that sgnBfa = sgnBf > 0, and we’re done.

�

Actually Lang proved a stronger result, giving in particular a necessary and suffi-
cient condition for E to be formally real. His result uses the language of arithmetic
geometry, so unfortunately will probably not be accessible to all readers of these
notes, but here it is anyway.

Theorem 15.38 (Lang [La53]). Let V/R be a geometrically integral algebraic va-
riety over a real-closed field R, with function field E = R(V ). Then E is formally
real iff V has a nonsingular R-point.

The Artin-Lang homomorphism theorem is powerful enough to yield a quick proof
of the following result, which when one takes K = R = R, was the 17th of Hilbert’s
Problems proposed to the worldwide mathematical community in 1900.

Theorem 15.39 (Artin). Let K be a formally real field admitting a unique order-
ing, and let R be a real closure of K. If f ∈ K[t1, . . . , tm] is such that

f(a1, . . . , an) ≥ 0 ∀(a1, . . . , an) ∈ Rn,

then f is a sum of squares in K(t1, . . . , tm).

Proof. We argue by contraposition: suppose f ∈ K[t1, . . . , tm] is not a sum of
squares in K(t1, . . . , tm). By Corollary 15.17, there is an ordering P on E =
K(t1, . . . , tm) such that f <P 0. Let R be a real closure of (E,P ). Then f < 0
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in R, so there is w ∈ R with w2 = −f . By Lemma 15.31, the algebraic closure
R0 of K in R is real-closed, hence is a real-closure of the ordered field K since K
admits exactly one ordering. By uniqueness of real closures R0 = R. The field
R(t1, . . . , tm, w) is a subfield of the real-closed field R, hence by Artin-Lang there
is an R-algebra map

ϕ : R[t1, . . . , tn, w,
1

w
]→ R.

Note that the effect of including 1
w is that ϕ(w)ϕ( 1

w ) = 1, hence ϕ(w) 6= 0. For
1 ≤ i ≤ n, put ai = ϕ(ti); then (a1, . . . , an) ∈ Rn and

f(a1, . . . , an) = ϕ(f) = −ϕ(w)2 < 0.

�

Exercise: Let (K,P ) be an ordered field with real-closureR. Suppose f ∈ K[t1, . . . , tn]
has the property that f(a) ≥ 0 for all a ∈ Rn. Show that there is a positive def-
inite quadratic form q/K such that q represents f over K(t1, . . . , tn): there are
x1, . . . , xn ∈ K(t1, . . . , tn) such that q(x1, . . . , xn) = f .

15.8. Archimedean and Complete Fields.

As usual, a subset S of an ordered field F is called bounded above if there
exists a single element x ∈ F such that s ≤ x for all s ∈ S; bounded below is
defined similarly.

An ordered field F is Archimedean if the subfield Q is not bounded above.

Example: If x is any rational number, then x + 1 is a larger rational number.
Thus the field Q is Archimedean.

Exercise X.X: Show that all of the following conditions on an ordered field are
equivalent to the Archimedean property.
(i) For all x ∈ F , there exists n ∈ Z+ with n > x.
(ii) If x, y ∈ F with x > 0, then there eixsts n ∈ Z+ with nx > y.
(iii) If x ∈ F is non-negative and such that x < 1

n for all n ∈ Z+, then x = 0.

An ordered field is non-Archimedean if it is not Archimedean.

Exercise: Show that any subfield of an Archimedean ordered field is Archimedean,
but a subfield of a non-Archimedean ordered field may be Archimedean.

An element x of an ordered field is infinitely large if x > n for all n ∈ Z+

and infinitesimal if 0 < x < 1
n for all n ∈ Z+. Thus x is infinitely large iff 1

x is
infinitesimal, and by Exercise X.X, the ordering is non-Archimedean iff infinitely
large elements exist iff infinitsimal elements exist.

Exercise X.X: Suppose x is an infinitely large element of an ordered field. Show
that for all y ∈ Q, x− y is infinitely large.

Exercise X.X: Let K be an ordered field; consider the rational function field K(t).
a) Observe that Proposition ?? shows thatK(t) admits at least one non-Archimedean
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ordering. Show that in fact K(t) admits at least four non-Archimedean orderings.
Can you improve upon 4?
b) Use part a) to show that for every infinite cardinal κ, there exists a non-
Archimedean ordered field of cardinality κ.

A partially ordered set (S,≤) is Dedekind complete if every nonempty sub-
set which is bounded above has a least upper bound.

Exercise X.X: Show that a partially ordered set is Dedekind complete iff every
subset which is bounded below has a greatest lower bound.

