EUCLIDEAN QUADRATIC FORMS AND ADC-EXTENSIONS

PETE L. CLARK

Abstract. A classical result, often called the Davenport-Cassels Theorem, gives a sufficient condition for an integral quadratic form to integrally represent every integer that it rationally represents. We present a version of this result which allows one to pass from rational to integral representations for certain quadratic forms over a *normed ring*. Applying our theorem to the ring \(k[t] \) we recover the Cassels-Pfister theorem. This motivates a closer study of both the class of forms which satisfy the hypothesis of our theorem ("Euclidean forms") and its conclusion ("Aubry-Davenport-Cassels forms"). We give a very preliminary analysis of these classes, mainly concentrating on formulating some natural conjectures and questions concerning their classification.

1. Euclidean Forms and ADC-Extensions

1.1. Normed rings.

Let \(R \) be a (commutative, unital) ring. We write \(R^\ast \) for \(R \setminus \{0\} \).

A **norm** on \(R \) is a function \(| | : R^\ast \to \mathbb{Z}^+ \) such that

(MN1) \(\forall x \in R, x \in R^\times \iff |x| = 1 \), and

(MN2) \(\forall x, y \in R, |xy| = |x||y| \).

When convenient, we extend \(| | \) to \(R \) by putting \(|0| = 0 \).

In other words, a norm on \(R \) is a homomorphism of multiplicative monoids \((R^\ast, \cdot) \to (\mathbb{Z}^+, \cdot) \) satisfying the additional condition that nonunits map to nonunits.

A norm \(| | \) is **non-Archimedean** if for all \(x, y \in R \), \(|x + y| \leq \max(|x|, |y|) \).\(^1\)

By a **normed ring**, we shall mean (here) a pair \((R, | |) \) where \(| | \) is a norm on \(R \). Note that a normed ring is necessarily an integral domain. We denote the fraction field by \(K \). The norm extends uniquely to a homomorphism of groups \((K^\times, \cdot) \to (\mathbb{Q}^{>0}, \cdot) \) via \(|\frac{x}{y}| = \frac{|x|}{|y|} \), and the induced norm on \(K \) is non-Archimedean iff the norm on \(R \) is non-Archimedean.

Example 1: Let \(R = \mathbb{Z} \). The usual Euclidean absolute value is a norm on \(R \).

Example 2: Let \(k \) be a field, \(R = k[t] \), and let \(a \geq 2 \) be an integer. Then the map \(f \in k[t]^\ast \to a^{\deg f} \) is a non-Archimedean norm \(| |_a \) on \(R \). When \(k \) is finite, it is most natural to take \(a = \#k \) (see below). Otherwise, we may as well take \(a = 2 \).

\(^1\)Note that we do not require that a general norm satisfy the triangle inequality.
Example 3: Let R be an infinite integral domain with property (FN): for every nonzero ideal I of R, R/I is finite. (In particular, R may be an order in a number field, the ring of regular functions on an affine algebraic curve over a finite field, or any localization or completion thereof.) Then the map $x \in R^* \mapsto \#R/(x)$ gives a norm on R [2, Prop. 5], which we will call the canonical norm on R. The given norm $|\cdot|$ on \mathbb{Z} is the canonical norm, as is the norm $|\cdot|_q$ on the polynomial ring $\mathbb{F}_q[t]$.

A norm $|\cdot|$ on a ring R is Euclidean if for all $x \in K \setminus R$, there exists $y \in R$ such that $|x-y| < 1$. A domain which admits a Euclidean norm is a principal ideal domain (PID). It is known that the converse is not true, both in the sense that a given norm on a PID need not be Euclidean and in the stronger sense that there are PIDs which do not admit any Euclidean norm. However, for our purposes we wish to consider the norm as part of the given structure on R, so when we say “R is Euclidean”, we really mean “the given norm $|\cdot|$ on R is a Euclidean norm”.

1.2. Euclidean quadratic forms.

Let $(R, |\cdot|)$ be a normed ring of characteristic different from 2. By a quadratic form over R, we mean a polynomial $q \in R[x] = R[x_1, \ldots, x_n]$ which is homogeneous of degree 2. Recall that a quadratic form q_R is isotropic if there exists $a = (a_1, \ldots, a_n) \in R^n \setminus \{(0, \ldots, 0)\}$ such that $q(a) = 0$; otherwise q is anisotropic. It is easy to see that q is anisotropic as a quadratic form over R iff it is anisotropic over the fraction field K.

