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1. Introduction

A typical result in (additive) Ramsey theory takes the following form: if N (or {1, . . . , N} with N suffi-
ciently large) is partitioned into finitely many classes, then at least one of these classes will contain contain
a specific arithmetic structure (e.g. an arithmetic progression). The simplest example of such a result
is the pigeonhole principle and one can view Ramsey theory as the study of generalizations and repeated
applications of this principle. These notes follow the excellent presentations in [3], [8], [5], [7] and [6] closely.

1.1. Three classical theorems. The following results actually pre-date Ramsey’s theorem itself.

Theorem 1.1 (Hilbert, 1892). Let k ∈ N. If N is finitely colored, then there exist in one color class infinitely
many translates of a set of the following form:{∑

i∈I

xi : I ⊆ {1, . . . , k}

}
with x1, . . . , xk ∈ N.

Note specifically (the case k = 2 above) that one color class will contain a set of the form

{a, a+ x1, a+ x2, a+ x1 + x2}, x1, x2 6= 0.

Theorem 1.2 (Schur, 1916 (for the case k = 2)). Let k ∈ N. If N is finitely colored, then there exist in one
color class infinitely many (k + 1)-tuples of the form:

{x1, . . . , xk, x1 + · · ·+ xk} .

Note specifically (the case k = 2 above) that one color class will contain a triple of the form

{x1, x2, x1 + x2}.
Theorem 1.3 (van der Waerden, 1927). Let k ∈ N. If N is finitely colored, then there exist in one color
class infinitely many arithmetic progressions of length k, namely sets of the form

{a, a+ h, . . . , a+ (k − 1)h}
with h 6= 0.

Note specifically (the case k = 2 above) that one color class will contain a set of the form

{a, a+ h, a+ 2h}, h 6= 0.

1.2. Gallai’s theorem. “While in Khintchine’s book [4] van der Waerden’s theorem is called a pearl of
number theory, it should, perhaps, be more properly called a pearl of geometry” - Vitaly Bergelson [1].

Indeed, it is not hard to see that van der Waerden’s theorem is equivalent to the following more overtly
geometric result, which is also suggestive of natural multidimensional extensions.

Theorem 1.4. Let F ⊂ N be finite. If N is finitely colored, then there exist in one color class infinitely
many homothetic copies of F , that is infinitely many sets of the form a+hF = {a+hx : x ∈ F} with h 6= 0.

In Section 8 we shall present a proof of the Hales-Jewett theorem, an abstract combinatorial generalization
of van der Waerden’s theorem, from which we will easily be able to deduce the following formulation of a
multidimensional analogue of Theorem 1.4, originally due to Gallai.

Theorem 1.5 (Gallai’s theorem). Let n ∈ N and F ⊂ Nn be finite. If Nn is finitely colored, then there
exist in one color class infinitely many homothetic copies of F , that is infinitely many sets of the form
a+ hF = {a+ hx : x ∈ F} with a ∈ Nn and h ∈ N.
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1.3. Rado’s theorem. Schur’s theorem generalizes considerably. One may interpret Schur’s theorem as
a result about the existence in one color class of a solution to the linear equation x1 + · · · + xk = xk+1.
For any k ∈ N and homogeneous linear equation c1x1 + · · · + ckxk = 0, we may ask whether every finite
coloring of N must admit a monochromatic solution. In 1933, Rado (Schur’s student) proved that such a
linear equation will in fact have this property if and only if some non-empty subset of {c1, . . . , ck} sums to
zero. More generally, he answered this question for a system of homogeneous linear equations, determining
necessary and sufficient conditions for the existence of monochromatic solutions.

Definition 1.6. A matrix C, whose entries are all rational numbers, is said to satisfy the columns condition
if there is an ordering c1, . . . , ck of its column vectors and a partition of C into blocks of consecutive columns
such that the sum of the columns in any block is a linear combination of the columns in the preceding blocks.

Some examples:

1. The matrix (1, 1,−1) satisfies the columns condition. More generally, the matrix (c1, . . . , ck) satisfies
the columns condition if and only if some non-empty subset of {c1, . . . , ck} sums to zero.

2. Matrices of the form
1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1

 and


1 −1 0 0 0 −1
0 1 −1 0 0 −1
0 0 1 −1 0 −1
0 0 0 1 −1 −1


can also easily be seen to satisfy the columns condition.

Theorem 1.7 (Rado, 1933). Let C be matrix whose entries are all rational numbers. If N is finitely colored,
then there exist in one color class infinitely many solutions to the homogeneous system of linear equations
Cx = 0 if and only if C satisfies the columns condition.

