THE CHEVALLEY-WARNING THEOREM (FEATURING...THE
ERDOS-GINZBURG-ZIV THEOREM)

PETE L. CLARK

1. THE CHEVALLEY-WARNING THEOREM

In this handout we shall discuss a result that was conjectured by Emil Artin in
1935 and proved shortly thereafter by Claude Chevalley. A refinement was given
by Artin’s graduate student Ewald Warning, who, as the story goes, was the one
whom Artin had intended to prove the theorem before Chevalley came visiting
Gottingen and got Artin to say a little too much about the mathematics his stu-
dent was working on.

One of the charms of the Chevalley-Warning theorem is that it can be stated and
appreciated without much motivational preamble. So let’s just jump right in.

1.1. Statement of the theorem(s).

Let ¢ = p* be a prime power, and let F, be a finite field of order q. We saw
earlier in the course that there exists a finite field of each prime power cardinality.’
For the reader who is unfamiliar with finite fields, it may be a good idea to just
replace F, with F,, = Z/pZ on a first reading, and then afterwards look back and
see that the assumption of an arbitrary finite field changes nothing.

Theorem 1. (Chevalley’s Theorem) Let n, di,...,r be positive integers such that
di+...4+d. < n. Foreachl < i <, let P(t,...,tn) € Fyltr,...,ts] e a
polynomial of total degree d; with zero constant term: P;(0,...,0) = 0. Then there
exists 0 # x = (z1,...,7,) € Fy such that

Pi(z)=...= P.(x)=0.

Exercise 1: Suppose we are given any system of polynomials Py (t),..., P.(t) in n
variables t1,...,t, with ), deg(P;) < n. Deduce from Chevalley’s that if there
exists at least one x € Fy such that Pi(z) = ... = P.(z), then there exists y # z
such that Pi(y) = ... = P.(y). (Hint: Make a change of variables to reduce to
Chevalley’s theorem.)

In other words, Exercise 1 asserts that a system of polynomials in n variables
over [, cannot have exactly one common solution, provided the sum of the degrees
is less than n. Warning’s theorem gives a generalization:

1t can be shown that any two finite fields of the same order are isomorphic; indeed this is
(literally) a textbook application of the uniqueness of splitting fields of polynomials and can be
found in any graduate level algebra text treating field theory. But we don’t need this uniquness
statement here.
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Theorem 2. (Warning’s Theorem) Let n, dy,...,r be positive integers such that
di+...+d. < n. Foreachl <i<r, let Pi(t,...,tn) € Fyglt,...,t,] be a
polynomial of total degree d;. Let

Z =4#{(21,...,xn) €FY | Pr(x1,.. 0 20) = ... = P21, ,20) = 0.}
Then Z =0 (mod p).
Arin had conjectured the following special case:

Corollary 3. Let P(t1,...,tn) € F[t1,...,t,] be a homogeneous polynomial of
degree d in n variables over a finite field F. If n > d then there exists (0,...,0) #
(1,...,xn) € F" such that P(z1,...,2,) =0.

In in the sequel, we will refer to any of Theorem 1, Theorem 2 or Corollary 3 as
the Chevalley-Warning theorem.

1.2. Applications to Quadratic Forms.

Taking d = 1 Corollary 3 asserts that any homogenous linear equation at; +bte = 0
(with @ and b not both 0) over a finite field has a nonzero solution. Of course linear
algebra tells us that the solution set to such an equation is a one-dimensional vec-
tor space, and this holds over any field, infinite or otherwise. So this is a trivial case.

Already the case d = 2 is much more interesting. A homogeneous polynomial
of degree 2 is called a quadratic form. For simplicity, we shall for the most part
consider here only nondegenerate diagonal forms over a field F,? i.e.,

q(x):q(xl,...,xn)zalx%—l—...—l—anwi, T1,...,xn € F, x1-+ 1, #0.

For some fields F', no matter how large we take n to be, we can still choose the
coefficients so that ¢(z) = 0 has no nontrivial solution. For instance, consider the
sum of squares form

an(2) =22 4+ ... + 22,

This has no nontrivial solution over the real numbers, or over any subfield of R.

Proposition 4. Let F be any field, and consider the form qq.(x) = 22 + ax3.

a) The form g2, has a nontrivial solution iff there exists a € F such that o® = —a.
b) Therefore if F =TF,, ¢ =p®, then qz1(x) = 23 + 23 has a nontrivial solution iff
p=2,p=1 (mod 4) ora is even.

Exercise 2: Prove Proposition 4.