Proposition 15.40. Let F be a Dedekind complete ordered field. Then the ordering
is Archimedean.

Proof. We go by contraposition: if F is non-Archimedean, then the subset Z+ is
bounded above, and the set of upper bounds is precisely the set of infinitely large
elements. However, Exercise X.X shows in particular that the set of infinitely large
elements has no least element: if x is infinitely large, so is x− 1. �

Famously, R satisfies the least upper bound axiom, i.e., its ordering is Dedekind
complete. So by Proposition 15.40 the ordering on R is Archimedean. (Probably
the reader was not in doubt of this, but this is an especially clean approach.) Thus
every subfield of R is Archimedean.

The order topology: let (S,≤) be any linearly ordered space. Recall that we can
use the ordering to endow S with a topology, the order topology, in which a base
of open sets consists of all open intervals.19 Order topologies have several pleasant
properties: for instance, any order topology is a hereditarily normal space (i.e.,
every subspace is normal: for us, this includes Hausdorff).

Proposition 15.41. Let K be an ordered field. Then the order topology endows
K with the structure of a topological field. That is, the addition and multiplication
operations are continuous as functions from K ×K to K.

Exercise: Prove Proposition 15.41. (Suggestion: use the characterization of contin-
uous functions as those which preserve limits of nets.)

Proposition 15.42. For any Archimedean ordered field F , Q is dense in the order
topology on F .

Proof. It is sufficient to show that for a, b ∈ F with 0 < a < b, there exists x ∈ Q
with a < x < b. Because of the nonexistence of infinitesimals, there exist x1, x2 ∈ Q
with 0 < x1 < a and 0 < x2 < b − a. Thus 0 < x1 + x2 < b. Therefore the set
S = {n ∈ Z+ | x1 + nx2 < b} is nonempty. By the Archimedean property S is
finite, so let N be the largest element of S. Thus x1 +Nx2 < b. Moreover we must
have a < x1 +Nx2, for if x1 +Nx2 ≤ a, then x1 + (N + 1)x2 = (x1 +Nx2) + x2 <
a+ (b− a) = b, contradicting the definition of N . �

Exercise: Deduce from Proposition 15.42 that the order topology on any Archimedean
ordered field is second countable. (Hint: show in particular that open intervals with

19If there is a bottom element b of S, then the intervals [b, b) are deemed open. If there is a
top element t of S, then the intervals (a, t] are deemed open. Of course, no ordering on a field has

either top or bottom elements, so this is not a relevant concern at present.
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rational endpoints form a base for the topology.) From the normality of all order
topologies cited above and Urysohn’s Metrization Theorem, it follows that the or-
der topology on an Archimedean ordered field is metrizable.20

In particular the order topology on K endows (K,+) with the structure of a com-
mutative topological group. In such a situation we can define Cauchy nets, as
follows: a net x• : I → G in a commutative topological group G is Cauchy if
for each neighborhood U of the identity 0 ∈ G there exists i ∈ I such that for
all j, k ≥ i, xj − xk ∈ U . A topological group is complete if every Cauchy net
converges.

Let F be an ordered field. We define the absolute value function from F to F≥0,
of course taking |x| to be x if x ≥ 0 and −x otherwise.
Exercise: Let F be an ordered field. Show that the triangle inequality holds: for
all x, y ∈ F , |x+ y| ≤ |x|+ |y|.

Thus for any ordered field F , one can define the function ρ : F × F → F≥0 by
ρ(x, y) = |x − y| and this has all the formal properties of a metric except that it
is F -valued. In particular, for any net x• in F we have x• → x iff |x• − x| → 0.
In general it can be of some use to consider “F -valued metrics” where F is a
non-Archimedean ordered field. But here is the key point: if the ordering on F
is Archimedean, then the convergence can be expressed by inequalities involving
rational numbers (rather than the infinitesimal elements that would be required
in the non-Archimedean case): namely, for an Archimedean ordered field F , a net
x• : I → F converges to x ∈ F iff for all n ∈ Z+, there exists in ∈ I such that
j ≥ i =⇒ |xj − x| < 1

n . Topologically speaking, we are exploiting the fact that
the topology of an Archimedean ordered field has a countable neighborhood base
at each point. Thus it is sufficient to replace nets by sequences. In particular we
have the following simple but important result.

Lemma 15.43. Let K be an Archimedean ordered field. Then TFAE:
(i) Every Cauchy net in K is convergent.
(ii) Every Cauchy sequence in K is convegent.