Note specifically, in light of the examples above, that Rado’s theorem implies both Schur’s theorem and
van der Waerden’s theorem as well as the following strengthening of van der Waerden’s theorem: if N is
finitely colored, then one color class will contain an arbitrarily long arithmetic progression and its difference.

In Section 6 we shall prove Rado’s theorem for the special case of systems with one equation. For a proof
of the complete theorem see [3] or [5].

1.4. Folkman’s theorem. In Section 7, we will use van der Waerden’s theorem to establish the following
generalization of Schur’s theorem (and Hilbert’s theorem). The alert reader will also notice that this result
may be derived as a corollary of Rado’s theorem (the full version), the direct proof we present is however
much simpler.

Theorem 1.8 (Folkman’s theorem). Let k ∈ N. If N is finitely colored, then there exist in one color class
infinitely many sets of the form {∑

i∈I

xi : I ⊆ {1, . . . , k}, I 6= ∅

}
with x1, . . . , xk distinct.

Note specifically (the case k = 3 above) that one color class will contain a set of the form

{x1, x2, x3, x1 + x2, x1 + x3, x2 + x3, x1 + x2 + x3}
with x1, . . . , x3 distinct and that this configuration itself contains the cube {x1, x1 +x2, x1 +x3, x1 +x2 +x3}.

We conclude the introduction with the statement of a remarkable generalization of Folkman’s theorem.

Theorem 1.9 (Hindman’s theorem). If N is finitely colored, then there exist an infinite sequence of distinct
natural numbers {xi} and one color class that contains the IP set{∑

i∈I

xi : I ⊆ {1, . . . , k}, 1 ≤ |I| <∞

}
.

We shall unfortunately not prove this theorem in these notes, for a proof see [3].
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2. Equivalence of “finite” and “infinite” Ramsey-type statements

All of the theorems above (with the exception of Hindman’s theorem) are of the following general type:

Given m ∈ N and F a family of finite subsets of N, then any m-coloring of N will have one color class
that contains infinitely many representative from F .

Our strategy to prove these theorems will be to establish “finite” variants of the following general type:

Given m ∈ N and F a family of finite subsets of N, there exists a smallest integer Nm(F), such that if
N ≥ Nm(F), then any m-coloring of {1, . . . , N} will admit a monochromatic representative from F .

It is clear that the “infinite” statements above are true whenever the “finite” statements are (for a fixed
family of finite subsets F), right? What is less obvious is that the converse is also true.

Theorem 2.1 (Compactness Principle). Let m ∈ N and F be a family of finite subsets of N. Any m-
coloring of N will have one color class that contains infinitely many representatives from F if and only if
there exists a smallest integer Nm(F), such that if N ≥ Nm(F), then any m-coloring of {1, . . . , N} will
admit a monochromatic representative from F .

Proof. Sufficiency is clear, we will prove necessity. Let m ∈ N be fixed and assume that every m-coloring of
N admits a monochromatic member of F . We assume, for a contradiction, that for each N ∈ N, there exists
an m-coloring of {1, . . . , N}

cN : {1, . . . , N} → {1, . . . ,m}

that admits no monochromatic member of F . We proceed by constructing a specific m-coloring, c, of N.

Among c1(1), c2(1), dots there must be a color that appears infinitely often. Call this color c1 and let C1
denote the collection {cN : cN (1) = c1}. Now within the set {cN (2) : cN ∈ C1} there must exist a color, c2,
that appears infinitely often and we let C2 denote the collection {cN ∈ C1 : cN (2) = c2}.

Iterating this process we obtain, for each j ≥ 2, a color cj such that the collection

Cj = {cN : cN (1) = c1, . . . , cN (j) = cj}

is infinite. We define c(j) := cj for all j ∈ N. By assumption, this m-coloring of N admits a monochromatic
member of F , say F . Let j0 = max{j : j ∈ F}. By construction, for every coloring cN ∈ Cj0 we have that the
values of cN (j) are equal for all j ∈ F . This contradicts our assumption that the cN ’s avoid monochromatic
members of F , simply take N = j0. �

3. Hilbert’s theorem

Theorem 3.1 (Hilbert’s theorem). Given m, k ∈ N, there exists a smallest integer Hm(k) such that if
N ≥ Hm(k), then any m-coloring of {1, . . . , N} will admit a monochromatic k-cube, that is a monochromatic
subset of the form {

x0 +
∑
i∈I

xi : I ⊆ {1, . . . , k}

}
.

