1. Pythagorean Triples and Conics

Our goal is to find all integer solutions to \(x^2 + y^2 = z^2\).

Step 1: Existence: \(3^2 + 4^2 = 5^2\). (Also \((5, 12, 13), (7, 24, 25), (8, 15, 17)\).)

Step 2 (Trivial/Degenerate/Nondegenerate Solutions): Let us stop and ask: is \((3, 4, 5)\) the simplest solution to the equation \(x^2 + y^2 = z^2\)? One is first inclined to say yes; however, there are also simpler solutions if we allow some of \(x, y\) and \(z\) to equal 0. Indeed, if \(z = 0\) then we must have \(x = y = 0\) so \((0, 0, 0)\) is a solution. We will call this solution trivial, for reasons that will be better appreciated later on. Also if we take \(x = 0\) and \(y = z\) then we get solutions, say \((0, y, y)\) and by symmetry also \((x, 0, x)\). These solutions are still not of much geometric interest – they correspond to triangles in which one of the legs has length zero – so they are degenerate solutions in some sense.

Step 3 (Primitivity): Note that we found infinitely many degenerate solutions: \((x, 0, x) = x(1, 0, 1)\) and also \((0, y, y) = y(0, 1, 1)\). As the algebra indicates, these are obtained by two particular solutions by multiplying each of the three coordinates by a common integer. Indeed this is always possible: if \(a^2 + b^2 = c^2\) and \(C\) is any integer then also

\[(Ca)^2 + (Cb)^2 = C^2(a^2 + b^2) = C^2c^2 = (Cc)^2,
\]

so \((Ca, Cb, Cc)\) is also a solution. Thus by rescaling \((3, 4, 5)\) we will get infinitely many nondegenerate solutions.

Doesn’t feel like we have cheated a bit, though? In some sense, in writing down the family of solutions \((3C, 4C, 5C)\) doesn’t feel like we have exhibited infinitely many “truly different” solutions. Thus let us call a solution \((a, b, c)\) primitive if \(a, b\) and \(c\) are not simultaneously divisible by any integer \(C > 1\). (Note in particular that the trivial solution \((0, 0, 0)\) is imprimitive according to our definition.) Thus it seems convenient to restrict our attention to primitive solutions: in particular, when we start counting solutions to such a polynomial equation, it is more interesting to count primitive solutions than all solutions, since otherwise as soon as there is a single primitive solution there are infinitely many integer solutions.

Now there are certainly other primitive solutions: the next few – ordered in terms of the size of the smallest leg, say – are \((5, 12, 13), (7, 24, 25)\) and \((8, 15, 17)\). But are there infinitely many primitive solutions? How can we find them all?

Step 4 (Reduction to rational solutions): A solution \((x, y, z)\) is nontrivial iff \(z \neq 0\);
for any nontrivial integer solution we may divide through by \(z \) to get
\[
\left(\frac{x}{z} \right)^2 + \left(\frac{y}{z} \right)^2 = 1,
\]
so a nontrivial integer solution to \(X^2 + Y^2 = Z^2 \) gives rise to a rational solution to \(x^2 + y^2 = 1 \). Conversely, given any rational solution to this equation, say
\[
\left(\frac{a}{b} \right)^2 + \left(\frac{c}{d} \right)^2 = 1,
\]
just by clearing denominators we will get a nontrivial integer solution to \(X^2 + Y^2 = Z^2 \), namely
\[
(a/b)^2 + (c/d)^2 = 1.
\]
Moreover, we will later verify that if the fractions \(\frac{a}{b}, \frac{c}{d} \) are written in lowest terms, then the corresponding integral solution is primitive. So we have reduced our task to finding all rational points on the unit circle \(x^2 + y^2 = 1 \).