Now for the first of two fundamental definitions of this paper.

A quadratic form q on a normed ring $(R, |\cdot|)$ is Euclidean if for all $x \in K^n \setminus R^n$, there exists $y \in R^n$ such that $0 < |q(x-y)| < 1$.

Remark: An anisotropic quadratic form q is Euclidean iff for all $x \in K^n$ there exists $y \in R^n$ such that $|q(x-y)| < 1$.

Proposition 1. The norm $|\cdot|$ on R is a Euclidean norm iff the quadratic form $q(x) = x^2$ is a Euclidean quadratic form.

Proof. Noting that q is an anisotropic quadratic form, this comes down to:

$$\forall x, y \in K, \quad |x-y| < 1 \iff |q(x-y)| = |(x-y)^2| = |x-y|^2 < 1.$$
1.4. ADC-extensions and ADC-forms.

Now for the other key definitions of this paper.

Let $R \hookrightarrow S$ be an extension of domains, and let q/R be a quadratic form. We say that S/R is an **ADC-extension** for q if, for all $d \in R$, if there exists $x \in S^n$ such that $q(x) = d$, there exists $y \in R^n$ such that $q(y) = d$. If R is a domain with fraction field K, we say that q is an **ADC-form** if the extension K/R is an ADC-extension for q.

Example 5: If R is integrally closed, then $q(x) = x^2$ is an ADC-form. Indeed, $a \in R^*$ is K-represented by q iff the monic polynomial $t^2 - a$ has a K-rational root. An explicit example of a domain R for which x^2 is not an ADC-form is $R = \mathbb{Z}[\sqrt{-4}]$, in which q represents -1 over the fraction field but not over R.

Example 6: Let k be a field (of characteristic different from 2), and let q be an isotropic quadratic form over k. Then any extension S/k is an ADC-extension for q. Indeed, since q is isotropic over k, it contains the hyperbolic plane xy as a subform. More precisely, after a k-linear change of variables, we may assume $q = x_1x_2 + q'(x_3, \ldots, x_n)$. It is then clear that for any ring extension S of k and any $s \in S$, q S-represents s: take $x_1 = s$, $x_2 = 1$, $x_3 = \ldots = x_n = 0$.

Example 7: By Meyer’s Theorem, if $q(x_1, \ldots, x_n)$ is a quadratic form over \mathbb{Q} with $n \geq 4$, then \mathbb{R}/\mathbb{Q} is an ADC-extension for \mathbb{Q}, i.e., q rationally represents all rational numbers permitted by sign considerations.

The ADC-condition can be made quite concrete, as follows. Suppose $a \in R$ and the R-quadratic form q K-represents a. Then there exist $x_1, \ldots, x_n \in R$ and $d \in R^*$ such that $q(x_1, \ldots, x_n) = d^2a$; and conversely. In other words, for any $a \in R$, we can “rationally” represent a iff we can “integrally” represent some nonzero square times a, and thus the ADC-condition can be viewed as a desquaring property. It is thus a natural and useful property to have when trying to understand integral representations in terms of rational representations: e.g. in the case $R = \mathbb{Z}$ it reduces \mathbb{Z}-representation of arbitrary elements of \mathbb{Z} to \mathbb{Z}-representation of squarefree integers.

Example 8: The form $q(x, y) = x^2 - y^2$ is isotropic over \mathbb{Z} but is not an ADC-form. Indeed, over the field \mathbb{Q} the isotropic form q is isomorphic to the hyperbolic plane and thus represents every number: concretely, $a = (\frac{a+1}{2})^2 - (\frac{a-1}{2})^2$. However, reducing modulo 4 shows that q does not \mathbb{Z}-represent any $a \equiv 2 \pmod{4}$.

Example 9: In 1912, the amateur mathematician L. Aubry showed that $q(x) = x_1^2 + x_2^2 + x_3^2$ is an ADC-form [1]. This leads to an elegant and conceptual proof of the Legendre-Gauss Three Squares Theorem, since already by Aubry’s day the theory of rational quadratic forms had been systematically understood by H. Minkowski.