Proof. Since a 1-cube is just a pair of natural numbers, it is clear that Hm(1) = m + 1. We proceed via
induction on k, hence we let k ≥ 2 and assume the existence of Hm(k− 1). We will now establish the result
by demonstrating that Hm(k) ≤ mHm(k − 1)k. Towards this end we set N = mHm(k − 1)k and partition
{1, . . . , N} into mHm(k − 1)k−1 intervals, each of length Hm(k − 1). It then follows from the inductive
hypothesis, that given any m-coloring of {1, . . . , N} each of these mHm(k − 1)k−1 intervals will contain
at least one monochromatic (k − 1)-cube. But, up to translation, an interval of length Hm(k − 1) there
are at most (Hm(k − 1) − 1)k−1 < Hm(k − 1)k−1 such cubes. Since there are, by design, mHm(k − 1)k−1

intervals, some two of these intervals will contain translations of the same (k − 1)-cube in the same color.
This completes the proof, since the union of a (k − 1)-cube with a translate of itself is a k-cube. �
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4. Ramsey’s theorem and Schur’s theorem

4.1. Ramsey’s theorem. We will establish the following pretty general version of Ramsey’s theorem.

Theorem 4.1 (Ramsey’s theorem). Given m ∈ N and k1, . . . , km ∈ Z≥2, there exists a smallest integer
Rm(k1, . . . , km) such that if N ≥ Rm(k1, . . . , km) and E = E1 ∪ · · · ∪ Em is any partition of the edges of a
complete graph with N vertices into m sets, then there exists 1 ≤ j ≤ m such that Ej contains a complete
subgraph with kj vertices.

We now record the following special case (the case k1 = · · · = km above) as a corollary as it is this result
that we shall use in the proof of Schur’s theorem below.

Corollary 4.2 (Ramsey’s theorem (special case)). Given m ∈ N and k ∈ Z≥2, there exists a smallest integer
Rm(k) such that if N ≥ Rm(k), then any m-coloring of the edges of a complete graph with N vertices will
admit a monochromatic complete subgraph with k vertices.

Note specifically that any m-coloring of a compete graph with at least Rm(3) vertices will contain a
monochromatic triangle. In Exercise 3 in Section 10 below you are asked to show that Rm(3) ≤ bem!c+ 1.

Proof of Ramsey’s theorem. It suffices to prove the theorem for m = 2, see Exercise 2 in Section 10 below.

First note that R2(k1, 2) = k1 for all k1 ≥ 2, and R2(2, k2) = k2 for all k2 ≥ 2. We proceed via induction
on the sum k1 + k2, having taken care of the case k1 + k2 = 5. Hence, we let k1 + k2 ≥ 6 with k1, k2 ≥ 3 and
assume that both R2(k1, k2− 1) and R2(k1− 1, k2) exist. We will now establish the result by demonstrating
that

R2(k1, k2) ≤ R2(k1 − 1, k2) +R2(k1, k2 − 1).

Let N = R2(k1 − 1, k2) +R2(k1, k2 − 1), KN denote a complete graph with N vertices and E = E1 ∪E2

be an arbitrary 2-coloring of the edges E of KN . Pick on vertex from KN and call it v. It follows from the
pigeonhole principle that of the N −1 edges from v to the other vertices of KN , either at least R2(k1−1, k2)
of them will be in E1, or at least R2(k1, k2 − 1) of them will be in E2. We will assume, with loss in
generality, that the former occurs and let V denote the set of vertices connected to v by an edge in E1. Since
|V | ≥ R2(k1 − 1, k2) it follows from the inductive hypothesis that the complete subgraph with vertex set
V will contain either a complete subgraph with k2 vertices whose edges are all in E2, in which case we are
done, or a complete subgraph with k1 − 1 vertices whose edges are all in E1, in which case we are also done
since by connecting v to each vertex of this subgraph we will obtain a complete subgraph with k1 vertices
all of whose edges are in E1. �

4.2. Schur’s theorem.

Theorem 4.3 (Schur’s theorem). Given m, k ∈ N, there exists a smallest integer Sm(k) such that if N ≥
Sm(k), then any m-coloring of {1, . . . , N} will admit a monochromatic subset of the form

{x1, . . . , xk, x1 + · · ·+ xk} .

The proof we present below gives the bound Sm(k) ≤ Rm(k + 1)− 1.