What is remarkable is that simple geometric reasoning will give us the answer immediately. First we fix one rational point \(P_0 \) on the circle: we could take \((3/5, 4/5) \), but for ease of drawing the picture and doing the calculations, let us take a simpler point: \((-1, 0)\). How to find the others? Well, if \(P = (x, y) \) is any other rational point on the unit circle, the unique line joining \(P_0 \) to \(P \) has rational coordinates — because it passes through two points with rational coordinates. To be even more precise, every nonvertical line passing through \(P_0 = (-1, 0) \) of the form \(y - 0 = m(x - (-1)) = m(x + 1) \) where \(m \) is the slope. Since the tangent line to the circle at \(P_0 \) is vertical, every nonvertical line will intersect the circle at exactly one other point \(P_m \). Moreover, we claim that this second intersection point \(P_m \) will have rational coordinates if its slope \(m \) is rational. One direction is immediate: if \(P_m = (x_m, y_m) \) has rational coordinates, then \(m = \frac{y_m - 0}{x_m + 1} \) is visibly rational. The other direction is a slightly more sophisticated argument: if we plug in the equation \(y = m(x + 1) \) to the equation \(x^2 + y^2 = 1 \), we will get a quadratic equation in \(x \) with rational coefficients (since \(m \) is rational) and which has two distinct solutions. But in the quadratic formula if we two roots they are either both irrational or both rational, and since we know that one of the solutions is \(x = -1 \), the second solution must be rational. Since \(y_m = m(x_m + 1) \), then since \(m \) and \(x_m \) are both rational, so is \(y_m \).

In summary, the rational points on the unit circle \(x^2 + y^2 = 1 \) are precisely those which are obtained as the intersection points of all possible lines with rational slope passing through \((-1, 0)\).

That’s the theoretical perspective, anyway. Let’s actually do the calculation and see that things work out as claimed. Namely, we will determine the coordinates \((x_m, y_m)\) of the other intersection point of \(y = m(x + 1) \) with \(x^2 + y^2 = 1 \). First plug in \(y \):
\[
x^2 + m^2(x + 1)^2 = 1.
\]
\[
(1 + m^2)x^2 + 2m^2x + m^2 - 1 = 0.
\]
So we apply the quadratic formula to get the two solutions:
\[
x = \frac{-2m^2 \pm \sqrt{4m^4 - 4(1 + m^2)(m^2 - 1)}}{2(1 + m^2)}.
\]
Under the radical we have
\[4m^4 - 4(m^2 + 1)(m^2 - 1) = 4(m^4 - (m^2 - 1)) = 4, \]
so that “luckily” \(\sqrt{4m^4 - 4(1 + m^2)(m^2 - 1)} = 2, \) and we get
\[x = \frac{-2m^2 \pm 2}{2(1 + m^2)} = \frac{-m^2 \pm 1}{1 + m^2}. \]
In other words, one of the solutions is \(x = \frac{-m^2 - 1}{m^2 + 1} = -1 \) – good! – and the other is
\[x_m = \frac{1 - m^2}{1 + m^2}. \]
Thus \(y_m = m(1 + \frac{m^2 + 1}{m^2 + 1}) = \frac{2m}{m^2 + 1}, \) so
\[P_m = \left(\frac{1 - m^2}{1 + m^2}, \frac{2m}{1 + m^2} \right) \]
is the general rational solution to \(x^2 + y^2 = 1. \) Put now \(m = \frac{u}{v}, \) with gcd\((u, v) = 1, \)
to get:
\[P_m = \left(\frac{1 - u^2/v^2}{1 + u^2/v^2}, \frac{2u/v}{1 + u^2/v^2} \right) = \left(\frac{v^2 - u^2}{u^2 + v^2}, \frac{2uv}{u^2 + v^2} \right). \]
Now we can clear denominators to get a family of integral solutions
\[(v^2 - u^2)^2 + (2uv)^2 = (v^2 + u^2)^2. \]
As above, up to scaling this must be the most general integral solution, but we are not yet sure about which values of \(u \) and \(v \) make for a primitive triple. More precisely, the solution will be primitive iff \(v^2 + u^2 \) is the lowest common denominator of the \(x \) and \(y \) coordinates of \(P_m. \) If not, we have multiplied through by more than we needed to and will thus not get a primitive integral solution. Equivalently, we are wondering whether \(v^2 - u^2, v^2 + u^2 \) and \(2uv \) can have any common factor.

