Although the preceding proof requires no linear algebra, one can compare it to the proof of [1], which uses eigenvalues. Thinking about it gives another simple proof, provided one knows a little linear algebra in characteristic p.

Second Proof of the Friendship Theorem. We again reduce to the case in which the graph is k-regular, i.e., each vertex has exactly k adjacent vertices and the total number of vertices is $n = k(k - 1) + 1$, with $k \geq 3$. Let $G = \{v_1, \ldots, v_n\}$. We let A be the adjacency matrix of G, whose (i, j) entry is 1 if v_i and v_j are adjacent, and 0 otherwise. The matrix A has zeroes on the diagonal, so the trace of A is 0. We let B be the n by n matrix having a 1 in every entry. The trace of B is n.

By assumption and the fact that G is k-regular, $A^2 = (k - 1)I + B$, and $AB = kB$, where I is the identity matrix of size n by n. We now pass to the field \mathbb{Z}_p, where p is a prime dividing $k - 1$. We continue to call the matrices A and B, though we now think of them with entries in \mathbb{Z}_p. Observe that both n and k are now equal to 1. Hence $A^2 = B$, and furthermore $AB = kB = B$. It follows that for all $l \geq 2$, $A^l = B$. Let $\text{tr} \ C$ denote the trace of a square matrix C. In characteristic p, $\text{tr} \ A^p = (\text{tr} \ A)^p$. We reach a contradiction: $1 = n = \text{tr} \ B = \text{tr} \ A^p = (\text{tr} \ A)^p = 0$. □

The relation between the first proof and the second is simply that the trace of A^p counts the closed walks of length p in the graph. The relationship between the second proof and the usual proof is clear: in characteristic 0, one computes the eigenvalues of A^2 and then proves that A could not have trace 0. The second proof takes advantage of the fact that $(a + b)^p = a^p + b^p$ in characteristic p. This allows us to avoid the actual computation of the eigenvalues, to push the calculation of the trace out to the pth power.

REFERENCES

University of Kansas, Lawrence, KS 66045, USA

huneke@math.ukans.edu

A Short Proof of Lebesgue’s Density Theorem

Claude-Alain Faure

Lebesgue’s one-dimensional density theorem [1] says that almost all points of an arbitrary set $E \subseteq \mathbb{R}$ are points of density for E. We recall that a point $x \in \mathbb{R}$ is a point of density for E if one has
\[d_+(E, x) := \liminf_{y \to x} \frac{m^*(E \cap (x, y))}{y - x} = 1, \]

and
\[d_-(E, x) := \liminf_{y \to x} \frac{m^*(E \cap (y, x))}{x - y} = 1, \]

where \(m^*(A) \) denotes the Lebesgue outer measure of the set \(A \subseteq \mathbb{R} \). For a survey of various proofs of this theorem, see [2], where a new constructive proof is given by the authors.

A short proof of the theorem is in [6]. Our proof does not use measurable functions, but only the usual properties of the outer measure. Furthermore, it is valid for non-measurable sets \(E \subseteq \mathbb{R} \). We use the following properties of the Lebesgue outer measure \(m^* \):

(P1) \(A \subseteq B \Rightarrow m^*(A) \leq m^*(B) \),

(P2) \(m^*(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} m^*(A_n) \),

(P3) if \(U \subseteq \mathbb{R} \) is an open set whose components are the intervals \((c_n, d_n)\), then \(m^*(U) = \sum_n (d_n - c_n) \),

(P4) \(m^*(A) = \inf\{m^*(U)/A \subseteq U \text{ and } U \text{ is open}\}\),

(P5) \(m^*(A \cap (a, c)) = m^*(A \cap (a, b)) + m^*(A \cap (b, c)) \).

Properties (P3) and (P4) can be taken as definition of the outer measure \(m^* \). The following lemma is a slight modification of Riesz’s Rising Sun Lemma [3]:

Lemma. Let \(G : [a, b] \to \mathbb{R} \) be a continuous function and let \(U \subseteq (a, b) \) be an open set. Then the set

\[U_G := \{x \in U/\text{there exists } y > x \text{ with } (x, y) \subseteq U \text{ and } G(x) > G(y)\} \]

is also open. Moreover, if \((c, d)\) is a component of \(U_G \), then \(G(c) \geq G(d) \).