Proof. Of course (i) =⇒ (ii). Now suppose that every Cauchy sequence in K
converges, and let x• : I → K be a Cauchy net. We may assume that I has no
maximal element, for otherwise the net is certainly convergent. Choose i1 ∈ I such
that j, k ≥ i1 implies |xj − xk| < 1. Now pick i2 ∈ I such that i2 > I1 and j, k ≥ i2
implies |xj − xk| < 1

2 . Continuing in this manner we get an increasing sequence

{in} in I such that for all n, if j, j ≥ in, |xj − xk| < 1
n . Thus from the net we have

extracted a Cauchy subsequence, which by hypothesis converges, say to x. From
this it follows immediately that the net x• converges to x. �

Remark: The proof here is based on [Wi, Thm. 39.4], which asserts that the
uniform structure associated to a complete metric is a complete uniform structure
iff the metric is a complete metric.

Theorem 15.44. For an Archimedean ordered field K, TFAE:
(i) The ordering on K is Dedekind complete: every nonempty subset which is

20However, we are not going to use this fact in our discussion. Rather, as will become clear,

an ordered field K comes with a canonical “K-valued metric”, which will be just as useful to us
as an “R-valued metric” – a special case!
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bounded below has a greatest lower bound.
(ii) (K,+) is a Cauchy-complete topological group: every Cauchy net converges.

Proof. (i) =⇒ (ii): Dedekind complete implies Archimedean implies second count-
able implies first countable implies it is enough to look at Cauchy sequences. The ar-
gument is then the usual one from elementary real analysis: suppose K is Dedekind
complete, and let xn be a Cauchy sequence in K. Then the sequence is bounded,
so there exists a least upper bound x. We can construct a subsequence converging
to x in the usual way: for all k ∈ Z+, let xnk be such that |xnk − x| < 1

n . (That
this implies that the subseuence converges is using the the Archimedean property
that for all x > 0, there exists n ∈ Z+ with 1

n < x.) Then, as usual, a Cauchy
sequence with a convergent subsequence must itself be convergent.
(ii) =⇒ (i): let S ⊂ K be nonempty and bounded below. Let B be the set of all
lower bounds of S, with the ordering induced from K. What we want to show is
that B has a greatest element: we will prove this by Zorn’s Lemma. Let C be a
nonempty chain in B. We may view this as a net x : C → K. We claim that it is
Cauchy: i.e., for every open neighborhood U of 0, there exists an index i such that
for all j, k ≥ i, xi−xj ∈ U . Because the ordering is Archimedean, this is equivalent
to |xi − xj | < ε for some positive rational number ε. But since C is a set of lower
bounds for the nonempty set S, it is certainly bounded above, and if the desired
conclusion were false there would exist infinitely many pairs of indices (i, j) with
j > i and xj − xi ≥ ε, and by the Archimedean nature of the ordering this would
imply that C is unbounded above, contradiction! Therefore the net x• is Cauchy
and converges by assumption to x ∈ K. This element x is an upper bound for C
and a lower bound for S. Thus by Zorn’s Lemma B has a maximal element, i.e., S
has a greatest lower bound. �

An Archimedean ordered field satisfying the equivalent conditions of Theorem 15.44
will simply be said to be complete.

Proposition 15.45. (Strong Rigidity for Archimedean ordered fields) Let K be
an Archimedean ordered field and let f : K → K be an endomorphism, i.e., an
order-preserving field homomorphism from K to itself. Then f = 1K is the identity
map.

Proof. Suppose not, and let x ∈ K be such that f(x) 6= x. Without loss of gen-
erality we may suppose that x < f(x), and then by Proposition 15.42 there exists
q ∈ Q with x < q < f(x). Applying the isotone map f gives f(x) < f(q) = q, a
contradiction! �

Lemma 15.46. Let R and S be topological rings and D a dense subring of R.
Suppose that f : R→ S is a continuous set map from R to S which upon restriction
to D is a homomorphism of rings. Then f is itself a homomorphism of rings.

Exercise: Prove Lemma 15.46. (Hint: use the net-theoretic characterization of
dense subspaces: for any x ∈ R, there exists a net x• : I → D which converges to
x.)