Proof of Schur’s theorem. Let N ≥ Rm(k+1)−1, c : {1, . . . , N} → {1, . . . ,m} be a fixed (but arbitrary) m-
coloring of {1, . . . , N} and KN+1 denote a complete graph with N + 1 vertices that are labelled 1, . . . , N + 1.
Using the given coloring c of {1, . . . , N} we now m-color the edges of KN+1 by assigning to the edge between
the vertices i and j, the color c(|j − i|). By Ramsey’s theorem (in particular Corollary 4.2), the graph
KN+1 must contain a monochromatic complete subgraph with k + 1 vertices. If we list the vertices of this
monochromatic complete subgraph in order as v0 < v1 < · · · < vk, then it follows that the value of c(vj − vi)
will be equal for all 0 ≤ i < j ≤ k. The claim then follows by setting xj := vj − vj−1. �
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5. van der Waerden’s theorem

Theorem 5.1 (van der Waerden’s theorem). Given m, k ∈ N, there exists a smallest integer Wm(k) such
that if N ≥ Wm(k), then any m-coloring of {1, . . . , N} will admit a monochromatic arithmetic progression
of length k, namely a set of the form {a, a+ h, . . . , a+ (k − 1)h} with h 6= 0.

We present the standard color-focusing proof of van der Waerden’s theorem in Section 5.2 below, however
before tackling this we strongly suggest that the reader try the following illuminating exercises.

5.1. Exercises.

1. Prove that Wm(2) = m+ 1 for all m ≥ 1.
2. Let k,m,N, x and d be positive integers. Prove that every m-coloring of {1, . . . , N} contains a

monochromatic k-term arithmetic progression if and only if every m-coloring of

S = {x, x+ d, x+ 2d, . . . , x+ (N − 1)d}

contains a monochromatic k-term arithmetic progression.
3. Show that any two coloring of {1, . . . , 325} contains at least one monochromatic arithmetic progres-

sion of length three using the following steps (this strategy will be useful when we prove van der
Waerden’s theorem):
(a) (i) Show that any 2-coloring of five consecutive natural numbers must contain a 3-term

arithmetic progression whose first two elements are monochromatic.
(ii) How many consecutive numbers are needed to ensure that any m-coloring contains a

3-term arithmetic progression whose first two elements are monochromatic?
(b) Consider a 2-coloring of N. How many consecutive blocks of the form

{x, x+ 1, x+ 2, x+ 3, x+ 4}

are needed to ensure a 3-term arithmetic progression of blocks where the first two blocks are
identically colored?

(c) Prove that any 2-coloring of {1, . . . , 325} must contain a monochromatic 3-term arithmetic
progression.

4. A fan of radius 3 and dimension d with base point a is a d-tuple of the form

{{a, a+ h1, a+ 2h1}, . . . , {a, a+ hd, a+ 2hd}}.

We say that a fan is polychromatic if its base point, a, and the spokes,

{a+ h1, a+ 2h1}, . . . , {a+ h2, a+ 2h2},

are all monochromatic with distinct colors.
Suppose that N is sufficiently large, {1, . . . , N} is 3-colored and contains no monochromatic 3-term

arithmetic progressions.
(a) Show that the coloring contains two identically colored blocks containing a fan of radius 3 and

dimension 1.
(b) Use part (a) to find two identically colored fans of radius 3 and dimension 2. Use this to show

that the coloring must contain a 3-term arithmetic progression.
(c) Can you now extend this argument to prove the existence of Wm(3) for all m ≥ 1?

5. Let m ∈ N and assume Wm(3) exists.
(a) Let M ≥ 1 be an integer and 2-color {1, . . . ,MW2M (3)}. Prove that there exists a block, B, of

M consecutive numbers such that B,B + h and B + 2h are identically colored.
(b) Fix M ≥ 3

2W2(3). Notice that any block of length M necessarily contains a 4-term arithmetic
progression whose first three terms are monochromatic. Use this observation, together with
part (a), to show that any two coloring of {1, . . . , 3

2MW2M (3)} contains a monochromatic 4-
term arithmetic progression.
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5.2. Proof of van der Waerden’s theorem. Some terminology and notation:

• We will use a+ [0, k − 1]h to denote the k-term arithmetic progression {a, a+ h, . . . , a+ (k − 1)h}.
• We define a fan of radius k and dimension d with base point a to be a d-tuple of the form

{a+ [0, k − 1]h1, . . . , a+ [0, k − 1]hd}.

• We call the progressions a+ [1, k − 1]hi the spokes of the fan.
• We will say that a fan is polychromatic if its base point a and the spokes, a+ [1, k− 1]hi, (1 ≤ i ≤ d)

are all monochromatic with distinct colors.

Our proof will consist of two inductive steps. We will induct on the length of the progression k. To
complete this induction, we will show that a coloring must either contain a monochromatic k-term arithmetic
progression, or a polychromatic fan of radius k and dimension d by inducting on d. The key observation is
that a polychromatic fan consisting of m colors, can only have m− 1 spokes.