Exercise 3: a) Suppose F is a field (of characteristic different from 2) which admits
a quadratic field extension K = F'(y/a). Deduce that there exists a binary qua-
dratic form ¢z ,(x) over F' which has no nontrivial solution.

b) For any odd ¢ = p®, show that there exists a binary quadratic form ¢ over Fy
with only the trivial solution. Can you write one down explicitly?

¢)* Show that the conclusion of part b) still holds when ¢ is even, although in this
case one has to take a nondiagonal form q(x,y) = az? + bxy + cy? = 0.

According to Corollary 3, any quadratic form in at least three variables over a

2When the characteristic of F' is not 2, one can diagonalize every quadratic form by making a
linear change of variables, so no generality is lost by restricting to the diagonal case.
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finite field has a nontrivial solution. This is quite different from the situation for
F=Ror F=Q. And it has many useful consequences, e.g.:

Proposition 5. Let F' be a field of characteristic different from 2 in which each
quadratic form in three variables has a nontrivial solution. Then, for any a,b,c €
F* | there exist x,y € I such that

az? 4+ by? = c.

Proof. In other words, we are claiming that the inhomogeneous equation ax? +
by? = c has a solution over F. To see this, we homogenize: introduce a third
variable z and consider the equation: ax? + by? — cz2 = 0. By Corollary 3 there
are o, Yo, 20 € K, not all zero, such that az? + by2 = c23. If 29 # 0, then we can

divide through, getting
2 2
() (2] -
20 20

If zp = 0, this doesn’t work; rather, we get a nontrivial solution (zg,yo) to ax3 +
by2 = 0. Dividing by a we get 23 + (g)yg = 0. But as above this can only happen if
=b =2 is a square in K, and then we can factor q(z) = 2° —t?y* = (z+ty)(z —ty).
This gives us a lot more leeway in solving the equation. For instance, we could factor
c as c¢- 1 and give ourselves the linear system

T4ty =c

rz—ty=1
which has a solution (z,y) = (<4}, <1). Note that it is here that we use the
hypothesis that the characteristic of K is not 2. (]

In particular this gives an alternate (much more sophisticated!) proof of [Minkowski’s
Theorem Handout, Lemma 15].

2. TWO PROOFS OF WARNING’S THEOREM
2.1. Polynomials and polynomial functions.

We begin with a discussion about polynomials as ring elements versus polyno-
mials as functions which is of interest in its own right. (In fact, it is because of the
interest of these auxiliary results that we have chosen to include this proof.)

Let R be an integral domain and Rlt,...,t,] be the polynomial ring in n in-
determinates over R. An element P(t) = P(t1,...,t,) € R[t1,...,t,] is a purely
formal object: it is a finite R-linear combination of monomial terms, which are
added and multiplied according to simple formal rules.

Note that this is not the perspective on polynomials one encounters in calculus and
analysis. For instance a univariate polynomial P(t) = ant™ + ... + a1t + ag € R[¢]
is regarded as a function from R to R, given of course by « — P(z). Similarly for
multivariable polynomials: P(¢1,...,t,) € R[t1,...,t,] may be defined by the same
formal R-linear combination of monomial terms as above but that is just notation:
what matters is the function R” — R given by (z1,...,2,) — P(21,...,2,). In
other words, a polynomial in n variables can be evaluated at any point of R™.
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Can these two perspectives be reconciled? A moment’s thought makes it clear
that the “evaluation” of a polynomial is a perfectly algebraic operation: in other
words, given any domain R and element P(t) of the polynomial ring R[ty,. .., t,],
we can evaluate P at any point (z1,...,2,) € R", getting an element P(z1, ..., 2,).
To be formal about it, we have an evaluation map:

®: Rlt1,...,tn] = Map(R", R),

where by Map(R"™, R) we just mean the set of all functions f : R — R. In fact this
map P has some nice algebraic structure. The set Map(R", R) of all functions from
R™ to R can be made into a commutative ring in which addition and multiplication
are just defined “pointwise”:

(f+9)(@r,...;zn) = fz1, .- xn) + 9(x1, ..oy Tn),

(fo)(@1,...,zn) = f(x1,.. ., 2n) - g(T1,. .., Zp).
It is straightforward to see that the evaluation map @ is then a homomorphism of
rings. Let us put
P = (I)(R[tl, s atn]) c Map(Rn, R),
so that P, is the ring of polynomial functions in n variables on R.