I claim that the greatest common divisor of these three integers is either 1 or 2. Indeed, if any odd prime \(p \) divides both \(v^2 - u^2 \) and \(v^2 + u^2, \) it also divides \(v^2 + u^2 + v^2 - u^2 = 2v^2 \) – so \(p | v \) – and it divides \(v^2 + u^2 - (v^2 - u^2) = 2u^2 \) – so \(p | u, \) contradicting gcd\((u, v) = 1. \)
Similarly if 4 divided \(v^2 \pm u^2 \) it would divide \(2v^2 \) and \(2u^2, \) which is impossible since \(u \) and \(v \) are not both even. However, we rather need to worry about the case that \(u \) and \(v \) are both odd: then 2 divides \(v^2 - u^2, 2uv \) and \(v^2 + u^2. \)

So only in this case did we go slightly too far in clearing denominators. That is, to get primitive solutions it is necessary and sufficient that \(u \) and \(v \) be relatively prime integers of opposite parity. Summing up, we have now shown all but the very last part of the following:

Theorem 1. (Classification of Pythagorean Triples)

a) The rational solutions to \(x^2 + y^2 = 1 \) are \(P = (-1, 0) \) and, for every \(m \in \mathbb{Q}, \)
\[P_m = \left(\frac{1 - m^2}{1 + m^2}, \frac{2m}{1 + m^2} \right). \]

b) For every pair \((u, v)\) of relatively prime integers of opposite parity,
\((v^2 - u^2, 2uv, v^2 + u^2)\) is a primitive Pythagorean triple. Every primitive Pythagorean triple \((x, y, z)\) with even \(y \) is of this form, and the primitive triples with odd \(y \) are obtained by interchanging the first two coordinates.

The last statement is best reasoned out on your own, and I will let you think about it. Hint: our parameterization seems not to give any triples \((x, y, z)\) with \(x \) even and \(y \) odd. But go back and look to see that our rational parameterization does...
give (4, 3, 5) up to rescaling, and has something to do with the case that \(u \) and \(v \) are both odd.

1.1. **Rational points on conics.** The above solution has the merit of giving a general method for solving certain kinds of equations. Namely, it will allow us to find all rational points on any conic:

\[
aX^2 + bXY + cXZ + dY^2 + eYZ + fZ^2 = 0
\]

assuming we can find at least one nontrivial rational solution (which as we will shortly see, is not always the case). We explore this issue in the following exercises.

Exercise XX:

a) Show that for any nonzero integer \(a \), the conic

\[
aX^2 + bY^2 = a^2Z^2
\]

has a nontrivial rational point.

b) Use the above method to find all rational points on \(3X^2 + 7Y^2 = 3Z^2 \).

Exercise XXG: Show that every conic with rational coefficients is equivalent to a conic of the form

\[
C_{a,b} : aX^2 + bY^2 = Z^2.
\]

for \(a, b \in \mathbb{Q}^* \) (in fact we may take \(a \) and \(b \) in \(\mathbb{Z} \)). So the question is, for which pairs \((a, b) \in \mathbb{Q}^* \) does \(C_{a,b} \) have a nontrivial \(\mathbb{Q} \)-rational point? This is an interesting problem.

a) Show that \(C_{a,-a}, C_{a^2,b} \) and \(C_{a,1-a} \) always have \(\mathbb{Q} \)-rational points.

b) Show that if \(C_{a,b} \) has a nontrivial \(\mathbb{Q} \)-rational point, then at least one of \(a \) and \(b \) is positive.

c)* Show that \(3X^2 + 5Y^2 = Z^2 \) has no nontrivial \(\mathbb{Q} \)-rational points. (Suggestion: If there is a nontrivial rational solution there is also a nontrivial integer solution \((x, y, z)\) in which \(x, y \) and \(z \) are not all divisible by 5 (take, e.g., any primitive solution). First show that 5 does not divide \(y \): this uses properties of the function \(\text{ord}_5(n) \) which will be introduced later. Then show that the only solution of the congruence \(3X^2 \equiv Z^2 \pmod{5} \) is \(X \equiv Z \equiv 0 \pmod{5} \), meaning that \(x \) and \(z \) are both divisible by 5. Finally, show that this implies that \(y \) is divisible by 5, a contradiction.

d)* The above argument shows the following: for \(p \) an odd prime and \(u \) a positive integer prime to \(p \), the curve \(C_{a,p} \) can only have nontrivial rational solutions if the congruence \(u \equiv Z^2 \pmod{p} \) has a solution (that is, if \(u \) is a quadratic residue modulo \(p \)).

This exercise of course raises the question: can we give a simple condition on \(a \) and \(b \) that is necessary and sufficient for \(C_{a,b} \) to have a nontrivial rational point? The answer is a resounding yes, and is given by a theorem of Legendre. Legendre’s Theorem will be one of our main goals in this course.