Proof of van der Waerden’s theorem. The base case, when k = 1, is trivial. Assume that k ≥ 2 and that
there exists an N so that if {1, . . . , N} is m-colored, then there is a monochromatic (k− 1)-term arithmetic
progression.

Claim 5.2. For any d ≥ 1 there exists M so that if a block of M consecutive numbers is m-colored, then
either there is a monochromatic k-term arithmetic progression, or there exists a polychromatic fan of radius
k and dimension d.

The base case d = 1 follows from the existence of Wm(k − 1) claimed in the inductive hypothesis on
progression length. Let d ≥ 2 and assume the claim is true for d− 1. Let M1 and M2 be large parameters.
Consider M2 consecutive blocks of M1 consecutive integers. By the induction hypothesis, assuming M1 is
sufficiently large, either some block contains a k-term monochromatic progression (in which case we have
proved van der Waerden’s theorem) or each block must contain a polychromatic fan of radius k and dimension
d− 1. We will assume the latter.

Since there are mM1 possible colorings of each block, as long as M2 is sufficiently large, there must be an
arithmetic progression of k blocks,

B,B + h, . . . , B + (k − 1)h,

the last k − 1 of which are identically colored (here we are using our first inductive hypothesis and the fact
that we have assumed that there ar no monochromatic k-term arithmetic progressions). We note that it is
sufficient to take M2 = 2WmM1 (k − 1). Furthermore, the inductive hypothesis implies that the block B + h
must contain the elements of a polychromatic fan,

F + h = {a+ h+ [0, k − 1]h1, . . . , a+ h+ [0, k − 1]hd−1}

of radius k, dimension d − 1 and base point a. Since the last k − 1 blocks are identically colored, we now
have a k − 1 term progression of identically colored polychromatic fans

F + h, . . . , F + (k − 1)h.

Then, the set
F ∪ F + h ∪ · · · ∪ F + (k − 1)h

contains a polychromatic fan of radius k and dimension d. In particular, the fan{
a+ [0, k − 1]h, a+ [0, k − 1](h+ h1), . . . , a+ [0, k − 1](h+ hd−1)

}
is polychromatic. This completes the proof of our claim.

Let d = m. By the claim, as long as N ≥ M1M2 any m-coloring of {1, . . . , N} must contain a k-term
monochromatic arithmetic progression, or a polychromatic fan of radius k and dimension d. The latter case is
impossible, which means that the coloring must contain a monochromatic k-term arithmetic progression. �
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6. Rado’s single equation theorem

Theorem 6.1 (Rado’s single equation theorem). Let m ∈ N and c1, . . . , ck ∈ Z. If N is sufficiently large
(depending only on m, c1, . . . , ck), then any m-coloring of {1, . . . , N} will admit a monochromatic solution
to the equation c1x1 + · · ·+ ckxk = 0 if and only if some non-empty subset of {c1, . . . , ck} sums to zero.

6.1. A strengthening of van der Waerden’s theorem. We first establish the following strengthening
of van der Waerden’s theorem (of which the case s = 1 is perhaps the most natural).

Theorem 6.2. Given m, k, s ∈ N, there exists a smallest integer W̃m(k, s) such that if N ≥ W̃m(k, s), then
any m-coloring of {1, . . . , N} will admit a monochromatic (k + 1)-tuple of the form

{a, a+ h, . . . , a+ (k − 1)h, sh} .

Proof. It is clear that W̃1(k, s) = max{k, s}. We proceed via induction on m, hence we let m ≥ 2 and assume
the existence of W̃m−1(k, s). We will now establish the result by demonstrating that

W̃m(k, s) ≤ sWm

(
(k − 1)W̃m−1(k, s) + 1

)
.

Let N = sWm((k− 1)W̃m−1(k, s) + 1). It then follows from van der Waerden’s theorem that any m-coloring
of {1, . . . , N} will necessarily contain a monochromatic arithmetic progression of length (k−1)W̃m−1(k, s)+1
within the first N/s natural numbers, that is a set of the form{

a, a+ h′, . . . , a+ (k − 1)W̃m−1(k, s)h′
}
⊆ {1, . . . , N/s}

with h′ 6= 0. Notice that if there exists a number sjh′ that is the same color as this progression, with
1 ≤ j ≤ W̃m−1(k, s), then the result follows, with h = jh′. If this is not the case then the progression

{sh′, 2sh′, . . . , W̃m−1(k, s)sh′}
must be (m− 1)-colored, in which case the result follows immediately from the inductive hypothesis. In the
final step we use the fact that every m-coloring {1, . . . , N} contains a monochromatic (k + 1)-tuple of the
form {a, a+ h, . . . , a+ (k − 1)h, sh} if and only if for each λ ∈ N every m-coloring of {λ, 2λ, . . . , Nλ} also
contains a monochromatic (k + 1)-tuple of the same form. �

6.2. Proof of Rado’s single equation theorem.

Proof of Sufficiency. We assume, without loss in generality, that c1 + · · · + ck′ = 0 and fix a m-coloring of
N. If k′ = k, we may take x1 = · · · = xk = 1, hence we shall assume that k′ < k and c1 + · · ·+ ck 6= 0.