We are interested in the following question: if P(t),Q(t) € RJ[t1,...,t,] are such
that for all (z1,...,z,) € R™ we have P(x1,...,2,) = P(x1,...,2,) — so that P
and @ give the same function from R™ to R — must P(t) = Q(t) as elements of
R[t1,...,t,]? In other words, is ® injective?

I hope you know that in the familiar case of n = 1, R = R the answer is "yes”: two
real univariate polynomials which give the same function are term-by-term equal.
The proof is as follows: define R(t) := P(t) — Q(t). We are given that R(x) = 0
for all x € R. But if R(x) were not the zero polynomial, it would have some degree
d > 0 and basic (high school!) algebra shows that a polynomial over a field of
degree d cannot have more than d roots. But R(z) has infinitely many roots, so it
must be the identically zero polynomial.

Evidently this argument works for univariate polynomials over any infinite field.
The following is a stronger result:

Proposition 6. Let R be an infinite integral domain and n € ZT. Then the
evaluation map

O : R[t1,...,tn] = Pn C Map(R", R)
is a homomorphism of rings.
a) Moreover ® is injective.
b) However, ® is not surjective: not every function f : R — R is given by a
polynomial.

Proof. a) Again it suffices to show that if ®(P(¢)) = 0, then P(t) is the zero
polynomial. If n = 1, we just showed this when R was a field. But that argument
easily carries over, since every integral domain R can be embedded into a field F’
(namely its field of fractions). If there existed a nonzero polynomial P(t) € RJ[t]
such that there were infinitely z € R such that P(z) = 0, then since R C F', there
are also infinitely many « € F' such that P(x) = 0, contradiction. Assume now that
n > 1. In general the theory of polynomials of several variables can be signficantly
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more complicated than that of univariate polynomials, but here we can use a dirty
trick:
Rlt1,.. s tn_1,tn] = (R[t1,. - tn_1])[tn]-

In other words, a polynomial P(¢y,...,t,) in n variables over the integral domain
R may be viewed as a polynomial Q(t,) = (P(t1,...,tn—1))(ty) in one variable
over the integral domain R,_1 := R[t1,...,tn—1]. If P(z1,...,2,) = 0 for all
(x1,...,2n) € R™ then, since R C R,_1, the univariate polynomial Q(¢,) has
infinitely many roots in R, _; and thus is identically zero by the above argument.

As for part b), for instance the function 1g : R"® — R which maps 0 € R™ to 1
and every other element of R™ to 0 is not a polynomial function. You are asked
to show this in Exercise 4 below. Another argument is by counting: for infinite R,
the cardinality of R[t1,...,t,] is equal to the cardinality of R, whereas the total
number of functions from R” to R has cardinality |R|/®"! = 217 > |R|, so “most”
functions are not polynomials. O

Exercise 4: Let R be an infinite integral domain and n € Z*. Show that the char-
acteristic function 1y of the origin — i.e., the function which maps 0 = (0,...,0)
to 1 and every other element of R"™ to zero — is not a polynomial function. (Hint:
restrict the function 1y to a line passing through the origin, and thereby reduce to
the case n = 1.)

We shall not need Proposition 6 in our work on the Chevalley-Warning theorem,
but it is interesting to contrast the infinite case with the finite case. First of all:

Lemma 7. Let R =F, be a finite integral domain (necessarily a field). Then every
Junction f:Fy — Fy is given by a polynomial.

Proof. We first express the function 1y, which takes 0 to 1 and every other element
to 0, as a polynomial. Indeed, since z7~! =1 for € F* and 09! = 0, we have for
all z = (21,...,2,) € Fy that

n
1o(0) = [ —x¢7).
i=1
For an arbitrary function f : Fj — F, define

(1) RS SF()] | (ECEne

yelry

Then every term in the sum of P¢(z) with y # z yields zero whereas the term y = «
yields f(x). O

On the other hand, over a finite field F,, a nonzero polynomial may evaluate to the
zero function: indeed t? — t is a basic one variable example. There is no contra-
diction here because a nonzero polynomial over a domain cannot have more roots
than its degree, but t7 — ¢ = Haqu (t — a) has exactly as many roots as its degree.
Moreover, no nonzero polynomial of degree less than ¢ could lie in the kernel of
the evaluation map, so t? — t is a minimal degree nonzero element of Ker(®). But,
since F,[t] is a PID, every nonzero ideal I is generated by its unique monic element
of least degree, so Ker(®) = (t9 — t).
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We would like to compute Ker(®) in the multivariable case. Reasoning as above it
is clear that for all 1 < ¢ < n the polynomials t? — t; must lie in the kernel of the
evaluation map, so at least we have J = (t{ —t1,...,t2 —t,,) C Ker(®). We will
see that in fact J = Ker(®). We can even do better: for each polynomial P(t) we
can find a canonical element P of the coset P(t) + Ker(®).

