QUADRATIC RECIPROCITY II: THE PROOFS

PETE L. CLARK

We shall prove the Quadratic Reciprocity Law and its “second supplement.”

1. Preliminaries on congruences in cyclotomic rings

For a positive integer \(n \), let \(\zeta_n = e^{\frac{2\pi i}{n}} \) be a primitive \(n \)th root of unity, and let

\[R_n = \mathbb{Z}[\zeta_n] = \{ a_0 + a_1 \zeta_n + \ldots + a_{n-1} \zeta_n^{n-1} \mid a_i \in \mathbb{Z} \}. \]

Recall that an algebraic integer is a complex number \(\alpha \) which satisfies a monic polynomial relation with integer coefficients: i.e., there exist \(n \) and \(a_0, \ldots, a_{n-1} \) such that

\[\alpha^n + a_{n-1} \alpha^{n-1} + \ldots + a_1 \alpha + a_0. \]

We need the following purely algebraic fact:

Proposition 1. The algebraic integers form a subring of the complex numbers.

This amounts to showing that if \(\alpha \) and \(\beta \) are algebraic integers, then \(\alpha + \beta \) and \(\alpha \cdot \beta \) are algebraic integers (which is plausible but not so trivial to prove). We will relegate the proof to an algebra handout.

Let \(p \) be a prime number; for \(x, y \in R_n \), we will write \(x \equiv y \pmod{p} \) to mean that there exists a \(z \in R_n \) such that \(x - y = pz \). Otherwise put, this is congruence modulo the principal ideal \(pR_n \) of \(R_n \).

Since \(\mathbb{Z} \subset R_n \), if \(x \) and \(y \) are ordinary integers, the notation \(x \equiv y \pmod{p} \) is ambiguous: interpreting it as a usual congruence in the integers, it means that there exists an integer \(n \) such that \(x - y = pn \); and interpreting it as a congruence in \(R_n \), it means that \(x - y = pz \) for some \(z \in R_n \). The latter is apparently weaker than the former. However, a key technical point is that in fact the two notions of congruence are the same:

Lemma 2. If \(x, y \in \mathbb{Z} \) and there exists an element \(z \in R_n \) such that \(x - y = pz \), then in fact \(z \in \mathbb{Z} \).

Proof: Just dividing by \(p \), we find that the complex number \(z = \frac{x - y}{p} \) is visibly an element of \(\mathbb{Q} \). Now we need the fact, proved in Handout 2, that the only algebraic integers which are rational numbers are the usual integers. (This is the reason why we needed to assert that every element of \(R_n \) was an algebraic integer.)

To prove the second supplement we will take \(n = 8 \) and to prove the quadratic reciprocity law we will take \(n = p \) an odd prime. These choices will be constant throughout each of the proofs so we will abbreviate \(\zeta = \zeta_8 \) (resp. \(\zeta_p \)) and \(R = R_8 \) (resp. \(R_p \)).
2. Proof of the Second Supplement

In this section take $\zeta = \zeta_8$, a primitive eighth root of unity and $R = R_8 = \mathbb{Z}[\zeta_8]$. We have:

$$0 = \zeta^8 - 1 = (\zeta^4 + 1)(\zeta^4 - 1).$$

Since $\zeta^4 \neq 1$ (primitivity), we must have $\zeta^4 + 1 = 0$. Multiplying this identity by ζ^{-4} we get

$$\zeta^2 + \zeta^{-2} = 0.$$

Using this we get

$$(\zeta + \zeta^{-1})^2 = \zeta^2 + \zeta^{-2} + 2 = 2.$$

Putting $\tau = \zeta + \zeta^{-1}$, we have that $\tau^2 = 2$. Now we calculate

$$\tau^{p-1} = (\tau^2)^{\frac{p-1}{2}} = 2^{\frac{p-1}{2}} = \left(\frac{2}{p}\right) \pmod{p},$$

where in the last step we applied Euler’s criterion. Multiplying through by τ, we get:

$$\tau^p \equiv \left(\frac{2}{p}\right) \tau \pmod{p}.$$ \hspace{1cm} (1)