Let A = gcd(c1, . . . , ck′). By the Euclidean algorithm, we can express A as a linear combination of
c1, . . . , ck′ . If we let B = ck′+1 + · · · + ck > 0 and s = A/ gcd(A,B), then it follows that there exists t ∈ Z
such that

At+Bs = 0
since Bs is a multiple of A. Furthermore, we have λ1, . . . , λk′ ∈ Z such that

c1λ1 + · · ·+ ck′λk′ = At.

It is easy to then see that for any choices of a and h, the numbers

xj = a+ λjh

for 1 ≤ j ≤ k′ and
xj = sh

for k′ + 1 ≤ j ≤ k will form solutions to our equation.

As a corollary of Theorem 6.2 it follows (almost immediately) that if N ≥ W̃m(2Λ + 2, s), then given any
m-coloring of {1, . . . , N} there must exist a, h ∈ N such that

{a+ λh : |λ| ≤ Λ} ∪ {sh}
is monochromatic. The result follows if we set Λ = max{|λ1|, . . . |λk′ |}. �
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Proof of Necessity. Suppose that no subset of {c1, . . . , ck} sums to zero. For some m, we construct a m-
coloring of Q \ {0} with no monochromatic solution; this clearly forbids a monochromatic solution in N.
If p > 0 is prime, then each q ∈ Q \ {0} can be expressed uniquely as q = pja/b, with p - a, p - b and
gcd(a, b) = 1. Let cp(q) = ab−1 (mod p); this defines a (p−1)-coloring of Q. Note that cp(x) = cp(y) implies
that cp(αx) = cp(αy) for all α ∈ Q \ {0}. Provided we choose p such that it does not divide any of the
(finite number of) non-zero sums of subsets of {c1, . . . , ck}, it will suffice to show that our equation has no
monochromatic solution with the cp coloring.

Suppose to the contrary that {x1, . . . , xk} forms a monochromatic solution. For all µ ∈ Q \ {0},
{µx1, . . . , µxk} also forms a monochromatic solution. We may thus assume that x1, . . . , xk ∈ N with
gcd(x1, . . . , xk) = 1. We now reorder the set {x1, . . . , xk} so that x1, . . . , xk′ are precisely the elements
that are not divisible by p, we know that there is at least one such xj . Reducing our equation modulo p; it
becomes c1x1 + · · ·+ ck′xk′ ≡ 0 (mod p). Since the xj ’s have the same color, their expressions as described
above have the value ab−1 (mod p). Dividing the congruence by this value, we obtain c1 + · · · + ck′ ≡ 0
(mod p) which contradicts our choice of p. �

7. Folkman’s theorem

Theorem 7.1 (Folkman’s theorem). Given m, k ∈ N, there exists a smallest integer Fm(k) such that if
N ≥ Fm(k), then any m-coloring of {1, . . . , N} will admit a monochromatic subset of the form{∑

i∈I

xi : I ⊆ {1, . . . , k}, I 6= ∅

}
with x1, . . . , xk distinct.

7.1. A variant on Folkman’s theorem. Instead of proving this result directly, we shall prove the following
variant which allows an easier induction argument.

Theorem 7.2. Given m, k ∈ N, there exists a smallest integer F̃m(k) such that if N ≥ F̃m(k), then any
m-coloring of {1, . . . , N} will admit a subset of the form{∑

i∈I

xi : I ⊆ {1, . . . , k}, I 6= ∅

}
with x1, . . . , xk distinct that is weakly monochromatic in the sense that the color of any element,

∑
i∈I xi,

depend only on the largest element of I.

For example, the set {∑
i∈I

xi : I ⊆ {1, 2, 3}, I 6= ∅

}
is weakly monochromatic precisely if its subsets

{x1} {x2, x1 + x2} {x3, x1 + x3, x2 + x3, x1 + x2 + x3}
are individually monochromatic.