The key idea is that of a reduced polynomial. We say that a monomial ctj* - - - t&n
is reduced if a; < ¢ for all i. A polynomial P € F,[t] is reduced if each of its
nonzero monomial terms is reduced. Equivalently, a reduced polynomial is one for
which the total degree in each variable is less than g.

Example: The polynomial Py(t) above is a sum of polynomials each having de-
gree ¢ — 1 in each variable, so is reduced.

Exercise 5: The reduced polynomials form an F,-subspace of Fy[t1,...,t,], with a
basis being given by the reduced monomials.

The idea behind the definition is that if in a monomial term we had an expo-
nent ¢{" with a; > ¢, then from the perspective of the associated function this is
just wasteful: we have

a;

€T, =T;

ai—(q—1)

g+(ai—q) q,.0i—q ai—q
? K2

=x;x;' " =3 =z

Thus by a sequence of “elementary reductions” of this type we can convert any
polynomial P into a reduced polynomial P. Moreover, a little reflection makes
clear that P — P € J.

Is it possible for a given polynomial P to be congruent modulo Ker(®) to more
than one reduced polynomial? Well, the reduced polynomials form an F,-vector
subspace of the space of all polynomials with basis given by the reduced monomials,
of which there are ¢", so the total number of reduced polynomials is ¢?". In fact this
is also the total number of functions from Fj to F,. Since we know that every func-
tion is given by some reduced polynomial, it must be that evaluation map restricted
to reduced polynomials is a bijection. Finally, since we showed that every polyno-
mial was equivalent modulo J to a reduced polynomial, so that #F,[t]/J < ¢ .
By surjectivity of ® we know #FF,[t]/ Ker(®) = # Map(Fy,F,) = ¢'q"). Therefore
the quotient map F,[t]/J — F,[t]/ Ker(®) is a bijection and hence J = Ker(®).

Remark: More standard is to prove that a nonzero reduced polynomial does not
induce the zero function by induction on the number of variables. Then the surjec-
tivity of ® can be deduced from the injectivity on reduced polynomials by noticing,
as we did, that the domain and codomain are finite sets with the same cardinality.
Our treatment here is undeniably more complicated than this, but also seems more
interesting. It will also smooth the way for our first proof of Warning’s theorem.

Let us summarize all the preceding results:®

3Although all parts of this theorem must be well-known, I have not seen the full statement in
the literature.
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Theorem 8. (Polynomial evaluation theorem) Let R be an integral domain and
n€Z%. Let ®: R[t] = R[t1,...,t,] = Map(R", R) be the homomorphism of rings
obtained by associating to each polynomial the corresponding polynomial function
x=(21,...,2,) = P(x).

a) If R is infinite, then ® is injective but not surjective: every function f: R® — R
is represented by at most one polynomial, and there exist functions not represented
by any polynomial.

b) If R is finite, then ® is surjective but not injective: its kernel is the ideal (t] —
t1,...,t2 — t,). Thus every function f : R™ — R is represented by infinitely
many polynomials. Moreover, for each f there exists a unique reduced polynomial
representative, given explicitly as the polynomial Pr(t) of (1) above.

It f: Fy — F, is any function, we define its reduced degree in ¢; to be the degree
in t; of the associated reduced polynomial, and similarly its reduced total degree
to be the total degree of the associated reduced polynomial.

Exercise 6: Show that if P is any polynomial, the total degree deg(ﬁ’) of P is
less than or equal to the total degree deg(P) of P.

2.2. First proof of Warning’s Theorem.

We have polynomials Py (), ..., P.(t) in n variables with ) ._, deg(P;) < n. Put
(2) Z ={(v1,...,2,) €Fy | Pi(x) =...= P.(x) = 0.}

We want to show that #Z = 0 (mod p). Let 17 : Fj — F, be the (Fg-valued)
“characteristic function” of the subset Z, i.e., the function which maps = to 1 if
x € Z and z to 0 otherwise. Now one polynomial representative 1 is

T

(3) Pty :=J[(1-P@®)");

i=1

whereas — essentially by (1) above — the reduced polynomial representative is

Qz(t) = Z H (1 — (ti — xi)q_l) .
reZi=1
Now comes the devilry: the total degree of P(t)is (¢ —1) >, d; < (¢ — 1)n.
On the other hand, consider the coefficient of the monomial t4~" - - - 12~ 1 in Q,(¢):
itis (—1)"#Z. If we assume that #Z is not divisible by p, then this term is nonzero
and Qz(t) has total degree at least (¢ — 1)n. By Exercise X.X, we have

deg(P) < deg(P) < (¢ — 1)n < deg(Qz).