We observed in Example 4 that q is Euclidean. Indeed, Aubry’s proof exploits the
Euclidean property. However, his argument seems to have been forgotten for many years, and circa 1960 Davenport and Cassels (unpublished) rediscovered Aubry’s argument. The result which is generally attributed to Davenport and Cassels may be stated in our terminology as follows.

Theorem 2. (Aubry-Davenport-Cassels-Serre-Weil)
Every Euclidean quadratic form over \(\mathbb{Z} \) is an ADC-form.

Remarks on the history: as mentioned above, in the special case of the three squares form this result goes back to L. Aubry. The work of Davenport and Cassels was unpublished, so I don’t know exactly what they proved. In his widely read text [4], Serre states and proves this theorem with the additional hypotheses that \(q \) be positive-definite and classically integral: i.e., that the bilinear form

\[
\frac{1}{2}(q(x+y) - q(x) - q(y)) \in \mathbb{Z}
\]

be \(\mathbb{Z} \)-valued (and attributes it to Davenport and Cassels).

The first statement of Theorem 2 in full generality seems to have been given by A. Weil in [6, p. 294]. He states this result rather casually, so one has to read carefully to find it (and indeed, until recently it does not seem to have been well-known). Finally, in late December of 2009, Serre communicated a new proof to Bjorn Poonen. Poonen posted Serre’s proof on the website MathOverflow.net on December 31, 2009 [5]. Serre’s new argument actually proves a slightly more general result, namely \(q \) can be a quadratic polynomial instead of a quadratic form.

ADC-forms also appear in the literature via the following result.

Theorem 3. (Cassels-Pfister)
Let \(k \) be a field of characteristic different from 2. Let \(q/R \) be a quadratic form, and consider \(q \) as a quadratic form over the polynomial ring \(R = k[t] \). Then \(q/R \) is an ADC-form: that is, every polynomial \(p \in k[t] \) which is represented by \(q \) over the field \(k(t) \) of rational functions is also represented by \(q \) over the ring \(k[t] \) of polynomial functions.

The standard proofs of Theorems 2 and 3 have a classical flavor as well as a marked resemblance to each other. As above, the matter of it is to assume that, for \(d \in R \), we have \(x \in R^n \) such that \(q(x) = t^2 d \) for some \(t \in R^* \) and deduce an \(R \)-representation of \(d \). This is done by a process of descent: taking a \(y \in R^n \) such that \(|q(x-y)| < 1 \), we intersect the line \(\ell \) joining \(x \) and \(y \) with the surface \(q = d \). One of the two points of intersection is \(x \), so the associated quadratic equation has another rational root \(x' \), and then – and this is the magical part! – a straightforward computation shows that \(q(x') = (t')^2 a \), with \(|t'| < |t| \). Repeating this process yields an \(R \)-representation.

1.5. The Main Theorem.

We are now ready to state and prove the main result of this note, a generalization of Theorem 2 which yields Theorem 3 as a corollary.

Theorem 4. Let \((R, | |)\) be a normed ring and \(q/R \) a Euclidean quadratic form. Then \(q \) is an ADC-form.

Proof. We will make use of the well-known correspondence between quadratic forms and bilinear forms. Namely, for \(x, y \in K^n \), put \(x \cdot y := \frac{1}{2}(q(x+y) - q(x) - q(y)) \). Then \(B_q \) is bilinear and \(B_q(x,x) = q(x) \). Note that for \(x, y \in R^n \), we need not have \(x \cdot y \in R \), but certainly we have \(2(x \cdot y) \in R \). Our computations below are
Let $d \in \mathbb{R}$, and suppose that there exists $x \in K^n$ such that $q(x) = d$. Equivalently, there exists $t \in \mathbb{R}$ and $x' \in \mathbb{R}^n$ such that $t^2d = x' \cdot x'$. We choose x' and t such that $|t|$ is minimal, and it is enough to show that $|t| = 1$, for then by (MN1) $t \in \mathbb{R}^\times$.