Theorem 15.47. (Main Theorem on Archimedean Ordered Fields)
A complete Archimedean field R is a final object in the category of fields. That is:
(i) For any Archimedean field K and Dedekind complete field R, there exists a
unique embedding of ordered fields K ↪→ R.
(ii) Any two Dedekind complete fields are canonically – even uniquely! – isomorphic.
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Proof. (i) The idea here is that we have copies of Q inside both K and L and that
in an Archimedean ordered field an element is uniquely specified by all of its order
relations with elements of Q. Formally, we define a map ϕ : K → L as follows:
we map x to sup{q ∈ Q | q < x}. As above, it is clear that ϕ is order-preserving.
When restricted to the dense subring Q it is certainly a homomorphism, so in order
to apply Lemma 15.46 we need only check that ϕ is continuous. But again, a base
for the topology of any Archimedean field is given by open intervals (a, b) with
a, b ∈ Q. Evidently ϕ maps the interval (a, b) of K to the interval (a, b) of L, so it
is therefore continuous: done.
(ii) Let R1 and R2 be complete Archimedean fields. By (i), there exist embeddings
of ordered fields ϕ : R1 → R2 and $ : R2 → R1. Applying Proposition 15.45 to
the endomorphisms $ ◦ϕ and $ ◦ϕ, we get $ ◦ϕ = 1R1

and ϕ ◦$ = 1R2
, thus $

and ϕ are mutually inverse isomorphisms: so R1
∼= R2 as ordered fields. Moreover

the same argument applies to show that any two isomorphisms ϕ1, ϕ2 from R1 to
R2 are inverses of the isomorphism $, so ϕ1 = ϕ2: there is only one isomorphism
from R1 to R2. �

We have already identified the real numbers R as a complete Archimedean field, so
we know that the final object referred to in Theorem 15.47 indeed exists. Let us
restate things in a more concrete fashion using R.

Corollary 15.48. For any Archimedean ordered field K, there is a unique em-
bedding of ordered fields K ↪→ R. Thus we may identify the Archimedean ordered
fields – up to unique isomorphism – as precisely the subfields of R with the inherited
ordering.

It may be worth asking at this point: exactly how do we know that this field “of
real numbers” we’ve heard so much about actually exists? We’ve proven some fairly
remarkable facts about it: maybe rumors of its existence are greatly exaggerated!

The previous paragraph is silly. A rigorous construction of R was first given by
R. Dedekind in the late 19th century. Accounts of his method (using what are
now called) “Dedekind cuts” may be found in many texts. However, our Cauchy-
theoretic perspective also gives an easy answer to this question. Namely, one has the
notion of Cauchy completion of any commutative topological group G: namely,
given G there exists a complete topological group Ĝ and a homomorphism of topo-
logical groupsG→ Ĝ which is universal for homomorphisms fromG into a complete
topological group (If G is Hausdorff the map to the completion is an embedding.)
The construction can be given in terms of an equivalence relation on the class of
Cauchy nets on G, for instance. Moreover, when G is the additive group of an
ordered field F , it is not hard to show that F̂ is also an ordered field. Note well
that we can therefore construct many Cauchy complete non-Archimedean or-
dered fields. However what we want is a Dedekind complete ordered field, and for
this, according to Theorem 15.44 it is sufficient – and clearly also necessary – to
complete an Archimedean ordered field, like Q.

The construction of the Cauchy completion of a commutative topological group
is more abstruse than is necessary for this application, though. As in Lemma 15.43
above, we can get away with Cauchy sequences rather than Cauchy nets. Thus
we may construct R from Q in the following appealingly algebraic way: take the
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ring C(Q) of all Cauchy sequences in Q and mod out by the maximal ideal c0 of
sequences converging to 0. Therefore the quotient is a Cauchy complete field, say
R. It is easy to check that the ordering on Q extends to R and that Q is dense in R
in the order topology, which implies that the ordering on R is Archimedean. Thus
R is a Cauchy complete, Archimedean ordered field, so it is Dedekind complete.

15.9. The Real Spectrum.

For a field F , let X(F ) be the set of all orderings on F . There is a natural topology
on X(F ): namely the open sets are given by finite intersections of (subbasic) open
sets of the form

H(a) = {P ∈ X(F ) | a ∈ P}
as a ranges through nonzero elements of F : that is, H(a) is the set of orderings
which regard a as positive. Note that H(−a) = X(F ) \ H(a), so that the H(a)
and (and hence also all the basis elements) are closed as well open: this implies
that X(F ) is totally disconnected and Hausdorff. It is also compact. To see this,

note that an ordering P of F gives rise to an element of Y = {±1}F× , namely for
each nonzero element a, we assign +1 if a ∈ P and −1 if −a ∈ P . Giving {±1}
the discrete topology and Y the product topology, it is a compact Hausdorff totally
disconnected space by Tychonoff’s theorem. It remains to be shown first that the
topology on X(F ) defined above is the same as the topology it gets as a subspace
of Y 21, and second that X(F ) is closed as a subspace of Y . Neither of these is very
difficult and we leave them to the reader.

If F1 ↪→ F2 is a field embedding, then the aforementioned process of restricting
orders on F2 to orders on F1 gives a map X(F2) → X(F1) which is easily seen to
be continuous.