Therefore P # deg(Qz), whereas we ought to have P = Qg, since each is the
reduced polynomial representative of 1z. Evidently we assumed something we
shouldn’t have: rather, we must have p | #Z, qed.

2.3. Ax’s proof of Warning’s theorem.
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We maintain the notation of the previous section, especially the polynomial P(t)
of (3) and the subset Z of (2). Because P(z) = 1z(z) for all z € Fy, we have

#Z= Y P(x) (mod p).

ze Fy

So we just need to evaluate the sum. Since every polynomial is an Fg,-linear com-

bination of monomial terms, it is reasonable to start by looking for a formula for

> wern T4 - - xpr for non-negative integers ai,...,an,. It is often the case that if
q

f: G — Cis a “nice” function from an abelian group to the complex numbers,

then the complete sum ) . f(7) has a simple expression. Case in point:

Lemma 9. Let aq,...,a, be non-negative integers.

a) If for 1 < i <mn, a; is a positive multiple of q—1, then Zzew g = (1),

b) In every other case —i.e., for at least one i, 1 < i < n, a; is not a positive integer

multiple of ¢ — 1 — we have erw e aln =

Proof. Part a) is not needed in the sequel and is just stated for completeness; we
leave the proof as an exercise.
As for part b), we have

n
O I D
z€ Fn i=1 \x;€ F,

By assumption there exists at least one i, 1 < 4 < n, such that a; is either 0 or
is positive but not a multiple of ¢ — 1. If a; = 0, then 3 cp ai' =3 cp 1=
g =0 € Fy, so assume that a; is positive but not divisible by ¢ — 1. Let o be a
generator for the cyclic group Fy, and put 8 = a®. Then

q—2 q—2 1
v _ . _ 1-— B4 1-1
> alt=0"4 Y 2l =0+ ) (@) => pV= ﬁﬁ 1_5:0'

z;€Fq :z:ie]FqX N=0 N=0

O

Finally, the polynomial P(¢) has degree .., di(¢—1) = (¢—1)>_i_; d;i < (¢—1)n.
Thus in each monomial term ct{* - - -t in P(¢) must have a1 +...4+a, < (¢—1)n,
so it can’t be the case that each a; > ¢—1. Therefore Lemma 9 applies, and er]Fg
is an Fg-linear combination of sums each of which evaluates to 0 in F;, and therefore
the entire sum is 0.

3. SOME LATER WORK

Under the hypotheses of Warning’s theorem we can certainly have 0 solutions.
n

For instance, we could take Pi(t) to be any polynomial with deg(Py) < % and
Py(t) = Pi(t) + 1. Or, when ¢ is odd, let a € F,; be a quadratic nonresidue, let

Py (t) be a polynomial of degree less than 2 and put P(t) = Py(t)? — a.

On the other hand, it is natural to wonder: in Warning’s theorem, we might actu-
ally have #Z =0 mod ¢? The answer is now known, but it took 46 years.

Let us first consider the case of r = 1, i.e., a single polynomial P of degree less
than n. In his original 1926 paper, E. Warning proved that #7, if positive, is at
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least ¢"~¢. And in the same 1964 paper containing the quick proof of Warning’s
theorem, J. Ax showed that ¢” | #Z for all b < 5+ By hypothesis we can take b = 1,
so the aforementioned question has an affirmative answer in this case.

For the case of multiple polynomials Py, ..., P, of degrees dy, ..., d,, in a celebrated

1971 paper N. Katz showed that ¢° | #Z for all positive integers b satisfying

n—(dl—&—...—i—dr)
di

Since the above fraction is by hypothesis strictly positive, we can take b = 1 getting

indeed #Z =0 (mod q) in all cases.

b< +1.

These divisibilities are called estimates of Ax-Katz type. It is known that there
are examples in which the Ax-Katz divisibilities are best possible, but refining these
estimates in various cases is a topic of active research: for instance there is a 2007
paper by W. Cao and Q. Sun, Improvements upon the Chevalley- Warning-Ax-Katz-
type estimates, J. Number Theory 122 (2007), no. 1, 135-141.