Applying the Euclidean hypothesis with $x = \frac{x'}{t}$, there exists a $y \in \mathbb{R}$ such that if $z = x - y$ we have

$$0 < |q(z)| < 1.$$

Now put

$$a = y \cdot y - d,$$

$$b = 2(dt - x' \cdot y),$$

$$T = at + b,$$

$$X = ax' + by.$$

Then $a, b, T \in \mathbb{R}$, and $X \in \mathbb{R}^n$.

Claim $X \cdot X = T^2d$ and $T = t(z \cdot z)$.

Let us first finish the proof assuming the claim. Since $0 < |z \cdot z| < 1$, we have $0 < |T| < |t|$, and this contradicts the minimality of $|t|$, completing the proof.

Finally, we prove the claim:

$$X \cdot X = a^2(x' \cdot x') + ab(2x' \cdot y) = b^2(y \cdot y) = a^2t^2d + ab(2dt - b) + b^2(d + a)$$

$$= d(a^2t^2 + 2abt + b^2) = T^2d,$$

and

$$tT = at^2 + bt = t^2(y \cdot y) - dt^2 + 2dt^2 - t(2x' \cdot y)$$

$$= t^2(y \cdot y) - t(2x' \cdot y) + x' \cdot x' = (ty - x') \cdot (ty - x') = (-tz) \cdot (-tz) = t^2(z \cdot z).$$

Remark: This proof is modelled on that of [4]. The modifications were made in two steps. First, circa 2008, I realized that the hypotheses of positive-definiteness and classical integrality in Serre’s proof can be removed (by taking absolute values and noting that the necessary factors of 2 appear in all the formulas, respectively). This writeup appears in my Math 4400/6400 course notes (CITE). Once I realized (in early September, 2010) the statement could be generalized to replace \mathbb{Z} by a normed ring, the modifications in my proof were immediate: indeed, what is presented above is word-for-word identical to the proof in loc. cit. except for replacing \mathbb{Z} by R and \mathbb{Q} by K! The proof given by Weil [6] and the new proof given by Serre [4] speak of gcd’s and denominators, so on the face of things seem to require that R be a UFD. However, none of the proofs are really so different from each other, and there is no doubt that e.g. Serre’s generalization to possibly inhomogeneous quadratic polynomials can also be made in this context.

3Here we use that $2(x' \cdot y) \in \mathbb{R}$, even though $x' \cdot y$ need not be.
1.6. The Cassels-Pfister Theorem as a corollary.

We now deduce Theorem 3 as a corollary of Theorem 4.

Lemma 5. Let \(q \) be an anisotropic quadratic form over a field \(k \). Then \(q \) remains anisotropic over \(k(t) \).

Proof. Arguing contrapositively, suppose that there exists a nonzero \(x \in k(t) \) such that \(q(x) = 0 \). Clearing denominators, there exists \(y = (y_1, \ldots, y_n) \) such that \(y \in R^n \setminus (0, \ldots, 0) \), \(\gcd(y_1, \ldots, y_n) = 1 \) and \(q(y) = 0 \).\(^4\) In particular, the polynomials \(y_1, \ldots, y_n \) do not all vanish at 0, for otherwise \(t \) would be a common factor, so \((y_1(0), \ldots, y_n(0)) \in k^n \setminus (0, \ldots, 0) \) is such that \(q(y_1(0), \ldots, y_n(0)) = 0 \), i.e., \(q \) is isotropic over \(k \). \(\square \)

Remark: The proof of Lemma 5 has nothing to do with quadratic forms. Really it shows that a variety \(V/k \) has a \(k \)-rational point iff it has a \(k(t) \)-rational point.

Proof of Theorem 3:

Let \(q \) be a quadratic form over \(k \); without loss of generality, we may assume
\[
q = a_1x_1^2 + \ldots + a_nx_n, \quad a_i \in k^*.
\]

We view \(q \) as a quadratic form over \(R = k[t] \) via base extension. If \(q \) is isotropic over \(k \), then by Example 6, \(q \) \(R \)-represents every element of \(R \).

So suppose \(q \) is anisotropic over \(k \), hence also, by Lemma 5, over \(k(t) \). By Theorem 4, it suffices to show that as a quadratic form over \(R = k[t] \) endowed with the norm \(| \cdot |_2 \) of Example 2, \(q \) is Euclidean.