A topological space which is compact Hausdorff and totally disconnected is of-
ten called Boolean, since these are precisely the spaces which arise as spectra of
maximal ideals of Boolean algebras.

Theorem 15.49. (Craven [Cr75]) Any Boolean space X is homeomorphic to X(F )
for some field F .

The following exercises develop a proof in the special case in which X is second
countable. Exercise: Let F = lim

−→α
Fα be a direct limit (i.e., directed union) of

fields. Show X(F ) = lim
←−α

X(Fα) as topological spaces.

Exercise: Let F/Q be a (possibly infinite) formally real Galois extension. Show
that Aut(F ) = Gal(F/Q) acts continuously and simply transitively on X(F ), and
conclude that in this case X(F ) is homeomorphic to the underlying topological
space of a profinite group. In particular, if F/Q is infinite, X(F ) is an infinite
profinite space without isolated points and with a countable basis, so is homeomor-
phic to the Cantor set. (A good example is F = Q({√p}) as p ranges over all the

prime numbers: here Aut(F ) ∼= (Z/2Z)ℵ0 really looks like the Cantor set.)

21One might wonder why we didn’t save ourselves the trouble and define the topology on X(F )
in this latter way. It turns out that the sets H(a), called the Harrison subbasis, are important in

their own right.
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Exercise: Use weak approximation of valuations to show that any inverse system

. . .→ Sn+1 → Sn → . . .→ S1

of finite sets can be realized as the system of X(Fn)’s where

F1 . . . ↪→ Fn ↪→ Fn+1 ↪→ . . .

is a tower of number fields. Conclude that any profinite space with a countable
basis arises as the space of orderings of an algebraic field extension of Q.
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[Kr53] W. Krull, Über eine Verallgemeinerung des Normalkörperbegriffs. J. Reine Angew.
Math. 191 (1953), 54–63.

[Ku65] W. Kuyk, The construction of fields with infinite cyclic automorphism group. Canad. J.
Math. 17 (1965), 665–668.



114 PETE L. CLARK

[La53] S. Lang, The theory of real places. Ann. of Math. (2) 57 (1953), 378–391.

[LaFT] S. Lang, Algebra. Revised third edition. Graduate Texts in Mathematics, 211. Springer-

Verlag, New York, 2002.
[Las97] D. Lascar, The group of automorphisms of the field of complex numbers leaving fixed

the algebraic numbers is simple. Model theory of groups and automorphism groups

(Balubeuren, 1995), 110-114, London Math. Soc. Lecture Note Ser., 244, Cambridge
Univ. Press, Cambridge, 1997.

[Le55] H. Leptin, Ein Darstellungssatz für kompakte, total unzusammenhngende Gruppen. Arch.

Math. (Basel) 6 (1955), 371–373.
[Lev43] F.W. Levi, Contributions to the theory of ordered groups. Proc. Indian Acad. Sci., Sect.

A. 17 (1943), 199–201.

[LoI] F. Lorenz, Algebra. Vol. I. Fields and Galois theory. Translated from the 1987 German
edition by Silvio Levy. With the collaboration of Levy. Universitext. Springer, New York,

2006.
[LoII] F. Lorenz, Algebra. Vol. II. Fields with structure, algebras and advanced topics. Trans-

lated from the German by Silvio Levy. With the collaboration of Levy. Universitext.

Springer, New York, 2008.
[Mac39] S. Mac Lane, Steinitz field towers for modular fields. Trans. Amer. Math. Soc. 46, (1939).

23–45.

[Mo96] P. Morandi, Field and Galois theory. Graduate Texts in Mathematics, 167. Springer-
Verlag, New York, 1996.

[NTII] P.L. Clark, Algebraic Number Theory II: Valuations, Local Fields and Adeles. http:

//math.uga.edu/~pete/8410FULL.pdf

[Pa74] T. Parker, Some applications of Galois theory to normal polynomials. Amer. Math.

Monthly 81 (1974), 1009–1011.

[QF] P.L. Clark, Lecture notes on quadratic forms. Available online.
[Rom06] S. Roman, Field theory. Second edition. Graduate Texts in Mathematics, 158. Springer,

New York, 2006.
[Rot98] J. Rotman, Galois theory. Second edition. Universitext. Springer-Verlag, New York, 1998.

[Sc92] B. Schnor, Involutions in the group of automorphisms of an algebraically closed field. J.

Algebra 152 (1992), 520–524.
[Sp52] T.A. Springer, Sur les formes quadratiques d’indice zéro. C. R. Acad. Sci. Paris 234
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