Notice that the work since Warning has focused on the problem of getting best
possible p-adic estimates for the number of solutions: that is, instead of bounds of
the form #Z > N, we look for bounds of the form ord,(#Z2) > N. Such estimates
are closely linked to the p-adic cohomology of algebraic varieties, a beautiful (if
technically difficult) field founded by Pierre Deligne in his landmark paper ” Weil I1.”

The hypotheses of the Chevalley-Warning theorem are also immediately sugges-
tive to algebraic geometers: (quite) roughly speaking there is a geometric division
of algebraic varieties into three classes: Fano, Calabi-Yau, and general type. The
degree conditions in Warning’s theorem are precisely those which give, among the
class of algebraic varieties represented nicely by r equations in n variables (“smooth
complete intersections”), the Fano varieties. A recent result of Hélene Esnault gives
the geometrically natural generalization: any Fano variety over I, has a rational
point. There are similar results for other Fano-like varieties.

4. THE ERDOS-GINZBURG-ZIV THEOREM

4.1. A Mathematical Card Game.

Consider the following game. One starts with a deck of one hundred cards (or
N cards, for some arbitrary positive integer V). Any number of players may play;
one of them is the dealer. The dealer shuffles the deck, and the player to the dealer’s
left selects a card (“any card”) from the deck and shows it to everyone. The player
to the dealer’s right writes down the numerical value of the card, say n, and keeps
this in a place where everyone can see it. The card numbered n is reinserted into
the deck, which is reshuffled. The dealer then deals cards face up on the table, one
at a time, at one minute intervals, or sooner by unanimous consent (i.e., if everyone
wants the next card, including the dealer, then it is dealt; otherwise the dealer waits
for a full minute). A player wins this round of the game by correctly selecting any
k > 0 of the cards on the table such that the sum of their numerical values is divis-
ible by n. When all the cards are dealt, the players have as much time as they wish.
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For example, suppose that n = 5 and the first card dealt is 16. 16 is not di-
visible by 5, so the players all immediately ask for another card: suppose it is 92.
92 is not divisible by 5 and neither is 92 + 16 = 118, so if the players are good,
they will swiftly ask for the next card. (Of course, if they are any good at all, they
will not be thinking of the numbers as 16 and 92 but rather as 1 (mod 5) and 2
(mod 5), but let’s present things literally so as to understand the game mechanics.)
Suppose the next card is 64. Then someone can win by collecting the 64 and the
16 and calling attention to the fact that 64 + 16 = 80 is divisible by 5.

Here’s the question: is it always possible to win the game, or can all the cards
be dealt with no solution?

We claim that it is never necessary to deal more than n cards before a solution
exists. Moreover, so long as the total number N of cards in the deck is sufficiently
large compared to the selected modulus n, it is possible for fewer than n cards to
be insufficient.

To see the latter, note that if n = 1 we obviously need n cards, and if n = 2
we will need n cards iff the first card dealt is odd. If n = 3 we may need n cards iff
N >4, since if 1 and 4 are the first two cards dealt there is no solution. In general,
if the cards dealt are 1, 14+n,1+2n,...,1+(n—2)n, then these are n—1 cards which
are all 1 (mod n) and clearly we cannot obtain 0 (mod n) by adding up the values
of any 0 < k < n—1 of these. This is possible provided N > n?—2n+1 = (n—1)2.4

But why are n cards always sufficient? We can give an explicit algorithm for
finding a solution: for each 1 < k < n, let Sy = a1 + ... + a; be the sum of the
values of the first k cards. If for some k, Sy is divisible by n, we are done: we
can at some point select all the cards. Otherwise, we have a sequence S1,...,S,
of elements in Z/nZ, none of which are 0 (mod n). By the pigeonhole principle,
there must exist k1 < ko such that Sg, = Sg, (mod n), and therefore

0= Sk, — Sk, = ak,+1+...+ar, (modn).

In other words, not only does a solution exist, for some k < n a solution exists
which we can scoop up quite efficiently, by picking up a consecutive run of cards
from right to left starting with the rightmost card.

Notice that this is not always the only way to win the game, so if this is the
only pattern you look for you will often lose to more skillful players. For instance,
in our example of n = 5, the sequence (which we will now reduce mod 5) 1,2,4
already has a solution but no consecutively numbered solution.

An interesting question that we will leave the reader with is the following: fix
n and assume that N is much larger than n: this is effectively the same as draw-
ing with replacement (because after we a draw any one card a;, the change in the
proportion of the cards in the deck which are congruent to a; (mod n) is negligible

we neglect the issue of figuring out exactly how many card are necessary if n is moderately
large compared to N. It seems interesting but does not segue into our ultimate goal.
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if N is sufficiently large, and we will never deal more than n cards). Suppose then
that we deal 1 < k < n cards. What is the probability that a solution exists?