Proof that Theorem 7.2 implies Folkman’s theorem. Any weakly monochromatic set (on m-colors) of the
form {∑

i∈I

xi : I ⊆ {1, . . . , k′}, I 6= ∅

}
with y1, . . . , yk′ distinct, must contain a monochromatic set of the form{∑

i∈I

xi : I ⊆ {1, . . . , k}, I 6= ∅

}
with {x1, . . . , xk} ⊆ {y1, . . . , yk′} and k ≥ dk′/me. �
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7.2. Proof of Theorem 7.2. It is clear that F̃m(1) = 1 for all m ≥ 1. We proceed via induction on k,
hence we let k ≥ 1 and assume the existence of F̃m(k). We will now establish the result by demonstrating
that

F̃m(k + 1) ≤Wm(F̃m(k)).

Let N = Wm(F̃m(k) + 1). It then from van der Waerden’s theorem that any m-coloring of {1, . . . , N} will
necessarily contain a monochromatic arithmetic progression of length F̃m(k) + 1, that is a monochromatic
set of the form

{a, a+ h, . . . , a+ F̃m(k)h}
with h 6= 0. We now consider the arithmetic progression {h, 2h, . . . , F̃m(k)h}. By the inductive hypothesis
we know that this progression must contain a weakly monochromatic set of the form{∑

i∈I

xi : I ⊆ {1, . . . , k}, I 6= ∅

}
with x1, . . . , xk distinct. If we add to this collection of xj ’s the element xk+1 := a, then it is easy to see that
the resulting set {∑

i∈I

xi : I ⊆ {1, . . . , k + 1}, I 6= ∅

}
will again be weakly monochromatic. �

8. Hales-Jewett theorem

Theorem 8.1 (Hales-Jewett theorem). Given m, k ∈ N, there exists a smallest integer HJm(k) such that
if d ≥Wm(k), then any m-coloring of {1, . . . , k}d will admit a monochromatic combinatorial line, namely a
set of the form

{a, a+ v, . . . , a+ (k − 1)v}
with a ∈ {1, . . . , k}d and v ∈ {0, 1}d \ {0, 0}.

8.1. Shelah’s proof. It is clear that HJm(1) = 1. We proceed via induction on k, hence we let k ≥ 2 and
assume the existence of HJm(k − 1). We set M = HJm(k − 1) and write

[k]d = [k]d1 × · · · × [k]dM

where [k] = {1, . . . , k}, d1 = m(k−1)M−1
and di = m(k−1)M−i+kd1+···+di−1 for 2 ≤ i ≤ M . Our choice of dM

ensures that there exist

x = (k − 1, . . . , k − 1︸ ︷︷ ︸
s

, k, . . . , k) ∈ [k]dM and y = (k − 1, . . . , k − 1︸ ︷︷ ︸
s′

, k, . . . , k) ∈ [k]dM

with 0 ≤ s < s′ ≤ dM such that the affine subspaces

[k]d1 × · · · × [k]dM−1 × {x} and [k]d1 × · · · × [k]dM−1 × {y}
are colored identically. We now define the combinatorial line

LM := {(k − 1, . . . , k − 1︸ ︷︷ ︸
s

, j, . . . , j︸ ︷︷ ︸
s′−s

, k, . . . , k) : 1 ≤ j ≤ k} ⊆ [k]dM

and note that the elements on this line corresponding to j = k − 1 and j = k are the points x and y above.

We now induct down. Suppose that at the i-th step, with 1 ≤ i ≤M − 1, we have

[k]d1 × · · · × [k]di−1 × [k]di × Li+1 × · · · × LM ⊆ [k]d

with the property that the color of any element in this space does not vary under any (single) coordinate
changes from k − 1 to k in Li+1 × · · · × LM . Since di = m(k−1)M−i+kd1+···+di−1 , it follows as above that we
can find a combinatorial line

Li = {(k − 1, . . . , k − 1, j, . . . , j, k, . . . , k) : 1 ≤ j ≤ k} ⊆ [k]di

such that the color of [k]d1 × · · · × [k]di−1 ×Li×Li+1× · · · ×LM is the same for j = k− 1 and j = k (in Li).
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This process leads to the construction of an affine subspace

L1 × · · · × LM ⊆ [k]d

of dimension M where each combinatorial line Li takes the form

Li = {(k − 1, . . . , k − 1, j, . . . , j, k, . . . , k) : 1 ≤ j ≤ k} ⊆ [k]di

and has the property that the color of L1 × · · · × Li × · · · × LM is the same for j = k − 1 and j = k.