Given an element \(x = (f_1(t), \ldots, f_n(t)) \in K^n \), by polynomial division we may write \(\frac{f_i}{g_i} = y_i + \frac{r_i}{g_i} \) with \(y_i, r_i \in k[t] \) and \(\deg(r_i) < \deg(g_i) \). Putting \(y = (y_1, \ldots, y_n) \) and using the non-Archimedean property of \(| \cdot |_2 \), we find
\[
|q(x - y)| = \left| \sum_{i=1}^n a_i \left(\frac{r_i}{g_i} \right)^2 \right| \leq \max_i |a_i| \left| \frac{r_i}{g_i} \right| < 1.
\]

2. Classification of Euclidean forms

Let \((R, | \cdot |)\) be a normed ring. It seems to be the case that there are relatively few anisotropic Euclidean forms and ADC-forms over \(R \). This raises the prospect of classifying all such forms, and in particular understanding how much stronger the Euclidean property is than the ADC-property.

2.1. Euclidean forms over \(\mathbb{Z} \).

Problem 1. Show that there are only finitely many anisotropic Euclidean forms over \(\mathbb{Z} \), and give a complete list of them.

Here is some prior work on this problem. In [?, §5.4.2], H. Cohen reports on the Davenport-Cassels Theorem as stated in Serre’s (CITE), in particular including the extra hypotheses of **positive definiteness** and **classical integrality**.\(^5\) He reports

\(^4\)Here we use the fact that \(k(t) \) is the fraction field of the UFD \(k[t] \).

\(^5\)Cohen even uses the name “strongly Euclidean” for these forms. To the best of my knowledge, he is the first to explicitly identify the hypothesis of the Davenport-Cassels theorem as being a sort of Euclidean property.
that, with these additional restrictions in place, upon his request one J. Houriet computed the full list. There are precisely 8 such forms:

\[x^2, 2x^2, 3x^2, \]
\[x^2 + y^2, x^2 + 2y^2, 2x^2 + 2xy + 2y^2, \]
\[x^2 + y^2 + z^2, x^2 + 2y^2 + 2yz + 2z^2. \]

Example 10: a principal binary form \(q(x, y) = x^2 + bxy + cy^2 \) is Euclidean iff the quadratic order \(\mathcal{O} \) of discriminant \(b^2 - 4c \) is a norm-Euclidean domain. Thus the principal positive definite Euclidean binary forms are:

\[x^2 + y^2, x^2 + 2y^2, x^2 + xy + y^2, x^2 + xy + 2y^2, x^2 + xy + 3y^2. \]

Thus there are at least 11 Euclidean positive-definite (not necessarily classically) integral quadratic forms.

Although Cohen does not report on the details of Houriet’s (unpublished) calculation, it seems likely that Houriet used elementary geometry of numbers considerations. Moreover, it should be rather straightforward to relax the hypothesis of classical integrality and compute a complete list of positive-definite Euclidean quadratic forms over \(\mathbb{Z} \).

The case of indefinite Euclidean forms is more involved. Indeed, as above the classification of principal indefinite binary Euclidean forms amounts to the classification of norm-Euclidean real quadratic fields, a solved – but nontrivial! – problem in the geometry of numbers.

Theorem 6. The real quadratic fields for which the maximal order is norm-Euclidean are as follows:

\[\mathbb{Q}(\sqrt{a}) \text{ for } a \in \{2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73\}. \]

Proof. This represents the work of several mathematicians over the first half of the 20th century, culminating in a 1952 paper of Barnes and Swinnerton-Dyer.

Problem 2. Prove or disprove: a primitive Euclidean integral binary quadratic form is principal, i.e., represents 1 over \(\mathbb{Z} \).

Remark: I suspect this is true and easy to prove, but at this moment the argument eludes me.

2.2. Euclidean forms over other rings.

The theory of quadratic forms over \(\mathbb{F}_q[t] \) (with \(q \) odd) is known to be in analogous in many respects to the theory of integral quadratic forms. In particular, most of the questions of the previous section apply. Note that, although any quadratic form \(q \) which is base-changed from \(\mathbb{F}_q \) is Euclidean, there are only finitely many such *anisotropic* forms, so the finitude of all anisotropic Euclidean forms over \(\mathbb{F}_q[t] \) still seems plausible.