Anyway, we have proven the following amusing mathematical fact:

Theorem 10. Let aq,...,a, be any integers. There exists a monempty subset
I'c{l,...,n} such that ), .;a; =0 (mod n).
4.2. The Erdos-Ginzburg-Ziv Theorem.

After a while it is tempting to change the rules of any game. Suppose we “make
things more interesting” by imposing the following additional requirement: we deal
cards in sequence as before with a predetermined “modulus” n € Z*. But this time,
instead of winning by picking up any (positive!) number of cards which sum to 0
modulo n, we must select precisely n cards a;,,...,a;, such that a;, +...4+a;, =0
(mod n). Now (again assuming that N > n, or equivalently, dealing with replace-
ment), is it always possible to win eventually? If so, how many cards must be dealt?

Well, certainly at least n: since the problem is more stringent than before, again
if the first n — 1 congruence classes are all 1 (mod n) then no solution exists. If
we have at least n instances of 1 mod n then we can take them and win. On the
other hand, if the first n — 1 cards are all 1’s, then by adding up any k£ < n — 1 of
them we will get something strictly less than n, so if the next few cards all come
out to be 0 (mod n), then we will not be able to succeed either. More precisely, if
in the first 2n — 2 cards we get n — 1 instances of 1 (mod n) and n — 1 instances
of 0 (mod n), then there is no way to select precisely n of them that add up to 0
(mod n). Thus at least 2n — 1 cards may be required. Conversely:

Theorem 11. (Erdios-Ginzburg-Ziv, 1961) Let n € ZT and ay,...,a,_1 € Z.
There exists a subset I C {1,...,2n — 1} such that:

(i) #I = n.

(i) > ;erai =0 (mod n).

Proof. (C. Bailey and R.B. Richter) The first step is to deduce the theorem for

n = p a prime using Chevalley-Warning. The second step is to show that if the
theorem holds for ny and for ns, it holds also for nyns.

Step 1: Suppose n = p is a prime number. Let ai,...,a2,-1 € Z. Consider
the following elements of the polynomial ring Fy[t1, ..., top—1]:
2p—1
Pl(tl, . 7t2p,1) = Z aitf_l,
i=1
2p—1

Pyfty,... tap1) = Y 770
=1

Since P;(0) = P»(0) = 0 and deg(P1) + deg(P2) = 2p — 2 < 2p — 1, by Chevalley-
Warning there exists 0 # © = (z1,...,2Z2p-1) € ]FIQ}’_1 such that

2p—1

(4) Z aixf_l = 07
=1



12 PETE L. CLARK

2p—1
(5) > att=o.
i=1

Put
I={1<i<2p—1]a; #0}
Since (as usual!) zP~! is equal to 1 if x # 0 and 0 if z = 0, (4) and (5) yield:

Zai =0 (mod p),

icl

Z 1=0 (mod p).
iel
But we have 0 < #I < 2p, and therefore #1 = p, completing the proof of Step 1.

Step 2: Because we know the theorem is true for all primes n, by induction we
may assume that n = km for 1 < k, m < n (i.e., n is composite) and, by induction,
that the theorem holds for £ and m.

By an easy induction on r, one sees that if for any r > 2 we have rk — 1 inte-
gers ai,...,arg—1, then there are r — 1 pairwise disjoint subsets of I,...,I,._1 of
{1,...,7k — 1}, each of size k, such that for all 1 < j <r —1 we have Zlelj a; =0
(mod k). Apply this with » = 2m to our given set of 2n — 1 = (2mk) — 1 integers:
this gives 2m — 1 pairwise disjoint subsets I,..., Iop—1 C {1,...,2n — 1}, each of
size k, such that for all 1 < 7 < 2m — 1 we have

Z a; =0 (mod k).
iel;

Now, for each j as above, put

b.
bj = Zai, b; = EJ
i€l
We thus have 2m — 1 integers b}, ..., b5, ;. Again using our inductive hypothesis,
there exists J C {1,...,2m — 1} such that #J = m and >, ;V; =0 (mod m).
Let I =J;1;. Then #I = km = n and

ZaiEZZaiEZkbg =0 (mod km).

iel jeJicl, jedg

4.3. EGZ theorems in finite groups.

This application of Chevalley-Warning — one which makes good use of our ability to
choose multiple polynomials — is apparently well-known to combinatorial number
theorists. But I didn’t know about it until Patrick Corn brought it to my attention.