Proof. Trivially, the set \(U_G \) is open. Now let \((c, d)\) be any component of \(U_G \). We show that \(G(x) \geq G(d) \) for all \(x \in (c, d) \). Let \(s := \max\{r \in [x, d]/G(x) \geq G(r)\} \), and suppose that \(s < d \). Thus \(G(x) < G(d) \) and \(s \in U_G \). There exists some \(t > s \) with \((s, t) \subseteq U \) and \(G(s) > G(t) \). If \(t \leq d \), then \(G(x) \geq G(s) > G(t) \) contradicts the maximality of \(s \). And if \(t > d \), then \(G(d) > G(x) \geq G(s) > G(t) \) implies that \(d \in U_G \), a contradiction. Therefore \(s = d \) and hence \(G(x) \geq G(d) \). \(\square \)

Theorem. The set \(A := \{x \in E/d_+(E, x) < 1\} \) has outer measure zero.

Proof. It is enough to verify that \(A_n := \{x \in E \cap (-n, n)/d_+(E, x) < n/(n + 1)\} \) has outer measure zero. We consider the map \(G : [-n, n] \to \mathbb{R} \) defined by

\[G(x) = m^*(E \cap (-n, x)) - \frac{n}{n + 1}x. \]

For \(x < y \) one has \(G(y) - G(x) = m^*(E \cap (x, y)) - n(y - x)/(n + 1) \) by property (P5). Since \(0 \leq m^*(E \cap (x, y)) \leq y - x \), it follows that the map \(G \) is continuous.

Now let \(\varepsilon > 0 \). By (P4) there exists an open set \(U \subseteq (-n, n) \) such that \(A_n \subseteq U \) and \(m^*(U) < m^*(A_n) + \varepsilon \). Since \(d_+(E, x) < n/(n + 1) \) for every \(x \in A_n \), one de-
duces that $A_n \subseteq U_G$. Let (c_k, d_k) denote the components of U_G. By the lemma one has $G(c_k) \geq G(d_k)$ for each k and hence $m^*(E \cap (c_k, d_k)) \leq n(d_k - c_k)/(n + 1)$. By (P2), (P1), and (P3) one thus obtains

$$m^*(A_n) \leq \sum_k m^*(A_n \cap (c_k, d_k)) \leq \sum_k \frac{n}{n + 1} (d_k - c_k) = \frac{n}{n + 1} m^*(U_G).$$

Therefore $m^*(A_n) < n(m^*(A_n) + \varepsilon)/(n + 1)$, which implies that $m^*(A_n) < ne$. The assertion follows because ε is arbitrary.

By symmetry, the set $B := \{x \in E / d_-(E, x) < 1\}$ also has outer measure zero. Hence $d_+(E, x) = d_-(E, x) = 1$ for almost all $x \in E$, and the proof of Lebesgue’s theorem is complete.

REFERENCES

Lycée cantonal de Porrentruy, place Blarer-de-Wartensee 2, CH-2900 Porrentruy, Switzerland
cafaure@bluewin.ch

A Simple Proof of $1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots = \frac{\pi^2}{6}$

and Related Identities

Josef Hofbauer

1. A PROOF FOR

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots = \frac{\pi^2}{6}. \quad (1)$$

Repeated application of the identity

$$\frac{1}{\sin^2 x} = \frac{1}{4 \sin^2 \frac{x}{2} \cos^2 \frac{x}{2}} = \frac{1}{4} \left[\frac{1}{\sin^2 \frac{x}{2}} + \frac{1}{\cos^2 \frac{x}{2}} \right] = \frac{1}{4} \left[\frac{1}{\sin^2 \frac{x}{2}} + \frac{1}{\sin^2 \frac{\pi + x}{2}} \right] \quad (2)$$

yields