4400/6400 PROBLEM SET 3

Recommended instructions: For 4400, solve at least 7 problems, including (for an A grade) at least one starred part of a problem. For 6400, solve at least 9 problems, including at least two starred parts and at least one of the last three problems. A part of a problem labelled (O) is always optional.

The first four problems pertain to the Euclidean algorithm, which we will be applying to positive integers $a \geq b \geq 1$.

3.1(E): Explain how to use a handheld calculator to find the q and r such that $a = qb + r$.

3.2(E): Use the Euclidean algorithm to find the gcd of 12345 and 67890. (Suggestion: Get a calculator to do the divisions for you, using the previous exercise.)

3.3: Recall that the Euclidean algorithm generates a sequence of remainders: say $r_{i-1} = a$, $r_0 = b$ and

$$r_{i-1} = q_{i+1}r_i + r_{i+1},$$

terminates when $r_{n+1} = 0$ and then r_n, the last nonzero remainder, is gcd(a, b).

a) Show that for all $-1 \leq i \leq n$, $0 \leq r_{i+1} < r_i$.

b) Explain why the result of part a) implies that the algorithm is an algorithm (i.e., that it terminates eventually for all inputs).

c) Show that in fact $r_{i+2} < \frac{r_i}{2}$ for all $i \leq n + 1$.

(Suggestion: consider separately the cases $r_{i+2} < \frac{r_{i+1}}{2}$ and $r_{i+2} \geq \frac{r_{i+1}}{2}$; apply part a) in the first case, and in the second case use $r_{i+1} = r_{i-1} - q_{i+1}r_i$.)

d) Explain why the result of part b) implies that the Euclidean Algorithm terminates in at most $2 \log_2(b)$ steps, as advertised in class.

e)(O) Let F_n be the nth Fibonacci number (as usual $F_1 = F_2 = 1$, $F_n = F_{n-1} + F_{n-2}$ for all $n \geq 2$). Deduce from part d) the remarkable inequality:\footnote{I’m being sarcastic here, sorry: I’m not much of a Fibonacci fan.} for all $n \geq 0$, $F_{n+2} > 2F_n$. Note that this inequality is not best possible. How can it be improved, and what do these improvements suggest for the running time of the Euclidean algorithm?

3.4: Find all integer solutions to each of the following equations:

a) $105x + 121y = 1$.

b) $12345x + 67890y = \gcd(12345, 67890)$.

c) $54321x + 9876y = \gcd(54321, 9876)$.

3.5: Let a, b, c, N be integers. Under what conditions does the linear equation

$$xa + yb + zc = N$$

end
have an integer solution \((x, y, z)\)?

3.6(O): Find all integer solutions \((x, y, z)\) to

\[3x + 4y + 5z = 1.\]

Suggestion: First find a particular solution \((x_0, y_0, z_0)\); second find the general solution to \(3x + 4y + 5z = 0\), and then add. It may help to think of this in terms of linear algebra (planes, scalar products).

3.7: Let \(a\) and \(b\) be relatively prime positive integers, and \(N \in \mathbb{N}\). We are interested in solutions \((x, y)\) to \(xa + yb = N\) with \(x, y \in \mathbb{N}\).

a)(E) Show that this is not always possible: e.g. show that the equation \(3x + 7y = 11\) has no solution in non-negative integers \(x\) and \(y\). Interpret the result in terms of (simplified) football.

b)* More generally, show that one cannot write \(ab - a - b\) as \(xa + yb\) with \(x, y \in \mathbb{N}\).

c)* Show that if \(N > ab - a - b\), one can write \(N\) as \(xa + yb\) with \(x, y \in \mathbb{N}\).

d)* Show that, in fact, exactly half of all integers \(N, 1 \leq N \leq ab - a - b + 1\) can be written as \(xa + yb\) with \(x, y \in \mathbb{N}\).

Comment: This is one case where adding more variables makes the problem harder: for the equation \(xa + yb + zc = N\) there is no closed form solution for the largest value of \(N\) which cannot be written as a non-negative integral linear combination of three integers \(a, b, c\) with \(\gcd(a, b, c) = 1\) (although one can show that such an \(N\) exists). Many people have written papers on this topic over the years, including me:

You might try your hand at the following “real life” special case:

3.8: Chicken McNuggets are (or were, up until recently) sold in packs of 6, 9 and 20. What is the largest number of Chicken McNuggets you cannot buy?

3.9: Factor \(123 + 456i\) into irreducibles in the Gaussian integers.

3.10(G):

a) Show that in any commutative ring \(R\), if \(x = uy\) for some unit \(u \in R^\times\), then \((x) = (y).

b) If \(R\) is an integral domain, show the converse: if \((x) = (y)\), then \(y = xu\) for some unit \(u\).

3.11(G): Let \(D\) be a squarefree integer – not 0 or 1 – and put

\[R_D = \mathbb{Z}[^\sqrt{D}] = \mathbb{Z}[X]/(X^2 - D).\]

\[R_D = \mathbb{Z}[\sqrt{D}] = \mathbb{Z}[X]/(X^2 - D).\]

\[R_D = \mathbb{Z}[\sqrt{D}] = \mathbb{Z}[X]/(X^2 - D).\]
a) Show that R_D is an integral domain, with quotient field
\[\mathbb{Q} \sqrt{D} = \{ a + b \sqrt{D} \mid a, b \in \mathbb{Q} \} \]
Note that this field can be construed to be a subfield of \mathbb{C}; if $D > 0$, it actually sits inside \mathbb{R}, albeit not in as geometrically pleasant a way;

b)* Suppose $D > 1$; show that $\mathbb{Z} \sqrt{D}$ is dense in \mathbb{R}: that is, every nonempty open interval (a, b) of \mathbb{R} contains a number of the form $a + b \sqrt{D}$ for some $a, b \in \mathbb{Z}$.

c) Define the norm map $N : \mathbb{Q} \sqrt{D} \to \mathbb{Q}$ by
\[N(a + b \sqrt{D}) = (a + b \sqrt{D})(a - b \sqrt{D}) = a^2 - Db^2. \]
Show that N is multiplicative:
\[N((a + b \sqrt{D})(c + d \sqrt{D})) = N(a + b \sqrt{D})N(c + d \sqrt{D}). \]

d) For $z \in \mathbb{Q} \sqrt{D}$, show that $N(z) = 0 \iff z = 0$, and that $N(z) = \pm 1$ iff z is a unit in R_D. (Hint for the last part: $(a + b \sqrt{D})^{-1} = \frac{a - b \sqrt{D}}{a^2 - Db^2}$.)

d') Show that, for any $D < -1$, the units of $\mathbb{Z} \sqrt{D}$ are ± 1.

e) Can you find a value of $D > 1$ for which $\mathbb{Z} \sqrt{D}$ has more units than just ± 1?

f) Suppose $z \in R_D$ is such that $N(z) = \pm p$, for p a prime number. Show that z is irreducible in $\mathbb{Z} \sqrt{D}$.

3.12(G)*: Which integers n are norms of irreducible elements z of $\mathbb{Z}[i]$?