As with the Chevalley-Warning theorem itself, the EGZ theorem is sort of a pro-
totype for a whole class of problems in combinatorial algebra. In any group G
(which, somewhat unusually, we will write additively even if it is not commutative)
a zero sum sequence is a finite sequence z1,...,z, of elements of G such that
(guess what?) =1 + ...+ z, = 0. By a zero sum subsequence we shall mean
the sequence z;,, ..., z;, associated to a nonempty subset I C {1,...,n}. In this
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language, our Theorem 10 says that any sequence of n elements in Z/nZ has a zero
sum subsequence. The same argument proves the following result:

Theorem 12. Let G be a finite group (not necessarily commutative), of order n.
Then any sequence x1,...,x, in G has a zero sum subsequence.

Some EGZ-type theorems in this context are collected in the following result.

Theorem 13. (EGZ for finite groups)

a) (Erdéos-Ginzburg-Ziv, 1961) Let G be a finite solvable group of order n and
X1,...,Tan—1 € G. Then there exist distinct indices iy,...,1, (not necessarily in
increasing order) such that x;, + ...+ z;, =0.

b) (Olson, 1976) Same as part a) but for any finite group.

¢) (Sury, 1999) Same as part a) but the indices can be chosen in increasing order:
11 <...<1lp-

d) (Sury, 1999) The conclusion of part c) holds for a finite group G provided it
holds for all of its Jordan-Holder factors.

We draw the reader’s attention to the distinction between the results of parts a)
and b) and those of c¢) and d): in the first two parts, we are allowed to reorder
the terms of the subsequence, whereas in the latter two we are not. In a commu-
tative group it makes no difference — thus, the generalization to all finite abelian
groups is already contained in the original paper of EGZ — but in a noncommu-
tative group the desire to preserve the order makes the problem significantly harder.

The inductive argument in Step 2 of Theorem 11 is common to all the proofs,
and is most cleanly expressed in Sury’s paper as the fact that the class of finite
groups for which EGZ holds is closed under extensions. Thus the case in which G
is cyclic of prime order is seen to be crucial. In 1961 Erdés, Ginzburg and Ziv gave
an “elementary” proof avoiding Chevalley-Warning. Nowadays there are several
proofs available; a 1993 paper of Alon and Dubiner presented at Erdés’ 80th birth-
day conference gives five different proofs. Olson’s proof also uses only elementary
group theory, but is not easy. In contrast, Sury’s paper makes full use of Chevalley-
Warning and is the simplest to read: it is only three pages long.

Sury’s result has the intriguing implication that it would suffice to prove the EGZ
theorem for all finite simple groups (which are now completely classified...). To
my knowledge no one has followed up on this.

There is another possible generalization of the EGZ theorem to finite abelian, but
non-cyclic, groups. Consider for instance G(n,2) := Z, X Z,, which of course
has order n2. Rather than asking for the maximal length of a sequence without
an n’-term zero sum subsequence, one might ask for the maximal length of a se-
quence without an n-term zero sum subsequence. (One might ask many other such
questions, of course, but in some sense this is the most reasonable “vector-valued
analogue” of the EGZ situation.) A bit of thought shows that the analogous lower
bound is given by the sequence consisting of n — 1 instances each of (0,0), (0,1),
(1,0) and (1,1): in other words, this is the “obvious” sequence with no n-term zero-
sum subsequence, of length 4(n — 1). It was conjectured by A. Kemnitz in 1983
that indeed any sequence in G(n,2) of length at least 4n — 3 has an n-term zero
sum subsequence. Kemnitz’s conjecture was proved in 2003 independently by C.



14 PETE L. CLARK

Reiher (an undergraduate!) and C. de Fiore (a high school student!!). Both proofs
use the Chevalley-Warning theorem, but in quite intricate and ingenious ways.

For any positive integer k, define G(n,d) = (Z,)?, the product of d copies of the
cyclic group of order n, and consider lengths of sequences without an n-term zero
sum subsequence: let us put f(n,d) for the maximal length of such a sequence.
Analogues of the above sequences with {0, 1}-coordinates give

f(n,d) >2%n —1).
In 1973 Heiko Harborth established the (much larger) upper bound
f(n,d) < n(n—1).

Harborth also computed G(3,3) = 18 > 23(3 — 1): i.e., in this case the “obvious”
examples do not have maximal length! Tt seems that the computation of G(n,3)
for all n — or still more, of G(n,d) for all d — would be a significant achievement.