Lemma 3. ("Schoolboy binomial theorem") For $x, y \in R$, we have

$$(x + y)^p \equiv x^p + y^p \pmod{p}.$$

Proof: The binomial formula asserts that

$$(x + y)^p = x^p + \binom{p}{1}x^{p-1}y + \binom{p}{2}x^{p-2}y^2 + \ldots + \binom{p}{p-1}x^{p-p}y + y^p,$$

where $\binom{p}{i} = \frac{p!}{i!(p-i)!}$. Now suppose $0 < i < p$. Since p is prime, $p!$ is divisible by p and i and $(p-i)!$, being a product of positive integers all less than p, are not. So each of the binomial coefficients is divisible by p except the first and the last. Therefore

$$\tau^p = (\zeta + \zeta^{-1})^p \equiv \zeta^p + \zeta^{-p} \pmod{p}.$$

Case 1: $p \equiv 1 \pmod{8}$. Then $\zeta^p = \zeta$, and hence $\zeta^{-p} = \zeta^{-1}$, so

$$\tau^p \equiv \zeta^p + \zeta^{-p} \equiv \zeta + \zeta^{-1} = \tau,$$

so (1) becomes

$$\tau \equiv \left(\frac{2}{p}\right) \tau \pmod{p}.$$

It is tempting to cancel the τ’s, but one must be careful here since pR is not necessarily a prime ideal of the ring R (in fact it is definitely not prime in the present case). But, sneakily, instead of dividing we multiply by τ, getting

$$2 \equiv \tau^2 \equiv 2 \left(\frac{2}{p}\right) \pmod{p},$$

which by Lemma 2 means that

$$2 \equiv 2 \left(\frac{2}{p}\right) \pmod{p}.$$
in the usual sense. Now we can cancel the 2’s, getting the desired
\[
\left(\frac{2}{p} \right) \equiv 1 \pmod{p},
\]
which implies that it equals 1.

Case 2: \(p \equiv -1 \pmod{8} \) is very similar: this time \(\zeta^p = \zeta^{-1} \), but still \(\tau^p \equiv \zeta^p + \zeta^{-p} \equiv \zeta^{-1} + \zeta = \tau \pmod{p} \). The remainder of the argument is the same, in particular the conclusion: \(\left(\frac{2}{p} \right) = 1 \).

Case 3: \(p \equiv 3 \pmod{8} \). This time
\[
\tau^p \equiv \zeta^p + \zeta^{-p} \equiv \zeta^3 + \zeta^{-3} \equiv \zeta^4 \zeta^{-1} + \zeta^{-4} \zeta \equiv -(\zeta + \zeta^{-1}) \equiv -\tau \pmod{p}.
\]
Thus we get this time
\[
-\tau \equiv \left(\frac{2}{p} \right) \tau \pmod{p},
\]
and again we multiply through by \(\tau \) to get to a conventional congruence modulo \(p \) and conclude
\[
\left(\frac{2}{p} \right) = -1.
\]

Case 4: \(p \equiv 5 \pmod{8} \): Exercise (Case 4 is to Case 3 as Case 2 is to...).

3. Proof of the Quadratic Reciprocity Law Modulo...

The above proof is due (essentially) to Euler. It is very ingenious, but it is far from clear how to adapt it to prove the Quadratic Reciprocity Law: what should play the role of \(\tau? \)

Let us now take \(p \) to be an odd prime, \(\zeta = e^{\frac{2\pi i}{p}} \) to be a primitive \(p \)th root of unity, and \(R = \mathbb{Z}[\zeta] \). It would be nice to have an element \(\tau \) of \(R \) which squares to \(p \) in the same way as \(\tau \) squared to 2 in the previous case. This would mean in particular that \(\mathbb{Q}(\sqrt{p}) \subset \mathbb{Q}(\zeta) \), which is a far from obvious fact. (Indeed, it need not be quite true!)