It seems interesting to look also at Euclidean forms over localizations of \(\mathbb{Z} \), since by

6Indeed I have this in mind as a possible research project for an undergraduate or early career graduate student. Of course, you – whoever you are – are welcome to do the computation yourself, but I would appreciate it if you would contact me if you start (or finish!) working on this problem.
Theorem 4 these yield quadratic forms which have the ADC-property “away from certain primes”. The case of \(\mathbb{Z}[\frac{1}{2}] \) seems especially relevant.

Similarly, one can try to find Euclidean forms over the ring of integers \(\mathbb{Z}_K \) of a number field \(K \). In this regard, the following is relevant.

Question 3. Let \((R, | |)\) be a normed domain which admits some (nonzero!) Euclidean quadratic form. Is \((R, | |)\) then necessarily a Euclidean domain?

By Proposition 1, an equivalent restatement of this question is: if there are any Euclidean forms over \(R \), is \(q(x) = x^2 \) then necessarily a Euclidean form?

The following problem seems quite tractable (but I have not yet had the chance to seriously consider it).

Problem 4. Let \(R \) be a complete discrete valuation ring with finite residue field, e.g. \(\mathbb{Z}_p \) or \(\mathbb{F}_q[[t]] \). (Such a ring satisfies condition (FN) and therefore has a canonical norm.) Classify all Euclidean forms over \(R \).

It is easy to see that such rings are all norm-Euclidean, so that at least \(q(x) = x^2 \) is a Euclidean form in every case.

3. Classification of ADC-forms

Proposition 7. Let \(q \) be an ADC-form over \(\mathbb{Z} \). Then \(q \) is regular: it \(\mathbb{Z} \)-represents every integer that is represented by its genus.

Proof. Let \(d \in \mathbb{Z} \). To say that the genus of \(q \) represents \(d \) is equivalent to saying that for all \(p \leq \infty \), \(q \) represents \(d \) over \(\mathbb{Z}_p \). It follows that \(q \) represents \(d \) over \(\mathbb{Q}_p \) for all \(p \leq \infty \). Thus \(q \) \(\mathbb{Q} \)-represents \(d \) by Hasse-Minkowski and thus \(\mathbb{Z} \)-represents \(d \) by the hypothesis that it is an ADC-form.

This is significant because regular quadratic forms are known to be quite rare, at least in the positive definite case in a small number of variables. Would that I were more qualified even to survey known results here. We will have to content ourselves for now with the following remarks.

Example 11: A primitive, positive definite binary quadratic form \(q \) is regular iff every genus has a single class, iff the class group of \(\mathbb{Q}(\sqrt{\Delta(q)}) \) is 2-torsion. It is known that there are only finitely many such forms and there is suggested classification, but this is currently known to be complete only conditionally on the Generalized Riemann Hypothesis.

Example 12: Work of Jagy and Kaplansky shows that the number \(N_3 \) of regular positive-definite ternary quadratic forms satisfies \(891 \leq N_3 \leq 913 \). In 2008, Byeong-Kweon Oh announced that \(N_3 \geq 899 \).

Example 13: Work of Watson shows that there are infinitely many regular positive-definite quaternary quadratic forms, only finitely many of which are diagonalizable over \(\mathbb{Z} \).

\[\text{c.f. http://www.mathnet.or.kr/real/2008/1/Byeong-Kweon_Oh.pdf} \]
Question 5. What can be said about the set of ADC-forms over \(\mathbb{Z} \)? Are there, for instance, only finitely many positive-definite such forms in at most 4 variables?

Again, the “local case” should be quite tractable. Indeed, I suspect that the answer is probably already implicit in the theory of quadratic forms over DVRs (and probably has something to do with maximal lattices).

Problem 6. Classify all ADC-forms over a complete DVR with finite residue field.

References

[1] L. Aubry Sphinx-OEdipe 7 (1912), 81-84...
[3] H. Cohen, Number theory Volume 1 ...
[6] A. Weil, Number Theory From Hammurapi to Legendre ...

Department of Mathematics, University of Georgia, Athens, GA 30602-7403

pete@math.uga.edu