It then follows from the inductive hypothesis that if we identify in the natural way L′1 × · · · × L′M with
{1, . . . , k − 1}M , where each L′i is simply the first k − 1 elements of Li, namely

L′i = {(k − 1, . . . , k − 1, j, . . . , j, k, . . . , k) : 1 ≤ j ≤ k − 1} ⊆ [k]di

then L′1 × · · · × L′M must contains a monochromatic combinatorial line. By construction it then follows
immediately that L1 × · · · × LM ⊆ [k]d also contains a monochromatic combinatorial line. �

9. Remark on bounds for Wm(k)

We define the Ackermann hierarchy to be the sequence of functions f1, f2, · · · : N→ N defined by

f1(x) = 2x (Double)

and
fn+1(x) = fn ◦ · · · ◦ fn︸ ︷︷ ︸

x

(1)

for n ≥ 1. Thus
f2(x) = 2x (Exponential)

f3(x) = 22.
..
2︸ ︷︷ ︸

x

(Tower)

f4(1) = 2, f4(2) = 22 = 4, f4(3) = 2222

= 65536, f4(4) = WOW! (Wowzer)

We say that a function f : N→ N is of type n if there exist c and d with f(cx) ≤ fn(x) ≤ f(dx) for all x.
Diagonalization allows for even faster growing functions. The Ackermann function A : N→ N is defined by

A(x) = fx(x).

Our first (color-focusing) proof of van der Waerden’s theroem gives a bound on W2(k) which grows faster
than fn for all n – this is often a feature of such double inductions. The actual bounds obtained via this
argument can be verified to be of Ackermann-type. Shelah’s method of proof allows one to establish that

Wm(k) ≤ f4(k +m).

In 1998 Gowers established that

Wm(k) ≤ 22m
22
k+9

as a corollary of his seminal (Fourier analytic) proof of

Theorem 9.1 (Szemerédi’s theorem). Given 0 < δ ≤ 1 and k ∈ N, there exists a smallest integer N0(δ, k)
such that if N ≥ N0(δ, k), then any subset A ⊆ {1, . . . , N} will density |A|/N ≥ δ must contain an arithmetic
progression of length k, namely a set of the form {a, a+ h, . . . , a+ (k − 1)h} with h 6= 0.

In particular Gowers established the bound

N0(δ, k) ≤ 22δ
−Ck

where Ck = 22k+9
. It is easy of course an easy exercise to see that Wm(k) ≤ N0(1/m, k) for all m, k ∈ N.
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10. Exercises

1. Explain why the fact that(
k1 + k2 − 2
k1 − 1

)
=
(
k1 + k2 − 3
k1 − 2

)
+
(
k1 + k2 − 3
k1 − 1

)
implies that

R2(k1, k2) ≤
(
k1 + k2 − 2
k1 − 1

)
.

2. Prove that the existence of R2(k1, k2) implies the existence of Rm(k1, . . . , km) for all m ≥ 2.
3. Prove that

Rm(3) ≤ bem!c+ 1
by using induction on m. In particular show that if Rm(3) exists, then

Rm+1(3)− 1 ≤ (m+ 1)(Rm(3)− 1) + 1.

Prove that equality holds in the case when m = 2, 3.
4. Prove that for k ≥ 2, R2(k) ≥ 2k/2.

Hint: Color the edges of the graph randomly.
5. Let n ∈ Z≥2 and p be prime. Prove that the congruence

xn + yn ≡ zn (mod p)

has a solution in the integers, with p not dividing xyz, provided p is sufficiently large (depending on
n only).

Hint: Use the subgroup {xn : x ∈ Z×p } to partition Z×p .
6. Let m, k ∈ N. Show that there exists a smallest integer S′m(k), such that any m-coloring of
{1, . . . , N}, with N ≥ S′m(k), will necessarily contain a monochromatic (k + 1)-tuple of the form
{x1, . . . , xk, x1 · · ·xk}.

7. Let m, k ∈ N. Show that there exists a smallest integer S̃m(k), such that any m-coloring of
{1, . . . , N}, with N ≥ S̃m(k), will necessarily contain a monochromatic (k + 1)-tuple of the form
{x1, . . . , xk, x1 · · ·xk} with x1, . . . , xk distinct.

8. Show that there exists a 2-coloring of N that does not contain an infinitely long arithmetic progression.
9. Prove that the existence of W2(k) implies the existence of Wm(k) for all m ≥ 2.

10. Let m, k ∈ N. Prove that there exists a constant c(m, k) such that any m-coloring of {1, . . . , N} will
admit at least bc(m, k)N2c monochromatic arithmetic progressions of length k in the same color.

11. Rado’s theroem (full version) implies Folkman’s theorem
12. (a) Hales-Jewett implies van der Waerden

(b) Hales-Jewett implies Gallai
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