Like a deus ex machina comes the Gauss sum:
\[
\tau := \sum_{t=0}^{p-1} \left(\frac{t}{p} \right) \zeta^t.
\]
In other words, we sum up all the \(p \)th roots of unity, but we insert \(\pm 1 \) signs in front of them. What we get looks a good bit like a random walk in the plane with \(p \) steps of unit length. From the philosophy that randomness leads to square root cancellation, we might boldly guess that the complex number \(\tau \) should be in magnitude roughly \(\sqrt{p} \). Well, it is our lucky day:

Theorem 4. (Gauss)
\[
\tau^2 = (-1)^{\frac{p-1}{2}} p.
\]

1We make the convention that from now until the end of the handout, all sums extend over \(0 \leq i \leq p - 1 \).
That is, $|\tau| = \sqrt{p}$ on the nose! The extra factor of $(-1)^{\frac{p-1}{2}}$ is more than welcome, since it appears in the quadratic reciprocity law. In fact, we define $p^* = (-1)^{\frac{p-1}{2}}p$, and then it is entirely straightforward to check the following

Lemma 5. The quadratic reciprocity law is equivalent to the fact that for distinct odd primes p and q, we have

$$\left(\frac{q}{p}\right) = \left(\frac{p^*}{q}\right).$$

Proof: Exercise.

Remarkably, we can now push through a proof as in the last section:

$$\tau^{q-1} = (\tau^2)^{\frac{q-1}{2}} = (p^*)^{\frac{q-1}{2}} \equiv \left(\frac{p^*}{q}\right) \pmod q,$$

where of course we used Euler’s criterion in the last step. Now are hands are guided by some sort of beatific being: we multiply through by τ to get the fundamental

(2) $$\tau^q \equiv \left(\frac{p^*}{q}\right) \tau \pmod q.$$

On the other hand, we have

$$\tau^q \equiv \left(\sum_t \left(\frac{t}{p}\right) \zeta^t\right)^q \equiv \sum_t \left(\frac{t}{p}\right) \zeta^{qt} \pmod q.$$

Now, since q is prime to p and hence to the order of ζ, the elements ζ^{qt} still run through all distinct pth roots of unity as t runs from 0 to $p-1$. In other words, we can make the change of variable $t \mapsto q^{-1}t$ and then the sum becomes

$$\sum_t \left(\frac{q^{-1}t}{p}\right) \zeta^t = \left(\frac{q^{-1}}{p}\right) \sum_t \left(\frac{t}{p}\right) \zeta^t = \left(\frac{q}{p}\right) \tau.$$

So we win: substituting this into (2) we get

$$\left(\frac{q}{p}\right) \tau \equiv \left(\frac{p^*}{q}\right) \tau \pmod q,$$

and multiplying through by τ we get an ordinary congruence

$$\left(\frac{q}{p}\right) p^* \equiv \left(\frac{p^*}{q}\right) p^* \pmod q;$$

since p^* is prime to q, we may cancel to get

$$\left(\frac{q}{p}\right) \equiv \left(\frac{p^*}{q}\right) \pmod q,$$

and finally that

$$\left(\frac{q}{p}\right) = \left(\frac{p^*}{q}\right).$$

Of course, it remains to prove Theorem 4.
4. ... the computation of the Gauss sum

We wish to show that if

\[\tau = \sum_t \left(\frac{t}{p} \right) \zeta^t, \]

then

\[\tau^2 = p^* = (-1)^{\frac{p-1}{2}}. \]

We do this by introducing a slightly more general sum: for any integer \(a \), we define

\[\tau_a := \sum_t \left(\frac{t}{p} \right) \zeta^{at}. \]

Notice that \(\tau_q \) came up in the proof of the quadratic reciprocity law and we quickly rewrote it in terms of \(\tau \). That argument still works here, to give:

\[\tau_a = \left(\frac{a}{p} \right) \tau. \]

Now we will evaluate the sum \(\sum_a \tau_a \tau_{-a} \) in two different ways. First, if \(a \neq 0 \), then

\[\tau_a \tau_{-a} = \left(\frac{a}{p} \right) \left(\frac{-a}{p} \right) \tau^2 = \left(\frac{-1}{p} \right) \tau^2 = (-1)^{\frac{p-1}{2}} \tau^2. \]

On the other hand

\[\tau_0 = \sum_t \left(\frac{t}{p} \right) \zeta^{0t} = \sum_t \left(\frac{t}{p} \right) = 0, \]

since each nonzero quadratic residue mod \(p \) contributes +1, each quadratic nonresidue contributes −1, and we have an equal number of each. It follows that

\[\sum_a \tau_a \tau_{-a} = (-1)^{\frac{p-1}{2}} (p - 1) \tau^2. \]

We also have

\[\tau_a \tau_{-a} = \sum_x \sum_y \left(\frac{x}{p} \right) \left(\frac{y}{p} \right) \zeta^{a(x-y)}. \]

Lemma 6.

a) If \(a \equiv 0 \pmod{p} \), then \(\sum t \zeta^{at} = p \);

b) Otherwise \(\sum \zeta^{at} = 0 \).

The proof is easy. So interchanging the summations we get

\[\sum_a \tau_a \tau_{-a} = \sum_x \sum_y \left(\frac{x}{p} \right) \left(\frac{y}{p} \right) \sum_a \zeta^{a(x-y)}. \]

The inner sum is 0 for all \(x \neq y \), and the outer sum is 0 when \(x = y = 0 \). For each of the remaining \(p - 1 \) values of \(x = y \), we get a contribution to the sum of \(p \), so

\[\sum_a \tau_a \tau_{-a} = (p - 1)p. \]

Equating our two expressions for \(\sum_a \tau_a \tau_{-a} \) gives

\[(p - 1)p = (-1)^{\frac{p-1}{2}} (p - 1) \tau^2, \]

which gives the desired result:

\[\tau^2 = (-1)^{\frac{p-1}{2}} p = p^*. \]
5. Comments

Working through this proof feels a little bit like being an accountant who has been assigned to carefully document a miracle. Nevertheless, every single proof I have seen feels this way, sometimes to an even greater extent. At least in this proof the miracle can be “bottled”: there are many fruitful generalizations of Gauss sums, which can be used to prove an amazing variety of results in mathematics, from number theory to partial differential equations (really!).

The history of the QR law is rich and complicated: the first and second supplements were known to Euler, who also conjectured the statement of the general law. Knowing as we now do the central role played by QR in the study of Diophantine equations, it is not surprising that all of the great 18th century mathematicians tried their hand at a proof, without success. In particular, Legendre published an incomplete proof in 1788.

Gauss gave the first complete and correct proof of QR on 4/8/1796 – less than one month after his 19th birthday. His first proof was by induction (!!!!). In his lifetime, he gave several further, different proofs (the exact number depends upon how different you require the proofs to be), all of which are well-remembered today. In particular, there is a proof using “Gauss’ Lemma”, which gives a combinatorial interpretation of \(\left(\frac{2}{p} \right) \) not dissimilar in nature from the sign of a permutation.\(^2\)

It is relatively easy to prove at least the second supplement using Gauss’ Lemma and most texts do so. There is also a proof involving lattice point counting due to Eisenstein. If one knows not just algebra but the machinery of full-fledged algebraic number theory, then one can give a proof which looks rather natural.

The proof just given is a modern formulation of Gauss’ sixth and last proof, in which his polynomial identities have been replaced by more explicit reference to algebraic integers. In particular I took the proof from the wonderful text of Ireland and Rosen, with only very minor expository modifications. (Most notably, they use congruences in the ring of all algebraic integers, and I chose not to phrase things this way, although a fact or two about algebraic integers has been swept under the rug.) In addition to being no harder than any other proof of QR that I have ever seen, it has other merits: first, it shows that the cyclotomic field \(\mathbb{Q}(\zeta_p) \) contains the quadratic field \(\mathbb{Q}(\sqrt{p^*}) \) – in fact, Galois theory shows that this is the unique quadratic field contained in \(\mathbb{Q} \) – a fact which comes up again and again in algebraic number theory. Second, the proof can be adapted with relative ease to prove certain generalizations of the quadratic reciprocity law to cubic and biquadratic residues (for this see Ireland and Rosen again). These higher reciprocity laws were much sought by Gauss but found only by his student Eisenstein (not the filmmaker).

Finally, we mention that the Gauss sum can be made to look more like the “Gaussians” one studies in continuous mathematics: you are asked in the homework to show that

\[
\tau = \sum_t e^{2\pi i t^2/p}.
\]

\(^2\)In the late 19th century, the mathematician Zolotareff interpreted the Legendre symbol in just such a way and in so doing obtained a combinatorial proof of the QR Law.